Fast Context-aware Recommendations
with Factorization Machines

Steffen Rendle
Social Network Analysis
University of Konstanz
78457 Konstanz, Germany

steffen.rendle@uni-konstanz.de

ABSTRACT

The situation in which a choice is made is an important
information for recommender systems. Context-aware rec-
ommenders take this information into account to make pre-
dictions. So far, the best performing method for context-
aware rating prediction in terms of predictive accuracy is
Multiverse Recommendation based on the Tucker tensor fac-
torization model. However this method has two drawbacks:
(1) its model complexity is exponential in the number of con-
text variables and polynomial in the size of the factorization
and (2) it only works for categorical context variables. On
the other hand there is a large variety of fast but specialized
recommender methods which lack the generality of context-
aware methods.

We propose to apply Factorization Machines (FMs) to
model contextual information and to provide context-aware
rating predictions. This approach results in fast context-
aware recommendations because the model equation of FMs
can be computed in linear time both in the number of con-
text variables and the factorization size. For learning FMs,
we develop an iterative optimization method that analyti-
cally finds the least-square solution for one parameter given
the other ones. Finally, we show empirically that our ap-
proach outperforms Multiverse Recommendation in predic-
tion quality and runtime.

Categories and Subject Descriptors

H.3.3 [Information Systems]: Information Search and Re-

trieval—Information filtering; 1.2.6 [Artificial Intelligence]:

Learning— Parameter Learning

General Terms

Algorithms, Experimentation, Measurement, Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGIR’11, July 24-28, 2011, Beijing, China.

Copyright 2011 ACM 978-1-4503-0757-4/11/07 ...$10.00.

Zeno Gantner, Christoph Freudenthaler,

Lars Schmidt-Thieme
Information Systems and Machine Learning Lab
University of Hildesheim
31141 Hildesheim, Germany
{gantner,freudenthaler,schmidt-

thieme}@ismll.de

Keywords

Context-Aware Recommender System, Factorization Machine,
Rating Prediction, Tensor Factorization

1. INTRODUCTION

Rating prediction in recommender systems relies primar-
ily on the information of how (which rating, e.g. on a scale
from 1 to 5 starts) who (which user) rated what (which item,
e.g. movie, news article, or product). There are many meth-
ods that take additional data about the who (demographic
information about the user, age, profession, gender) or the
what (item attributes like movie genres or keywords from
the product description) into account.

Besides such data about the entities involved in the rating
events, there is possibly also information about the situation
in which the rating event happens, e.g. the current location,
the time, who is nearby, or the current mood of the user.
Such situational information is usually called contezt. Be-
cause it is known from decision psychology that the setting
and the mood of a person do influence their behavior, it
is desirable to exploit context information in recommender
systems. Context-aware rating prediction relies on the in-
formation of how who rated what in which context (see also
figure 1).

Classical recommender system methods do not take con-
text information into account. Some approaches perform
pre- or post-processing of the data to make standard meth-
ods context-aware. While such ad-hoc solutions may work
in practice, they have the shortcoming that all steps in the
process need supervision and fine-tuning. Methods that in-
tegrate all kinds of input data into one model are more
practical in this respect, as well as theoretically more ele-
gant. Currently, the most flexible and strongest approach
in terms of prediction accuracy is Multiverse Recommenda-
tion [5] that relies on Tucker decomposition and allows to
work with any categorical context. However, for real-world
scenarios its computational complexity is too high as it is
in O(k™) where k is the dimensionality of the factorization
and m the number of modes/variables involved.

In this paper, we propose a context-aware rating pre-
dictor that is based on Factorization Machines (FM) [14].
FMs include and can mimic the most successful approaches
in recommender systems including matrix factorizion [18§],
SVD++ [6] or PITF [15]. We show how FMs can be applied
to a wide variety of context domains including categorical,

set categorical or real-valued domains. Besides this flex-
ibility in modeling, the complexity of FMs is linear both
in k and m which allows fast prediction and learning with
context-aware data. For learning the model parameters of
FMs, we propose a new algorithm that is based on alter-
nating least squares (ALS). Our algorithm directly finds the
optimal solution for one model parameter given all the other
ones and a joint optimum is found within a few iterations.
Like for stochastic gradient descent (SGD), the complexity
for one iteration of our ALS algorithm is in O(|S|m k) where
|S| is the number of training examples. The main advantage
of our new ALS algorithm over SGD is that no learning rate
has to be determined. This is very important in practice,
because the quality of SGD learning relies largely on a good
learning rate and thus an expensive search has to be done.
This is not necessary for ALS.

In our experiments, we show empirically that context-
aware FMs can capture context information and improve
predictive accuracy. Furthermore, FMs outperform the state-
of-the-art method Multiverse Recommendation both in pre-
diction quality and largely in runtime.

1. In contrast to other context-aware rating predictors,
FMs are easily applicable to a wide variety of contexts.
We show how to generate feature vectors for context
of categorical, set categorical and real-valued domains.

2. We develop a new learning algorithm for FMs that di-
rectly computes the least-square solution of a model
parameter given the remaining parameters. The ad-
vantage of our ALS algorithm over SGD is that it
works without a learning rate.

3. Compared to the state-of-the-art context-aware rating
prediction method Multiverse Recommendation, FMs
have a linear complexity and empirically provide a bet-
ter prediction quality in much less time.

2. CONTEXT-AWARE RATING
PREDICTION

We first describe the standard rating prediction task and
then extend it to context-aware rating prediction. Next we
show how this task can be expressed as a regression task
from real-valued feature vectors under extreme sparsity. We
also discuss shortly why standard regression models are not
effective in this setting.

