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The cerebellum is known to play a critical role in learning relevant patterns of activity

for adaptive motor control, but the underlying network mechanisms are only partly

understood. The classical long-term synaptic plasticity between parallel fibers (PFs) and

Purkinje cells (PCs), which is driven by the inferior olive (IO), can only account for

limited aspects of learning. Recently, the role of additional forms of plasticity in the

granular layer, molecular layer and deep cerebellar nuclei (DCN) has been considered.

In particular, learning at DCN synapses allows for generalization, but convergence to a

stable state requires hundreds of repetitions. In this paper we have explored the putative

role of the IO-DCN connection by endowing it with adaptable weights and exploring its

implications in a closed-loop robotic manipulation task. Our results show that IO-DCN

plasticity accelerates convergence of learning by up to two orders of magnitude without

conflicting with the generalization properties conferred by DCN plasticity. Thus, this model

suggests that multiple distributed learning mechanisms provide a key for explaining the

complex properties of procedural learning and open up new experimental questions for

synaptic plasticity in the cerebellar network.
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INTRODUCTION

Biological motor learning is characterized by several attributes:

it usually proceeds through a rapid convergence toward a stable

state, it can become consolidated into persistent memory, it can

be generalized to analogous cases, it can proceed along multiple

consolidation steps, and it can be saved. The cerebellum is known

to play a critical role in learning relevant patterns of activity for

adaptive motor control, but the underlying network mechanisms

are only partly understood.

The cerebellum is also widely assumed to act as a control mod-

ule which is embedded in a feedforward control loop (Goodwin

and Sin, 1984; Ito, 1984; Miall et al., 1993; Wolpert and Miall,

1996; Turrigiano and Nelson, 2004) capable of evaluating both

the incoming sensory information from the environment and the

information provided by the system itself (propioception) before

the motor control action is sent to the body plant. This means

that the cerebellar controller manages the sensory information

Abbreviations: PF, parallel fiber; MF, mossy fiber; CF, climbing fiber; GC, granule
cell; GoC, Golgi cell; PC, Purkinje cell; DCN, deep cerebellar nuclei; IO, inferior
olive; MLI, molecular layer interneuron; MAE, mean average error.

to deliver the best motor commands to accomplish the desired

movement.

CEREBELLAR MOTOR-CONTROL-LOOP CONSIDERATIONS

A pure feedforward control system is able to deliver the precise

set of motor commands for the body-plant and make corrections

during the movement without continuously checking the motor

output (Schweighofer et al., 1998). Conversely, a system equipped

with an adaptable forward controller exploits a previous trial-

and-error learning process in order to later recognize all possible

sensorial states that may be encountered and accordingly deliver

on-time efficient corrective terms. In a real manipulation task,

the environmental conditions are continuously changing and the

forward controller continuously tunes motor commands to cope

with these changing environmental conditions (Bastian, 2006).

According to this scheme (Figure 1A), the cerebellum oper-

ates as a forward controller for the motor commands generated

in the motor cortex. The motor cortex generates a crude inverse

model of the skeleton-muscular system. The cerebellum is able to

learn, refine, and store accurate models of the skeleton-muscular
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FIGURE 1 | The cerebellum operating in a feedforward control system. (A)

The mossy fibers are thought to provide information referring to the desired

plant motor output from motor cortex and the current sensory information

referring to the actual state of the body parts (i.e., joint positions/velocities of

the upper-limbs of the body-plant). According to the Marr–Albus model (Marr,

1969; Albus, 1971) the climbing fibers are assumed to carry error-related

information when moving, thus providing a teaching signal to the cerebellum.

By using this error-based-teaching signal the cerebellum is able to learn the

corrective actions in a trial-and-error process. When the cerebellar model is

not able to deliver add-on torque terms to compensate deviations in the

system (for instance during the early learning stages) the general rule consists

of adding a feedback to stabilize the open-loop system. (B) Different control

pathways during the learning process. The relevant information flow is

represented by dashed lines in each learning stage. A fast response gain

control is delivered by IO-DCN connection, thus supplying stability in early

learning-process stages (dashed blue lines). In later learning-process stages

the two control pathways (dashed red lines); the internal MF-GrC-PC-DCN and

the more external MF-DCN command the control action. Whilst IO-DCN action

decays throughout the learning process its control action is assumed and

improved by these two long-term adaptive pathways.

system providing both the precise timing of agonist-antagonist

muscle pairs and the force and stiffness control (Van Der Smagt,

2000). Obviously, the precise timing and force of muscles in a

manipulation task depend on the object to be handled (more

precisely, on the dynamic model of the object under manipula-

tion; Turrigiano and Nelson, 2004).The cerebellar model must

translate the actual/desired plant commands (in joint coordi-

nate space) to corrective/prior motor values (in torque control

actions). These latter corrective commands have to be fed into

the body-plant along with the crude inverse model terms. This

indeed represents a convenient solution, since several different

corrections could easily be accomplished by the adaptable for-

ward controller, whereas the possibility of switching/interpolating

between different inverse models to deal with this changeable

environment features (Wolpert and Kawato, 1998; Haruno et al.,

1999, 2001; Petkos et al., 2006; Chai et al., 2008) would demand

an overwhelming storage capability.

Whilst the cerebellum can indeed compensate mismatches in

the internal models, its trial-error learning process may require

a long time. This also means that, before the learning process

is completed, the motor system works in an open-loop and

any perturbation could easily destabilize the body-plant con-

trol scheme. This undesirable situation has been traditionally

circumvented by adding a sensory feedback control loop accom-

panied on most occasions with some kind of feedback controller

(Kawato and Gomi, 1992; Stroeve, 1997; Desmurget and Grafton,

2000; Kalveram et al., 2005). This latter ranges from a sim-

ple proportional—derivative control (Van Der Smagt, 2000),

which ensures stability (Arimoto, 1984), to other more sophis-

ticated controllers following the general structure shown in

Figure 1A.

THE OLIVARY-DEEP CEREBELLAR NUCLEI SYSTEM

An important advancement was brought in by the discovery of

long-term synaptic plasticity between parallel fibers (PFs), and

Purkinje cells (PCs), which drives learning under inferior olive

(IO) action, thus regulating the background activity of PCs and

supplying a teaching signal (Bazzigaluppi et al., 2012; De Gruijl

et al., 2012) to the cerebellum. Although this mechanism supports

the core process of error-correction in the motor learning theory

and subsequent derivations, this same mechanism alone can only

account for limited aspects of biological learning. A new spectrum
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of possibilities was opened by the discovery on multiple forms

of synaptic plasticity (Hansel et al., 2001; Evans, 2007; Ohtsuki

et al., 2009; D’Angelo, 2011; Gao et al., 2012). A recent model has

shown that plasticity at deep-cerebellar nuclei (DCN) synapses

can indeed account for learning on multiple time scales and for

generalization (Garrido et al., 2013a). Moreover, corrective torque

values are better determined by introducing granular layer plas-

ticity (Schweighofer et al., 2001). Detailed analysis of the granular

layer network has revealed that specific combinations of plastic-

ity at the different synapses can change the output pattern on the

millisecond time-scale (Garrido et al., 2013b). Moreover, model-

ing of long-term synaptic plasticity at DCN synapses has allowed

the explanation of the double learning time-scale characterizing

the cerebellum (Medina and Mauk, 1999, 2000). Nevertheless,

in all these cases, cerebellar learning demands hundreds of rep-

etitions, suggesting that additional mechanisms are required to

speed-up convergence. This problem has been circumvented by

most functional cerebellar approximations by means of combin-

ing the fundamental idea of a negative feedback control able to

handle explicit peripheral sensorial measurement with the notion

of some kind of adaptive inverse control (Kalveram et al., 2005).

In addition, the coexistence of different forms of plasticity based

on local activity levels require some kind of stabilizing mecha-

nisms operating in the local neural circuit to prevent instability as

a result of over-excitation or saturation (Turrigiano and Nelson,

2004). Therefore, there must be some biological mechanism

providing speed-up and stabilization of learning.

In this article we have considered the putative role of the IO-

DCN connection by endowing it with adaptable weights and

exploring its implications in a closed-loop robotic manipulation

task. DCN neurons are innervated by excitatory synapses from

climbing fiber collaterals (CFs) and MFs as well as by inhibitory

synapses from PCs. The effect that these excitatory and inhibitory

connections produce still remains uncertain (Bengtsson and

Hesslow, 2006; Uusisaari and De Schutter, 2011). Our results

show that IO-DCN plasticity accelerates convergence of learning

by up to two orders of magnitude without conflicting with the

generalization properties conferred by MF-DCN and PC-DCN

plasticity. By means of Hebbian rules, the IO-DCN connection

can adjust its synaptic weight and the excitability of DCN neurons

provides a built-in feed-back controller generating fast correc-

tions at early stages during learning. Thus, this model implies

that multiple distributed learning mechanisms may provide the

key for explaining the complex properties of biological learning

and prompts the search for yet undetermined forms of synaptic

plasticity in the cerebellar network.