2.1 Rating prediction

Standard rating prediction can be defined as a regression
task over users U = {u1,uz,...} and items I = {i1,42,...},
where a target function y : U x I — R has to be estimated.
The target function represents the rating, e.g. y(u,) is the
rating of user u for item ¢. We denote the observed part
of y by S C U x I; ie. for all (u,i) € S, we know the
rating y(u, ¢) in advance. The task of rating prediction is to
estimate a function § that can predict §(u,) for any user-
item combination.

2.2 Context

In context-aware recommender systems, it is assumed that
some additional information is available that influences the
rating behavior. We define a context as a variable ¢ € C.
Examples are the mood the user was in when (s)he rated an

item (e.g. C = {happy, sad, ...}), the time at which a rating
was given (e.g. C = R"), the last items seen (e.g. C = P(I))
or the location (e.g. C = R?).

2.3 Context-aware rating prediction

If multiple contexts Cs,...,C,, are allowed the task is to
estimate the following rating function:

y:UXxIxC3...xCh =R (1)

Note that we start the index of the context variables with 3
because from a technical point of view, users and items can
be seen as the first and second ‘context’.

Figure 2 shows an example for context-aware data on the
left side. There are users U in mood C3 watching movies I
together with other users Ca:

U = {Alice, Bob, Charlie}

I = {TItanic, Notting Hill, Star Wars, Star Trek}
Cs = {Sad, Normal, Happy}
Cs =P(U)

The first tuple in Fig. 2 states that Alice rated TTtanic with
5 stars and that she has watched this movie with Charlie
while she was Happy.

3. RELATED WORK

Most research in recommender systems focus on context-
unaware methods that analyze only the user-item interac-
tion. Here matrix factorization approaches (e.g. [18, 6])
have become very popular as they usually outperform tra-
ditional k-nearest neighbor methods (e.g. [17]). There is
also research in incooperating meta-data like user or item
attributes into the prediction, like Stern et al. [19] who
extend a matrix factorization model. However meta-data
often yields in only little or no improvement over strong
baseline methods for rating prediction if enough feedback
data is present [12]. The difference between such user/ item
attributes and context is that attributes are attached only
to either an item or user (e.g. a genre is attached to a movie)
whereas context is attached to the whole rating event (e.g.
the mood of a user when rating an item).

In contrast to the huge literature on standard recom-
mender systems, there is only little research on context-
aware recommender systems. The most basic approaches
are contextual pre-filtering and post-filtering where a stan-
dard context-unaware recommender system is applied and
the data is either preprocessed based on the context of in-
terest before applying the recommender or the results are
postprocessed [11]. Examples for pre-processing are item-
splitting [3] or the multidimensional model of Adomavicius
et al. [1] which is based on OLAP cubes. More sophisti-
cated approaches use all the context and user-item infor-
mation simultaneously to make predictions. Oku et al. [9]
use SVMs for context-aware predictions — which have limi-
tations in sparse applications like recommender systems as
no 2-way interaction between items and users can be es-
timated directly [14]. Li et al. [8] suggest to see context
as a user feature which is dynamic, i.e. can change. There
is also some research on context-aware recommendation sys-
tems for item prediction [16], which is a ranking task instead
of a regression task like the problem we are dealing with in
this paper.

3.1 Multiverse Recommendation

Recently, Karatzoglou et al. [5] have proposed to apply
the Tucker decomposition [20] to factorize the tensor over
user, items and all categorical context variables directly.
They called their approach Multiverse Recommendation and
have shown empirically that their approach results in better
prediction accuracy than item-splitting [3] and the OLAP
approach [1]. In our evaluation, we will compare our Factor-
ization Machine approach to Multiverse Recommendation.

As both our approach and Multiverse Recommendation
are based on factorization models, we shortly recapitulate
their approach and highlight the differences. Their model
equation is the Tucker Decomposition, which decomposes an
m-mode tensor into a smaller core tensor B and one factor
matrix V™ per mode. For context-aware recommender
systems, the first mode is the user, the second the item and
the remaining m — 2 modes are the context variables. The
model equation can be written as:

k1 ko m
~ . U I C
y(u77'7037 o .7Cm) = Z v bfl,m,fm Ui,;l UE,f)g chll,fl7
f1 fm =3

with
Be Rklxmka7 V(U) c R\U\xkl
v GR\I\X’Q’ V(Cl) GR\CHXM.

The major drawback of this model is that its computational
complexity is in O(J];", k). Assuming factorization dimen-
sions of equal size, i.e. k := kj, this means a computational
complexity of O(k™). Thus the complexity of computing
one context-aware rating is exponential in the number of
modes and polynomial in the number of factors. This leads
to both poor learning and poor prediction runtime as soon
as the number of factors growths. In Figure 5 we compare
the learning runtime of Multiverse Recommendation empiri-
cally to our FM approach. A second limitation of Multiverse
Recommendation in comparison to our approach is that only
categorical context can be modeled — e.g. categorical set
variables or real-valued variables are not possible. Finally,
in the related task of item or tag recommendation (which
is a ranking task), it has been shown that often it is better
to factorize several lower variable interactions (e.g. pairwise
ones [15]) instead of one m-ary relation (like the Tucker De-
composition). The reason is that under high sparsity, factor-
ized pairwise relations can be estimated well but factorized
m-ary relations are harder to estimate. Our FM approach
follows this idea and models all nested interactions up to
pairwise ones.

3.2 Attribute-aware Recommendation

In contrast to the little work on general context-aware
methods, there is much more research on attribute-aware or
specialized recommender systems. For example [19] or [2]
present extensions of the matrix factorization model that
can handle user and item attributes. There are also sev-
eral works on taking time-effects into account, e.g. [7, 21].
However, all of these approaches are designed only for spe-
cific problems and cannot handle the general problem setting
of context-aware recommendation that we examine in this
work. For sure for specific and important problems (e.g.
time-aware or attribute-aware recommendation) it is bene-
ficial to investigate specialized methods that are supposed

user

kg rating data

context dat,

rating data

item data

Figure 1: Attribute-aware methods can take addi-
tional information about the user or the item sep-
arately into account (left), whereas context-aware
methods are more general and can analyze data that
is simultaneously attached to all ‘modes’, i.e. the
whole rating event (right).

to be the best models for a certain problem, but on the
other hand also research on general methods like context-
aware recommenders is important as they offer the largest
flexibility and may serve as (strong) baselines for specialized
models.