METHODS

This section describes the working principles of the proposed

mechanistic cerebellar model as well as the existing relationship

between the functionality of the cerebellar system and its under-

lying layer structure. The section is divided into three main con-

ceptual blocks; starting with the description of both the cerebellar

topology and the implemented plasticity mechanisms; contin-

uing with the cerebellar control loop description and finishing

with the benchmark trajectory used for quantitative evaluation

experiments.

CEREBELLAR MODEL

In order to develop our cerebellar model, we adopted a func-

tional scheme in which the effort was focused on maintaining

the functional information processing features of the cerebellar

micro-circuitry but using cells with analog activity values (instead

of an explicit spiking representation) (Ostojic and Brunel, 2011).

To this aim, each cerebellar layer was implemented as a set of

values representing the firing rate of each cell, thus allowing the

mathematical study of the functional role that the IO-DCN con-

nection may have in both cerebellar motor learning and control.

The proposed cerebellar model took inspiration from the bio-

logical cerebellar micro-complex circuit. It uses several forms of

plasticity mechanisms at several cerebellar sites which work in

balance with the IO-DCN connection acting as control signal over

the cerebellar output in a neurobotics control scenario.

Our model consists of four main layers:

• Granular layer: a state-generator model following Yamazaki

and Tanaka’s hypothesis has been implemented. The granu-

lar layer acts as an internal clock generating different time

stamps along the executed trajectory (Yamazaki and Tanaka,

2005; Honda et al., 2011) (time stamps which are repeated in

each trial). The current time along the arm-plant trajectory

trial is unambiguously represented by using 500 different input

states. These 500 input states are the result of the division of

the arm trajectory duration (1 s) by the simulation time step

(2 ms). Adopting a sparse representation, these states emulate

500 PFs sequentially activated.

• Purkinje-cell layer: The activity at PCs is defined in

Equation (1):

PCi(t) = fi (PF(t)) ,

where i ∈
{

1, 2, . . . , Number of muscles
}

(1)

where PCi(t) represents the average firing rate of the PCs

associated to the ith muscle. Our robot arm-plant presents 3

agonist-antagonist pairs of muscles, representing a total of 6

muscles. fi defines the function which matches each granular

layer state (active PF) with a particular output firing rate at

each PC. This function is modified during the learning pro-

cess of a particular movement. In this model the output activity

at different cell layers (PCs, MFs, and CFs) has been normal-

ized between 0 (representing the absence of activity) and 1

(representing the maximum firing rate of the cell layer).

• Mossy fibers: Our cerebellar model assumes that mossy fibers

(MFs) transmit a baseline neural activity during the trajec-

tory execution according to studies of eye blink conditioning

experiments (Yamazaki and Tanaka, 2007a,b, 2009).

• DCN cells: The activity of these nuclei cells has traditionally

been related with both the excitatory-activity integration com-

ing from MFs and the inhibitory-activity integration from PCs,

neglecting the impact of IO-DCN connections. Due to the low

number of MFs and climbing fibers (CFs) in comparison to

granule cells (GrCs), the capacity of these fibers for generat-

ing a sparse representation of different cerebellar states seems

to be very limited (in fact, in our model MFs can be under-

stood more as a baseline global activity/term provider). This
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fact shows that the reported synaptic plasticity at MF-DCN

synapses (Racine et al., 1986; Medina and Mauk, 1999; Pugh

and Raman, 2006; Zhang and Linden, 2006) in balance with

the IO-DCN connection activity can induce the adjustment of

gain control through plasticity at DCN synapses. The Equation

(2) describes the DCN cell behavior:

DCNi(t) = WMF − DCN,i − PCi(t) ·

WPC − DCN,i + IOi(t) · WIO − DCN,i,

where i ∈
{

1, 2, . . . , Number of muscles
}

(2)

DCNi(t) represents the average firing rate of the DCN cells

associated to the ith muscular group and WMF − DCN,i is the

synaptic strength of the MF-DCN connection at the muscular

group i, WPC − DCNi represents the synaptic strength of the PC-

DCN connection of the ith muscle. Finally IOi(t) represents

the average firing rate of the CFs associated to the ith mus-

cle where WIO − DCNi represents the synaptic strength of the

IO-DCN connection of the ith muscle.

All these synaptic strengths are progressively adapted during the

learning process according to different synaptic plasticity mecha-

nisms which will be explained in detail in the following section.

SYNAPTIC PLASTICITY

The cerebellum model was endowed with multiple forms synaptic

plasticity, which can be summarized in the following equations.

PF-PC, MF-DCN, and PC-DCN long-term synaptic plasticity

Following on from our previous article (Garrido et al., 2013a), the

present model implements different forms of synaptic plasticity as

follows:

PF-PC synaptic plasticity:

�WPFj − PCi
(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

LTPMax

(IOi(t) + 1)α
− LTDMax · IOi(t),

if PFj is active at t

0 otherwise

where i ∈
{

1, 2, . . . , Number of muscles
}

(3)

where �WPFj − PCi
(t) represents the weight change between the

jth PF and the target PC associated with the ith muscle. IOi(t)

stands for the current activity coming from the associated climb-

ing fiber (which represents the normalized error along the exe-

cuted arm plant movement), LTPMax and LTDMax are the max-

imum long term potentiation/long terms depression (LTP/LTD)

values, and α is the LTP decaying factor. In the experiments α is set

to 1000 in order to ensure a fast LTP action decreasing (Garrido

et al., 2013a).

MF-DCN synaptic plasticity:

�WMF − DCNi
(t) =

LTPMax

(PCi(t) + 1)α
− LTDMax · PCi(t),

where i ∈
{

1, 2, . . . , Number of muscles
}

(4)

where �WMF − DCNi(t) represents the weight change between the

active MF and the target DCN associated with the ith muscle,

PCi(t) is the current activity coming from the associated PCs,

LTPMax, and LTDMax are the maximum LTP/LTD values, and α

is the LTP decaying factor; α is set to 1000 in order to ensure a fast

LTP action decreasing (Garrido et al., 2013a).

PC-DCN synaptic plasticity:

�WPCi − DCNi
(t) = LTPMax · PCi(t)α ·

(

1 −
1

(DCNi(t) + 1)α

)

− LTDMax ·

(1 − PCi(t)) ,

where i ∈
{

1, 2, . . . , Number of muscles
}

(5)

where �WPCi − DCNi(t) is the synaptic weight adjustment at the

PC-DCN connection reaching the DCN cell associated with the

ith muscle, PCi(t) is the current activity coming from the associ-

ated PCs and finally DCN is the current activity regarding DCN

cells present. Again, α is set to 1000 in order to ensure a fast LTP

action decreasing (Garrido et al., 2013a).

For these synapses, considerations and parameterizations are

identical to those reported previously (Garrido et al., 2013a) and

are not repeated here.

IO-DCN synaptic plasticity

The MF-DCN synaptic plasticity mechanism was previously

hypothesized to be a proper cerebellar gain controller which

self-adapts its maximum output activity to minimize the inhibi-

tion impact of the inhibitory pathway already described (Garrido

et al., 2013a). Nevertheless, this cerebellar gain controller reaches

the adequate state through the learning process. This involves a

time period in which the control action is not delivered properly

which makes the system prone to become unstable. The cerebel-

lum, during this learning process, is able to supply enough control

action to avoid these possible destabilization inconveniences.

Furthermore, the feedback action in cerebellar motor control is

well accepted (Kawato and Gomi, 1992; Stroeve, 1997; Desmurget

and Grafton, 2000; Kalveram et al., 2005) and neurophysiologic

evidence also exists suggesting that the primary motor cortex is

involved in this feedback loop (Sergio et al., 2005). Concretely,

there is a dense projection from primary motor cortex to the

spinal cord, often directly onto motor neurons, and correlations

between primary motor cortex activity and end-effector kinemat-

ics (Todorov, 2000). Hence, proprioceptive signals encoding for

instance position error information (inputs) are put in relation

with the corrective cerebellar output, thus leading us to believe

that the IO-DCN connection might implement this loop.

According to Figure 1B, DCN input signals (proprioceptive

signals) are received from two differentiated pathways. The first

pathway reaches the DCN cells through the cerebellar cortex.

This feedback system has been widely hypothesized to be the

main adaptive pathway in which cerebellar learning takes place

(Strata, 2009). The second pathway reaches DCN directly by

means of the CF collaterals and MFs. The input information

(proprioceptive signals encoding, for instance, position errors)

is then related with the corrective cerebellar output. Whilst MF
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activity arriving to the DCN may work as a non-specific baseline,

which is modulated by the PC specific inhibition pathway; the

role of the second excitatory pathway consisting of CF collaterals

is unclear, but its location allows it to work as a feedback con-

troller as shown in Figure 1B. Our working hypothesis is based

on a fast response gain action delivered by IO-DCN connection,

thus supplying stability.