3.3 Alternating Least Square Optimization

For the model class of matrix factorization, Bell and Koren
[4] proposed an ALS method that alternates between opti-
mizing all user factors and all item factors. As the whole
factor matrix of all users (resp. items) is optimized jointly,
the computation complexity is O(k®). This complexity is-
sue of standard ALS is the reason why SGD approaches are
more popular in the recommender system literature than
ALS. Pildszy et al. [13] have proposed to optimize the fac-
tors within each user (resp. item) one after the other which
results in an ALS algorithm constant in k, i.e. O(k) because
the matrix inversion is avoided. The general idea of optimiz-
ing one factor at a time is the same idea that we apply for
our ALS algorithm for FMs. Both approaches [4, 13] work
only for matrix factorizations and thus cannot handle any
context like our proposed FMs which model all interactions.
Furthermore our ALS algorithm also learns the global bias
and basic 1-way effects.

4. CONTEXT-AWARE RATING
PREDICTION WITH FMS

FMs are a generic model class that subsumes and can
mimic several of the most successful recommender systems,
among them matrix factorization [18], SVD++ [6] or PITF
[15]. We shortly recapitulate the FM model and then show
in detail how it can be applied to context-aware data and
what happens inside an FM using such context-aware data.
In the second main part, we propose a new fast alternating
least square (ALS) optimization algorithm that makes FM
much easier applicable compared to SGD algorithms because
it works without any learning rate.

4.1 Rating Prediction with FMs

A factorization machine (FM) [14] models all interactions
between pairs of variables with the target, including nested

ones, by using factorized interaction parameters':

n n n
GX) =wo+ Y wimi+y Y i wiw, 2
i=1

i=1 j=i+1

where w; ; are the factorized interaction parameters between
pairs:

k
Wi = (Vi, Vi) =) ip vy (3)
=1

and the model parameters © that have to be estimated are:

wo €R, weR", VeR™ (4)

That means wo is the global bias, w; models the interaction
of the i-th variable to the target and w; ; models the factor-
ized interaction of a pair of variables with the target. Note
also that unlike other factorization models like matrix fac-
torization or PARAFAC, FMs can work with any continuous
input data x.

In [14] it has also been shown that a FM (eq. 2) can be
computed very efficiently in O(k - m(x)) as it is equivalent
to:

n k n 2 n
N 1
9(x) = wo + szxz +3 Z <<szf xz> - va,f xf)
i=1 f=1 i=1 i=1
(5)

For the task of regression, the most widely used loss func-
tion is square loss. To prevent overfitting it is common to
add a regularization term — usually L2. In total, we use the
following regularized least square criterion for optimization:

RLS-OPT= 3 (§(x) —9)*+ 3 A 6° (6)

(x,y)€S =

where \(g) is a regularization (hyper-)parameter for the model
parameter 0. In general, the regularization term can be cho-
sen individually for each model parameter. But in practice
it makes sense to use the same regularization parameters
for similar model parameters — in our experiments we use:
Awo) = 0 as there is no need to regularize the global bias;
the same A(w) for all parameters w; € w and the same Ay
for all parameters v; f € V.

4.2 Context-aware FMs

A wide variety of context-aware data can be transformed
into such a prediction task using real valued feature vectors
x € R" (see figure 2, right side for an example). We will
show possible mappings z : C — R" for different kind of
domains:

e Categorical domain: A categorical variable domain
C like users U, items I, or mood can be transformed
into a real-valued vector z using one indicator variable
per categorical level. E.g. in our example the mood
domain C3 has three states, so we can express Alice’s
mood Happy with the vector z(Happy) = (0,0, 1), or
if she is in a Sad context with: z(Sad) = (1,0, 0).

e Categorical set domain: if the realization of a vari-
able can be sets of categorical variables (e.g. Alice
has watched Star Wars with Bob and Charlie), the

1We restrict our discussion to 2-way FMs (d = 2).

transformation can be made by using one indicator
variable per context level. E.g. z({Bob, Charlie}) =
(0,0.5,0.5); here we suggest to normalized z for non-
empty context values such that all vectors sum up to 1.
This makes sure that all vectors have the same weight
which is often desirable.

e Real valued domains: If a domain is already a num-
ber (e.g. C C R), we can directly use the real number
as feature, e.g. z(3.141) = 3.141.

The final feature vector x can be obtained by concatenating
the single mappings:

szm(cm)) (7)

This data vectors x are then the input for the FM (eq. 2).

x(u, 4, ¢3,...,cm) = (21(u),22(3),23(c3), . . .

Example.

Figure 2 shows a complete example how to transform the
context-aware data of section 2.3 into a prediction problem
from real-valued features. The example contains the cate-
gorical domains user U, item I and mood C3 as well as a set-
categorical domain, the friends the movie has been watched
with, C4. To get an insight of how an FM will work, we
investigate shortly the model equation of an FM applied to
this data®. When we look at the feature vector x of our
example, one can see that most of them are 0 and thus the
FM model equation can be rewritten as:

§(x(u, i, c3,ca)) = wo + w; + Wy + wey + Z T we

tEcy

+ {(vi, vu) + Vi, Ves) + (i, Z Tt Vi)

tEcy

+ (Vu, Veg) + (Vu, Z Te Vi) + (Veg, Z Tt Vi)

tecy tecy

That means the FM model contains the bias term for the
individual item 4, user u, mood c3 and the average bias of
the co-watchers c4. Furthermore it factorizes all pairwise in-
teractions between these four variables. Comparing the FM
model with the standard matrix factorization model (e.g.
[18]) for the user u and the item ¢, one can see that the FM
contains also exactly this factorization: (vi7vu>. Addition-
ally, it factorizes all pairwise interactions with all context
variables. This shows how FMs automatically include one
of the best performing recommender system models, the ma-
trix factorization model.

4.3 Fast Learning

As the model equation of FMs can be calculated in linear
time (see eq. 5), it is straightforward to develop a stochastic
gradient descend (SGD) optimization algorithm for a vari-
ety of loss functions. However SGD requires to find a good
learning rate which is big enough to have convergence after
a reasonable amount of iterations and small enough that the
gradient steps are made towards the minimum which is espe-
cially important in latter iteration stages. In the following,

2Please note that we do this analysis only to explain what
happens implicitly in the FM — nothing has to be done ex-
plicitly when applying an FM. The end-user (domain expert)
has only to specify the input features (i.e. the x vector) and
run a generic FM tool with this data.

[Recommender Data | (Feature vector x) rTarget yN
(A TI,H,{C}.5)) 1\0\071\0\0\0 0/o/1]o]o1 y<‘>
(ANH.S,{1,3) x?[1]o]o|o[1]o]o 1]o]o]o]o]o]|f[3]y®
(A,SW,N,{B,C},1) x*[1]o]o|ofo]1]o o]1]0 00505 y<2>

(BSWNACL) [— [x®/o|1]ofo]of[1]0 0]1]0 o5 0]0s y‘3’
(B,STH,{}.5) x®[o[1]o]ofolof[1 ofof1]o]o]o]|f]s5]y®
(C,TI,S,{A}1) x®{olo|1]|1]0]ofo 1]ojo|1]0]o0 y<5>

(C,SW,H,{A,B}.5) x?[0]o]1]ofo]1]o ofo]1 o505 o0 y“”

A B C | Tl NH SW ST A B C
|) L User)| Movie Watched wih]){)

Figure 2: Context-aware recommendation data (left side) is transformed into a prediction problem from real-
valued features (right side) by encoding the categorical and set categorical variables (left side) with indicator
variables (right side). Here in the feature vector x, the first three values indicate the user, the next four ones
the movie, the next three ones the mood and the last three ones the other users a movie has been watched

with.

we suggest a new alternating least square (ALS) learning al-
gorithm that finds the optimal value for a model parameter
given the remaining ones.

4.3.1 Alternating Least Square

The analytical least-square solution for a model parameter
can be found for FMs because they are linear functions (in
each model parameter) and there is an analytic solution for
every linear function. We will show this in the following two
lemmas.

LEMMA 1 (LINEARITY IN 0). A FM is a linear func-
tion with respect to every single model parameter 6 € © and
thus can be reexpressed as:

9(x10) = go) (%) + 0 hoy (%) (8)
where gy and hg) are independent of the value® of the pa-
rameter 6.

ProOOF. We proof this by stating g and h explicitly for
the model parameters. For the global bias wg, the FM can
be rewritten as:

n n n
E w; i + E E ’lZ)i,J'SCi‘Z'j

N _ 1
ylxlwo) =wo - 1+, 2. 2
h’(wo)(x) 1=1 =1 j=i+1

I(wg) (%)

for wy:

n n n
g(xlw) =wr w 4wo+ Z w; T + Z Z Wi,j T; T
b) i=1,i#l i=1 j=it1
wy

I(wy) (%)

3The functions ¢ and h are indexed with the name of the
parameter 6 because their form depends on the variable 6
(e.g. is different for wo and w;) but it does not depend on
the value of 0.

And for the factorized 2-way interactions vy, ¢:

hvy) ()

J(Xlong) =g @ Y vigw

i=1,i#l
n n n k
+wo+Zwixi+Z Z Z Vg, f Vj pr Ty T
i=1 i=1 j=i+1 =1
(f'#HHve{i,i})
I(vy, 5)(®)

O

REMARK 1. For linear decomposable functions like § of a
FM, the function hg)(x) is the gradient of §j with respect to
0:

x[0) 9)

o .
hioy(x) = 559(

Differentiating § leads directly to this result.

LEMMA 2 (OPTIMAL VALUE FOR 6).
square solution of a single parameter 0 for a linear model
7(x)0) is:

_ Peres (90 (%) = y) heoy(x)

0 =
P pyes Moy (¥) + Ao

(10)

ProOOF. To gain the regularized least-square solution an-
alytically, the first derivative of the optimization criterion
(eq. 6) w.r.t. @ has to be found:

ad .
79 RLS-OpT = D 2(0(x) —y) h(x) +2X0) 0

(x,y)€S

The regularized least-

The minimum is where this derivative is 0:

Do 2(5(x) —y) he)(x) +2X 0 =0
(x,y)€S

< Z (9(0)(%) = y) oy (x) + Z 0 hig)(x) + A9y 0 =0
Goy)€s (x.y)es
B 2 (xp)es (9(0)(x) — y) h(ay(x)

&6 =
P emes Py (¥) + A

O
4.3.2 Learning Algorithm

Lemma 2 with the gradients h) (see remark 1 and eq.
(10)) allows to analytically find the optimal value of each
model parameter 6 of the FM given the remaining model
parameters. A joint optimum of all model parameters ©
can be found iteratively by calculating the optimum of each
model parameter one after another and repeating this sev-
eral times. In figure 3 such an algorithm is sketched — the
meaning and purpose of e and ¢ will be explained later.
First the model parameters are initialized, where the 0- and
1-way interactions (wo and w;) can be initialized with 0 and
the factorization parameters with small O-centered random
values. In the main loop the parameters are optimized one
after the other. The idea here is to optimize first lower inter-
actions and then higher ones because for lower interactions
more data is observed and thus their estimates are more
reliable. Within the factors of the 2-way interactions, first
all features of the first factor dimension are optimized, then
the features of the second factor dimension, etc. This allows
the f-th factor to find the residuals for the 1st to (f — 1)th
factor dimensions. This optimization main loop us repeated
several times to converge to the joint optimum of all model
parameters.