At the very beginning of any manipulation task, if the

hand carries an unknown object affecting the arm dynam-

ics/kinematics the inverse model does not match with the real

plant and the learning process starts acquiring the manipulated

object model. After some time (through the learning process)

this IO-DCN action decays and its control action is assumed and

improved by the two pathways whose actions have been previ-

ously described; the internal MF-GrC-PC-DCN and MF-DCN.

The assumption involving a relevant action of this connection

(IO-DCN) at early stages of the learning process implies that the

initial synaptic strength set by this learning law must be in the

same range as the one assumed in subsequent learning stages by

the other two control pathways (these pathways are illustrated in

Figure 1B).

According to Ito (2008) this possible feedback controller must

generate a command in motor cortex capable of tuning the vis-

coelastic properties of musculoskeletal system (tension-length

and tension-velocity relation). This assumption can be seen as

a fast and short adaptation of the cerebellar circuitry (synaptic

weight strength) to cope with this required initial control action.

Within our working hypothesis, the plasticity mechanism was

implemented to range adequately the initial synaptic strength of

DCN cells driven by the IO as defined by Equation (6).

�WIO − DCN,i(t) = MTPMax · IOi(t) −
MTDMax

(IOi(t) + 1)α

where i ∈
{

1, 2, . . . , Number of muscles
}

(6)

where �WIO − DCN,i(t) represents the differential synaptic weight

factor related to the active connection at time t [whose associ-

ated activity state corresponds to IOi(t)]. The connection cor-

responds to the DCN cell associated to the ith muscle. This

weight can be seen as a fast modulation adaptation term, MTPMax

and MTDMax (modulating term plasticity) are both the maxi-

mum MTP/MTD values to be applied at any time. Both terms

present an enormous value in comparison to LTP/LTD values

previously described, thus ensuring a fast response and a negli-

gible contribution to the learning process in the long term. IOi

is the normalized current activity in the range [0, 1] coming

from the associated climbing fiber (which represents the cur-

rent error translated into a control signal along the executed

arm-plant movement), and finally α defines the MTD decaying

factor (set to 1000 in our simulations ensuring a fast MTD action

decreasing).

For instance, in a scenario with a significant mismatch between

the inverse model and the robot-arm plant, there is a high

activity at IO (ranged in [0, 1]), which means a high ongoing

error value. In this situation, the potentiation term dominates

the expression, the incremental difference �W to be applied

is high and in a very few time-steps this weighting factor is

adapted. Although from the beginning the action of the other

long-term synaptic mechanisms is active, it still requires some

time to arrive at stable weights (due to its slower dynamics).

When the error is low, the activity of the IO is closed to

0 and the depression term dominates, which means that the

weight factor is quickly decreased. As we can see the potentia-

tion/depression action compensates each other. What it is quickly

learnt due to an action is quickly forgotten due to the opposite

action.

In order to obtain a numerical evaluation of the modulated

term impact in the convergence speed process (Figure 6), the nor-

malized mean absolute error (MAE) convergence speed defined in

Luque et al. (2011b) has been used. This measurement is defined

as the number of needed samples (iterations of the movement) to

reach the final error average. To normalize the measurement, the

cerebellar configuration without IO-DCN corrective action was

conceived to be the worst possible scenario, thus assigning a value

of 1 to the obtained number of samples needed to reach the final

error average in the absence of IO-DCN terms (i.e., the slowest

possible convergence speed).

CEREBELLAR CONTROL LOOP

As we have pointed out, the adopted control loop is based on a

feedforward scheme in conjunction with a crude inverse dynamic

model of the arm plant (Figure 2A). This feedforward action is

complemented with the presented cerebellar model which acts as

a feedback controller in part due to the IO-DCN connection. In

our model, an inverse kinematic module translates the desired

trajectory into arm-joint coordinates. Another module (inverse

dynamics) based on a recursive Newton-Euler algorithm gener-

ates crude step-by-step motor commands corresponding to the

desired trajectory.