4.3.3 Fast Calculation

Straightforward computation of the optimum for each pa-
rameter with eq. (10) would mean to calculate g and h for
each training example and in each parameter update. Now,
we show how to calculate the values efficiently for FMs. This
involves three improvements: (1) precomputing error terms,
(2) precomputing h-terms for 2-way interactions and (3) us-
ing the sparsity in S. In total, this will lead to an update
algorithm where a full iteration over all parameters is in
O(|S|ms k) — i.e. linear in the number of non-zero elements
in the whole dataset and the number of factors.

Precomputing error terms.

The first bottleneck in updating the parameter 6 with
eq. (10) is calculating (g(gy(x) — y) for each training case
(x,y) € S. Obviously, a trivial computation of this is in
O(m(x) k).

Now we will show, how to compute this in constant time
O(1) if the error is known. Lets define for each training case,
the error? e(x, y|®) of the model given the model parameter
as:

e(x,y0) == 9(z[0) —y (11)
This allows to rewrite:
9i0)(x) — y = e(x,y|0©) — O h(g)(x) (12)

4 Actually, e is not the error, but e? is. Nevertheless, we use
the term error for convenience.

1: procedure LEARNALS(S)

2 wo < 0 > Initialize the model parameters
3 w <« (0,...,0)

4: V ~ N(0,0)

5: for (x,y) € S do > Precompute e and ¢
6: e(x,y[0) < i(x,y) —y

7 for f e {1,...,k} do

8: q(x, f1©) < X0 vip s

9: end for

10: end for

11: repeat > Main optimization loop

12: wg _Z(x,y)‘ess‘fitfo\)('))*wo) > global bias

13: e(x,y|0") < e(x,y]0) + (w5 — wo)

14: wWo — wg

15: forl e {1,...,n} do > 1-way interactions
. Xx,y)es (e(xy0)—w; zp)z;

16: wy — — S mes Ty

17: e(x,y10%) < e(x,y10) + (w] —wn) a

18: wy — w;

19: end for

20: for f €{1,...,k} do > 2-way interactions

21: forl e {1,...,n} do

929. e X(x,y)€S (C(X,y\@)*vz,f h(w, f)(x))h(vl &

b Z(x,y)es h(zul,f)(x)+)\(vl’f)

23: e(x,y|0") < e(x,y|©) + (v ; —vi,5) ;i

24: q(x, f107) = q(x, f1O) + (v § —vi.r) 1

25: VLf Uy

26: end for

27: end for

28: until stopping criterion is met

29: return wo,w,V

30: end procedure

Figure 3: Alternating least algorithm that optimizes
the model parameters wo, w and V for least-square
in O(|S|m g k) time (see section 4.3.3) where |S| are
the number of training examples and m 5 the aver-
age number of non-zero elements in an input vector
X.

Which can be used in the nominator of eq. (10). We store
the error in a vector e € RI®! over all training examples and
precompute it at the beginning. After changing the value
of a model parameter from 6 to 6%, the error also changes.
This change on the error can be computed analytically by:

e(z,y0%) = e(z,y]0) + (6" — 0) hip)(x) (13)

where © is the set of all model parameters where only the
value of 6 has changed to 6.

Precomputing h-terms.

After storing error terms, the computation complexity
only depends on the complexity of the h)-functions. For
the parameters wo and w;, the complexity of h(is con-
stant, thus also computing the terms within the sums of the
nominator and denominator as well as the error update is
in constant time. But for the factorized parameters, com-
puting h contains a loop over all variables. We will show
now how to compute this in constant time. First, we can

reformulate h(vl,f) as:

n
h(ulyf)(x) = Zviy‘f P v f
i=1

= z1q(x, f|©) — 27 v 5 (14)
(15)
with
q(x, f1©) :== > vi s (16)
i=1

This term ¢ is independent of [and can be precomputed
for each training case and factor in a matrix Q € RISI*¥,
With a precomputation of the g-terms, the h-function can be
computed in constant time with eq. (14). When updating a
parameter vy, y to v/ ;, we have to update the corresponding
g-term as well. This can be done in constant time with:

q(x, f107) = q(x, f|O©) + (v/y —vi,p) 21 (17)

Again ©* are the new parameters after the value of v
changed to v ¢, while the rest of the parameters keep un-
changed.

Sparsity in S.

With the two enhancements described so far, the compu-
tation of each term within the sums of the nominator and
denominator of the update rules eq. (10) can be calculated
in constant time. Now, we investigate the overall complexity.
First, for the wo parameter, the optimization complexity is
O(]S|). Secondly, for each update (eq. (10)) of the 1- and 2-
way interactions of the I-th parameter, one has to loop only
over training examples where h is nonzero — these are the
training examples where z; # 0. Thus the complexity for
updating a 1-way or 2-way parameter is in O(7;)°. In total
there are n 1-way and n k 2-way parameters, so the complex-
ity for one whole iteration (i.e. updating all parameters) is
O(mink)=0(|S] ms| k).

5. EVALUATION

In this section, we empirically investigate if the greater
model flexibility and better runtime of FMs comes to the
price of less prediction quality compared to the state-of-
the-art context-aware method Multiverse Recommendation.
Furthermore we want to examine the sensitivity of SGD to
the choice of the learning rate and if our ALS optimization
can successfully work without this hyperparameter.

5.1 Methodology

Datasets. Even though the problem of context-aware rat-
ing prediction is highly relevant in practice, there are only
a few publicly available datasets: the Food dataset [10], the
Adom. dataset [1] as well as the Yahoo! Webscope dataset®
enriched with context-aware information by [5]. The Food
dataset contains 6360 ratings (1 to 5 stars) by 212 users
for 20 menu items where one context variable captures if
the situation in which the user rates is virtual or real (i.e.

®Remind that m; is the number of training cases in S where
x; # 0 which is usually low in our sparse setting
Shttp://research.yahoo.com/Academic_Relations
ydata-ymovies-user-movie-ratings-content-v1_0

if (s)he imagines to be hungry or (s)he really is) and the
second one how hungry the user is. The Adom. dataset
contains 1524 rating events (1 to 15 stars) for movies with
five context variables about companion, the weekday and
other time information. For the Yahoo! Webscope dataset
(221367 rating events) we follow [5] and apply their method
to generate datasets with an increasing number of depen-
dency of the target on the context — we generate 9 datasets
for a = p €{0.1,...,0.9}.

Methods. We compare context-aware FMs to Multiverse
Recommendation. Note that Multiverse Recommendation
has been shown to outperform other context-aware recom-
mender systems on the Yahoo! webscope, Food and Adom.
dataset [5]. As context-unaware baseline we use FMs (FM
(nocontezt)) where only the user and item variables are used
generating the feature vectors which is equivalent to matrix
factorization with bias terms (see [14] for a proof) which
is one of the strongest context-unaware recommender al-
gorithms. All models are optimized for regularized least-
squares (eq. 6). The FMs are optimized with our proposed
ALS algorithm. Multiverse Recommendation is learned with
an SGD algorithm similar to the one proposed in [5].

Protocol. We remove a 5% sample from each dataset which
is used as validation set for tuning the hyperparameters for
optimal MAE. After hyperparameter search, we make a 5-
fold cross validation on the remaining 95% of the dataset —
i.e. the validation set for hyperparameter tuning is not used
any more. We report the mean RMSE and MAE over the
5 experiments. All methods are implemented in C++ and
were run on the same hardware.

Experimental Reproducibility. Our FM implementation
with ALS optimization, a Multiverse Recommendation im-
plementation and the dataset generation scripts can be down-
loaded from our website”.

5.2 Results

5.2.1 ALSvs. SGD Learning

In figure 4, we compare the test error of an SGD imple-
mentation to our ALS-approach on the Webscope dataset®.
The leftmost figure shows the prediction quality on the test
set after each iteration. The two plots on the right side show
the minimal RMS error on the test set for several learning
rates after 10 and 100 iterations. One can see that the pre-
diction quality of SGD depends largely on the learning rate
and the number of iterations that is chosen. If the SGD
learning rate is chosen too large (e.g., here 0.01), the quality
of ALS cannot be reached. With a small learning rate one
can reach the quality of ALS — provided that the number of
iterations is large enough (see rightmost graphs) and that
one stops learning near the minimum (see leftmost graph)
on a validation set to prevent overfitting.

This experiment shows that SGD needs a careful and time-
consuming search for the learning rate. In contrast to this,
ALS requires no such search because it does not have this

"http://www.libfm.org/

8The model is a context-aware FM with k = 64; the regu-
larization parameters have been tuned individually for each
learning method.

Yahoo! Webscope dataset

16

Training: 10 Iterations

Training: 100 Iterations

@
b T |oAs b
w0 _| o SGD
w
2«
S
s « |
s -
7 o
£ =
[} © o
£ =
E -
=
)
*70\ /
= [u] [u] [u]

+ o ALS o ALS
© SGD (learn rate 0.01) © _| o SGD
g | A SGD (learn rate 0.005) i -
- + + SGD (learn rate 0.002) 0 o«
— 2 =
o) g -
- w
s 84 7 o
b~ e XA
% p
& E = o
£ -
0 = \
o e 4 &
3 -
e [ul
T T T T T T T T
0 10 20 30 40 50 60 1e-05
Learning time in seconds
Figure 4:

the right

1e-03

learning rate (for SGD)

T T T T
1e-01 1e-03 1e-01

learning rate (for SGD)

On the left side test error curves are plotted for three choices of learning rates. The two plots on
show the best RMSE found after 10 and 100 iterations respectively for several choices of learning

rates. This shows that for applying typical stochastic gradient descent (SGD) algorithms an appropriate
learning rate has to be found. Usually an expensive search over hyperparameters is performed. Our ALS

algorithm works without such a hyperparameter.

hyperparameter. With regard to prediction quality, SGD
can perform as good as ALS but only with the right choice
of the learning rate. This makes ALS clearly favorable in
application.

5.2.2 Runtime

One of the main disadvantages of Multiverse Recommen-
dation for practical use is that the computation complexity
of the model is in O(k™) which is an issue for both learning
and prediction. That means even for standard non-context-
aware recommender systems, the runtime is quadratic in the
dimensionality of the factorization k and for context-aware
problems at least cubic. This makes it hard to apply for
larger number of factors k. In contrast to this, the com-
putational complexity of factorization machines is linear in
both k and m: O(km).

In this experiment, we compare the runtime for one full
iteration over all training examples of Multiverse Recom-
mendation to context-aware FMs. As dataset, we used Ya-
hoo! Webscope with m = 4. To show the polynomial
growth of the runtime with an increasing number of the
dimensionality factorization, we run both models with k €
{1,2,4,8,16, 32,64, 128} — for Multiverse Recommendation
the maximal k we use was 32. In figure 5, the results are
reported. These empirical results match to the theoretical
complexity analysis. The runtime of the FM is linear and
one full iteration over all training examples can be made
for example in about 11 seconds (for k = 128) whereas the
complexity of Multiverse Recommendation growths with k*
such that the runtime for k = 16 is already 30 minutes and
for kK = 32 about 8 hours.