Some studies suggest that the central nervous system may,

in fact, plan and execute voluntary movements in a sequential

process. The brain would first plan the optimal trajectory in

task-space coordinates, then translate them into intrinsic-body

coordinates, and then finally, generate the appropriate motor

commands to achieve theses transitions (Houk et al., 1996;

Nakano et al., 1999; Todorov, 2004; Hwang and Shadmehr,

2005; Izawa et al., 2012; Passot et al., 2013). According to

these studies, the association cortex provides the desired tra-

jectory in body coordinates and conveys them to the motor

cortex which, in turn, calculates the motor commands by

using an inverse dynamic arm model. On the one hand, the

spinocerebellum-magnocellular red nucleus system provides an

internal neural accurate model of the musculoskeletal dynamics

of the system which is learned with practice by sensing the

result of movements (Kawato et al., 1987). Conversely, the

cerebrocerebellum-parvocellular red nucleus system is thought

to provide such a crude internal neural model of the inverse-

dynamics of the musculoskeletal system (Kawato et al., 1987).

The crude inverse dynamic model works in conjunction with the

dynamical model (given by the spinocerebellum-magnocellular

red nucleus system) to update the motor commands according

to a possible predictable error when executing a move-

ment. As illustrated in Figure 1A, the cerebellar pathways

follow a feedforward scheme, in which only information

about sensorial consequences of non-accurate commands is

available.
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FIGURE 2 | Cerebellar control loop and benchmark trajectory. (A) The

adaptive cerebellar module delivers corrective torque values (τcorrective) to

compensate for deviations in the crude inverse dynamic module when

manipulating an object of significant weight. In this feedforward control

loop, the cerebellum receives a teaching error-dependent signal and the

desired arm state (Qd , Q̇d , Q̈d ) so as to produce the adaptive corrective

actions. (B) Three-joint periodic benchmark trajectory suitable for testing

the kinematic and dynamical properties of the robot arm and the application

area. Fast movements in a smooth pursuit task composed of vertical and

horizontal sinusoidal components are able to reveal the whole robot arm

dynamic properties (Hoffmann and Petkos, 2007). The left panel represents

angular coordinate per joint followed by the light weight robot, the right

panel plots the robot end-effector trajectory in euclidean space.

BENCHMARK TRAJECTORY

We have integrated a simulated light-weight robot (LWR) arm

within our feedforward control loop. The simulated-robot-plant

physical characteristics can be dynamically modified to match

different contexts (in our experiments different contexts mean

that the object manipulated by the robot, payload, has different

weights). This LWR (Hirzinger et al., 2000; Albu-Schäffer et al.,

2007) robot is a 7-DOF arm composed of revolute joints. In our

experiments we used the first (we will refer to it as Q1), second

(Q2), and fifth joint (which we label as Q3), maintaining the

others fixed.

Our aim was to select a benchmark trajectory which reveals the

dynamic properties of our robot plant arm. The robot dynam-

ics have been fully considered as indicated in Supplementary

Material. The choice of a trajectory to test our cerebellar con-

trol relies on the kinematic and dynamical properties of the robot

arm and the application area. We have chosen fast movements in

a smooth pursuit task composed of vertical and horizontal sinu-

soidal components (Kettner et al., 1997; Van Der Smagt, 2000)

(1 s for the whole target trajectory) to study how inertial compo-

nents (when manipulating objects) are inferred by the cerebellar

module (Luque et al., 2011a,c). Slow movements would hide

changes in the dynamics of the arm+object model when manipu-

lating objects of different weights since they would have negligible

impact. The target trajectory describes an “8-shape” defined by

Equation (7) in angular coordinates.

Qn = An · sin
((

−4πt3 + 6πt2
)

+ Cn

)

where n =
{

1, . . . , number of links
}

(7)

where An and Cn = n · π

4 represent the amplitude and phase

of the movement performed by each robot joint. The followed

trajectory uses cubic spline technique so as to provide not just

continuity but also a zero initial velocity per link which ensures a

correct physical implementation in a robot controller. This sort of

trajectory is easy to follow despite the non-linearity in the robot

joint angles, since both joint velocities and accelerations are con-

stricted to small bounds depending on the amplitude and phase

previously indicated (Figure 2B).

Aiming to quantitatively evaluate the movement performance

in terms of accuracy, the average of the MAE per robot joint was

calculated. The estimation of this measurement was monitored in

each trial, thus allowing the global movement accuracy evolution

during the learning process.

TEST-BED EXPERIMENTS

So as to provide the robot arm plant with a rich enough dynamic

scenario that could fully reveal the robot arm properties, two

different configurations have been tested:

• A set of different punctual heavy masses (payloads) attached

to the robot end effector producing dynamic deviations when

they are manipulated (light-2 kg-payload and heavy-10 kg-

payload).

• An external variable force (along x, y, and z axes) which is

applied to the end effector as described by Equation (8).