5.2.3 Prediction Quality

Finally, we want to investigate if the flexibility and fast
runtime of context-aware FMs comes to the price of poor
prediction quality compared to the Multiverse Recommen-
dation method. Therefore we compare the prediction qual-
ity on the Food, Adom and Webscope dataset’. Figure 6

9For the Adom. dataset our implementation of Multi-
verse Recommendation performed much worse than reported
in [5]. Thus in favor of Multiverse Recommendation we re-
port their (better) MAE value.

Food data Adom. data

2.20
]

- B FM (no context)
= O Fact. Machine
O Multiverse Rec.

215
I

Error
Error
2.10
I

2.05
I

L
2.00
L

RMSE MAE MAE

Figure 6: The context-aware methods Multiverse
Recommendation [5] and our proposed context-
aware Factorization Machine benefit from incoop-
erating the context-information into the rating pre-
diction.

shows that context-aware FMs and Multiverse Recommen-
dation have comparable prediction quality for the Food and
Adom. datasets. Furthermore, both methods outperform
the context-unaware method (here equivalent to a matrix
factorization model).

In a third experiment, we investigate the artificially en-
riched Yahoo! Webscope dataset (see [5]) with an increasing
influence of context variables on the rating. Figure 7 shows
that both context-aware FM and Multiverse Recommenda-
tion benefit from ratings that have a stronger dependence
on the context. In contrast to this, the prediction quality
of context-unaware FM gets worse when the rating depends
stronger on the context because for context-unaware FMs
the context is unobserved and thus they cannot explain this
dependency.

Comparing both context-aware methods among each other,
one can see that FMs throughout generate much better pre-
dictions than Multiverse Recommendation. E.g. for RMSE
the difference is about 0.10 to 0.15 points whereas for MAE
it is about 0.08 to 0.10 points. This matches to results from
the related area of tag recommendation, where a pairwise
interaction model (PITF) outperforms the Tucker decom-
position empirically in sparse problems [15]. Note that the

Yahoo! Webscope dataset

1e+03
I

Learning runtime per iteration (in seconds)
1e+01
|
Y

e o
+—* o —
o
o] /

s o
a O/ + Multiverse Recommendation

T T T 1 T T T

1 2 5 10 20 50 100

k (dimensionality)

Learning runtime per iteration (in seconds)

Yahoo! Webscope dataset

+ O Factorization Machine
+ Multiverse Recommendation

10000 15000 20000 25000 30000
1 1

5000
1

+
@Bﬁ)f o—o © °
T T T T T T T

0 20 40 60 80 100 120

0
1

k (dimensionality)

Figure 5: Learning runtime in seconds for one iteration over the whole training dataset (the left side is in
log-log scale). The runtime of the Factorization Machine is linear in the number of latent factors k whereas for
Multiverse Recommendation [5] it is polynomial (here O(k')). E.g. for a factorization size of k = 16 (k = 32),
one iteration with the FM takes only 1.1 second (2.2 seconds), whereas for Multiverse Recommendation it

takes about 30 minutes (8 hours).

Multiverse Recommendation model is the Tucker decompo-
sition and the FM includes all possible pairwise interactions
(like PITF).

5.2.4 Summary

Our experiments have shown that context-aware FMs are
able to take contextual information into account to enhance
predictions like the state-of-the-art method Multiverse Rec-
ommendation. In terms of runtime, FMs are linear which
makes them applicable to a large dimensionality of factors,
many context-variables and many observations. In contrast
to this Multiverse Recommendation cannot handle a large
number of factorization dimensions or modes. The advan-
tage in terms of runtime is not traded in for prediction qual-
ity. Instead, on the dense datasets (Food and Adom.) the
prediction quality of both methods is comparable whereas

FMs outperform Multiverse Recommendation largely in sparse

settings (Yahoo! Webscope). Finally, ALS optimized FMs
are easily applicable as they do not require an expensive
search for the learning rate like SGD optimized FMs or Mul-
tiverse Recommendation.

6. CONCLUSION

In this paper, we have shown how to apply factorization
machines to the task of context-aware recommender sys-
tems. FMs are easily applicable to a wide variety of con-
text by specifying only the input data. This allows them
to solve scenarios where standard tensor factorization ap-
proaches cannot be applied (e.g. categorical set domains,
real-valued domains). We have developed a new learning
algorithm for FMs that analytically solves the least-square
problem for each model parameter independently. This is
especially helpful in practice as no learning rate has to be
specified like in SGD approaches. Compared to Multiverse
Recommendation which is the best-performing method for
context-aware rating prediction so far, our approach achieves
much faster runtime both in training and prediction (O(km)
instead of O(k™)) as well as a better prediction quality. To
summarize, context-aware FMs combine the flexibility to be

applied in many different scenarios and high prediction ac-
curacy due to factorized interactions with fast and scalable
computation due to the linear model complexity.

7. ACKNOWLEDGMENTS

We would like to thank Hideki Asoh, Gediminas Adomavi-
cius and Alexander Tuzhilin for sharing their data sets.

8. REFERENCES

[1] G. Adomavicius, R. Sankaranarayanan, S. Sen, and
A. Tuzhilin. Incorporating contextual information in
recommender systems using a multidimensional
approach. ACM Transactions on Information Systems,
23(1):103-145, 2005.

[2] D. Agarwal and B.-C. Chen. Regression-based latent
factor models. In KDD ’09: Proceedings of the 15th
ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 19-28, New York,
NY, USA, 2009. ACM.

[3] L. Baltrunas and F. Ricci. Context-based splitting of
item ratings in collaborative filtering. In RecSys ’09:
Proceedings of the third ACM conference on
Recommender systems, pages 245-248, New York, NY,
USA, 2009. ACM.

[4] R. M. Bell and Y. Koren. Scalable collaborative
filtering with jointly derived neighborhood
interpolation weights. In Proceedings of the 7th IEEE
International Conference on Data Mining (ICDM
2007), October 28-31, 2007, Omaha, Nebraska, USA,
pages 43-52. IEEE Computer Society, 2007.

[5] A. Karatzoglou, X. Amatriain, L. Baltrunas, and
N. Oliver. Multiverse recommendation: n-dimensional
tensor factorization for context-aware collaborative
filtering. In RecSys ’10: Proceedings of the fourth
ACM conference on Recommender systems, pages
79-86, New York, NY, USA, 2010. ACM.

[6] Y. Koren. Factorization meets the neighborhood: a
multifaceted collaborative filtering model. In KDD ’08:
Proceeding of the 14th ACM SIGKDD international

Yahoo! Webscope dataset

2 Ia
- A
° \
- A 00— [}
N o
g | e
- _—° —¢ \A
w
7] [} ~
2 4 _— N
T S 4 B\D \
E \ A
. O— ~~a
o \
P—n
=3 \
3 4
S o
0 Factorization Machine ~
[} o Factorization Machine (no context) D\
2 - & Multiverse Recommendation o
T T T
0.2 0.4 0.6 0.8

context influence

Error (MAE)

Yahoo! Webscope dataset

0.80 0.85
1 1

0.75

0.65
1

0.60

0 Factorization Machine o
o Factorization Machine (no context) D\
A Multiverse Recommendation =}

T T T
0.2 0.4 0.6 0.8

context influence

Figure 7: Prediction error with an increasing influence of the context on the rating. Context-aware FMs
largely outperform Multiverse Recommendation [5] in quality. Secondly, context-aware FMs profit from an
increasing influence of the context on the rating whereas non-contextaware FMs suffer from having no data
(context) to explain the shift in the ratings.

(7]

8]

[9]

(10]

(11]

(12]

conference on Knowledge discovery and data mining,
pages 426—434, New York, NY, USA, 2008. ACM.

Y. Koren. Collaborative filtering with temporal
dynamics. In KDD ’09: Proceedings of the 15th ACM
SIGKDD international conference on Knowledge
discovery and data mining, pages 447-456, New York,
NY, USA, 2009. ACM.

Y. Li, J. Nie, Y. Zhang, B. Wang, B. Yan, and

F. Weng. Contextual recommendation based on text
mining. In Proceedings of the 23rd International
Conference on Computational Linguistics: Posters,
COLING 10, pages 692—700, Stroudsburg, PA, USA,
2010. Association for Computational Linguistics.

K. Oku, S. Nakajima, J. Miyazaki, and S. Uemura.
Context-aware svm for context-dependent information
recommendation. In MDM ’06: Proceedings of the Tth
International Conference on Mobile Data
Management, page 109, Washington, DC, USA, 2006.
IEEE Computer Society.

C. Ono, Y. Takishima, Y. Motomura, and H. Asoh.
Context-aware preference model based on a study of
difference between real and supposed situation data.
In UMAP ’09: Proceedings of the 17th International
Conference on User Modeling, Adaptation, and
Personalization, pages 102—-113, Berlin, Heidelberg,
2009. Springer-Verlag.

U. Panniello, A. Tuzhilin, M. Gorgoglione,

C. Palmisano, and A. Pedone. Experimental
comparison of pre- vs. post-filtering approaches in
context-aware recommender systems. In RecSys ’09:
Proceedings of the third ACM conference on
Recommender systems, pages 265-268, New York, NY,
USA, 2009. ACM.

I. Pilaszy and D. Tikk. Recommending new movies:
even a few ratings are more valuable than metadata.
In RecSys ’09: Proceedings of the third ACM
conference on Recommender systems, pages 93-100,
New York, NY, USA, 2009. ACM.

1. Pildszy, D. Zibriczky, and D. Tikk. Fast als-based
matrix factorization for explicit and implicit feedback

(14]

(15]

(16]

(17]

(18]

(19]

20]

21]

datasets. In RecSys ’10: Proceedings of the fourth
ACM conference on Recommender systems, pages
71-78, New York, NY, USA, 2010. ACM.

S. Rendle. Factorization machines. In Proceedings of
the 10th IEEE International Conference on Data
Mining. IEEE Computer Society, 2010.

S. Rendle and L. Schmidt-Thieme. Pairwise
interaction tensor factorization for personalized tag
recommendation. In WSDM ’10: Proceedings of the
third ACM international conference on Web search
and data mining, pages 81-90, New York, NY, USA,
2010. ACM.

A. Said, S. Berkovsky, and E. W. De Luca. Putting
things in context: Challenge on context-aware movie
recommendation. In CAMRa2010: Proceedings of the
RecSys ’10 Challenge on Context-aware Mowvie
Recommendation, New York, NY, USA, 2010. ACM.
B. Sarwar, G. Karypis, J. Konstan, and J. Reidl.
Item-based collaborative filtering recommendation
algorithms. In Proceedings of the 10th international
conference on World Wide Web, pages 285-295, New
York, NY, USA, 2001. ACM Press.

N. Srebro, J. D. M. Rennie, and T. S. Jaakola.
Maximum-margin matrix factorization. In Advances in
Neural Information Processing Systems 17, pages
1329-1336. MIT Press, 2005.

D. H. Stern, R. Herbrich, and T. Graepel. Matchbox:
large scale online bayesian recommendations. In
Proceedings of the 18th international conference on
World wide web, WWW 09, pages 111-120, New
York, NY, USA, 2009. ACM.

L. Tucker. Some mathematical notes on three-mode
factor analysis. Psychometrika, 31:279-311, 1966.

L. Xiong, X. Chen, T.-K. Huang, J. Schneider, and
J. G. Carbonell. Temporal collaborative filtering with
bayesian probabilistic tensor factorization. In
Proceedings of the SIAM International Conference on
Data Mining (SDM 2010), pages 211-222. STAM,
2010.