�F =
[

Fx, Fy, Fz

]

(8a)

Fx,y,z = 100x,y,z · cos (2 · π · 10t + Cx,y,z)

where x, y, z = cartesian axes

and Cx,y,z =

(

π

4
, 2 ·

π

4
, 3 ·

π

4

)

(8b)

This external force has 10 times the period of the trajectory move-

ment and is in the same range than the needed torque values

to operate the robot plant. This new scenario demands not just

fast adjustment in agonist-antagonist pair of muscles (the error

in each joint goes from positive to negative along the trajectory

execution) but also a fast control due to the quick changeable

working point that the robot-arm undergoes. This set up includ-

ing external forces is often used to evaluate potential roles of the

cerebellum in control tasks (Witney et al., 2000; Howard et al.,

2010).

RESULTS

In these simulations, the cerebellar model delivered to a robotic

arm the corrective actions needed to compensate for dynamic

deviations produced by manipulating heavy objects (Garrido

Frontiers in Computational Neuroscience www.frontiersin.org August 2014 | Volume 8 | Article 97 | 6

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Luque et al. Fast convergence of cerebellar learning

et al., 2013a). Simulations were designed to evaluate whether

and how specific cerebellar architectures of the model (Figure 1)

could generate fast convergence and stable outputs in the initial

learning stages without the need for traditional feedback con-

trollers widely used in robotic literature (Kawato and Gomi, 1992;

Stroeve, 1997; Desmurget and Grafton, 2000; Kalveram et al.,

2005). We tested the hypothesis that such fast convergence could

be achieved by implementing the IO-DCN connection and by

endowing this latter with plasticity, thereby generating an internal

adaptable feed-back loop. Movies of learning simulations dur-

ing manipulation of a 2-kg load are shown in the Supplemental

Material.

DISTRIBUTED PLASTICITY DETERMINES LEARNING GENERALIZATION

In order to identify the impact of the different forms of plastic-

ity, the network was sequentially added with multiple adaptive

mechanisms. We have previously shown that plasticity at PF-PC

synapses was not sufficient to ensure a proper adaptive manip-

ulation of objects with different weight (Garrido et al., 2013a).

By changing payload from the initial setting, Purkinje cells were

easily saturated preventing them from generating appropriate

corrective torques. This limitation was overcome by implement-

ing MF-DCN and PC-DCN plasticity, thus allowing PC activity

to remain within its optimal frequency range independently from

the manipulated mass.

A first simulation was carried out to show how self-regulation

of MF-DCN and PC-DCN synapses could improve convergence

in the cerebellar control loop. During a manipulation task, a

mass was moved along a 1 s trial trajectory repeated 5000 times

(Figure 2). The learning process occurred when a 2-kg payload

was manipulated starting from a 0-kg initial configuration. After

DCN synaptic weight adaptation (Figure 3A1), the cerebellum

was able to deliver proper corrective torques reducing the error

of the robot-arm movement close to 0 (Figure 3A1). Once synap-

tic weights were stabilized, both PC and DCN neurons exploited

their whole firing range (Figure 3A2) allowing the cerebellum to

operate near its optimal performance. This system could effec-

tively generalize toward the subsequent application of a 10-Kg

payload (Figures 3B1,B2).

This correction was precise but learning was slow, as

it took about 500/1000 (2 kg/10 kg configuration) repetitions

(Figures 3A1,A2,B1,B2). Thus, the precise commands could not

be properly delivered by the control system until the cerebel-

lar learning process was complete. Throughout the adaptation

period, the cerebellum operated in open-loop (this was well evi-

dent during the first learning stages, where the cerebellum was

hardly starting to adapt). Therefore, an effective feed-back system

was required to accelerate learning.

THE IO-DCN CONNECTION ACCELERATES LEARNING WITH FIXED

IO-DCN WEIGHTS

In order to evaluate the effectiveness of the IO-DCN connec-

tion in controlling adaptation during the initial learning stages,

the IO-DCN synaptic weights were pre-calculated to handle dif-

ferent masses with the same values (light mass: 2 kg-payload;

heavy mass: 10 kg-payload). Then the IO-DCN synaptic weights

were kept fixed and the MF-DCN and PC-DCN weights were

allowed to self-adapt during the learning process composed of 1 s

trial trajectories repeated 5000 times using either light or heavy

payloads.

Using pre-calculated synaptic weights allowed the IO-DCN

connection to operate over the whole learning process providing

a rough control facilitating the DCN to operate in its pseudo-

optimal firing rate from the very beginning (Figures 4A2,B2).

Pre-calculated IO-DCN connections, even though with fixed

weight values, contributed to error reduction especially in the

first 200/600 trails (2 kg/10 kg configuration). The contribution

of IO-DCN connections was enough to enable a corrective

control that improved the precision of the manipulation tasks

(Figures 4A1,B1). Plasticity at MF-DCN and PC-DCN synapses

contributed to further increase the precision of the manipula-

tion task within about 500/1000 trials (Figures 4A1,B1). This

slow convergence was due to the inter-dependence of PC-DCN

learning on DCN activity which, in turn, depended on both

MF-DCN and PC-DCN adaptation (see Methods). Actually, the

fact that adaptation of MF-DCN and PC-DCN weights was slow

(Figures 4A1,B1) made IO-DCN connection the only DCN affer-

ent synapse able to control the manipulation task during the first

trials. Thus, the IO-DCN connection was crucial for facilitating

the cerebellar circuit to approximate the ideal corrective torques

from the very beginning of learning.

PLASTICITY AT IO-DCN SYNAPSES CONTRIBUTE TO THE DISTRIBUTED

LEARNING PROCESS ENHANCING MOTOR PERFORMANCE

In order to further evaluate its impact on the initial learn-

ing stage, the IO-DCN connection was made self-adaptive. We

evaluated how these adaptive IO-DCN synaptic weights opti-

mize payload manipulation. The IO-DCN weights were allowed

to self-adapt during a learning process composed of 1 s trial

trajectories repeated 5000 times using either light or heavy

payloads.

During the initial learning stage, the IO-DCN corrective

action dominated (Figures 5A,B, bottom). Then this corrective

action gradually decreased, whilst that provided by MF-DCN

and PC-DCN connections gradually increased (Figures 5A,B,

bottom). The transition between these two control phases was

regulated by PCs, whose activity was maintained within a

narrow frequency range through the adjustment of MF-DCN

and PC-DCN connections reverberated through the control

loop.

In this configuration, all the learning sites were working com-

plementing each other, generating an effective distributed learn-

ing network (Figure 5). The addition of self-adaptive IO-DCN

connections was crucial not only to accelerate delivery of cor-

rective torques stabilizing motor outputs during initial learning

stage, but also to facilitate the balanced learning at MF-DCN and

PC-DCN connections.

THE IMPACT OF THE “MODULATED TERM” AT SELF-ADAPTIVE IO-DCN

CONNECTIONS

In simulations shown in Figures 3–5, the IO-DCN correction

proved critical to provide effective control over the initial learn-

ing stage. This control was regulated by the modulating term

(MTP/MTD) (see Equation 6). The impact of the modulating
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FIGURE 3 | Learning generalization by means of distributed plasticity.

The system gain (external to the cerebellum) was properly set to

manipulate accurately the robot-arm without any object (no external

payload). Since the manipulated mass (payload) was not expected, the

existing plasticity mechanisms at MF-DCN and PC-DCN had to adjust the

cerebellar output to cope with this mass (2 kg/10 kg mass configuration).

(A1) Performance and learning when manipulating 2 kg mass. Evolution of

the average MAE of the three robot joints during the learning process,

5000 trials. In the initial learning trials (zoom in) the MAE averaged value

was about 10 times greater than the obtained MAE average value at the

end of the learning process. MF-DCN and PC-DCN adjustments took about

500 iterations to be set, meanwhile the cerebellar system was working in

open-loop and no action control was appropriately delivered. Plasticity

occurred at PF-PC, MF-DCN, and PC-DCN synapses. The evolution of

synaptic weights at MF-DCN, PC-DCN connections related to join 2 agonist

muscle is also shown. For the sake of clarity only the behavior of this

second joint is shown, however similar results were found throughout the

learning process in both joints 1 and 3. MF-DCN and PC-DCN synaptic

weight stabilization was obtained from the 500th trial. (A2) Normalized PC

Firing rate (top) and DCN firing rate (bottom) during different trials taken

from the initial stages of the learning process: trial 1, trial 250, and trial

500. MF-DCN and PC-DCN synaptic weight adjustments allowed the

PC/DCN firing rate to operate in a proper range. (B1) Performance and

learning when manipulating 10 kg mass. Evolution of the average MAE of

the three robot joints during the learning process, 5000 trials. In the initial

learning trials (zoom in) the MAE averaged value was, roughly speaking,

more than 30 times greater than the obtained MAE average value at the

end of the learning process. MF-DCN and PC-DCN adjustments took about

1000 iterations to settle down, meanwhile the cerebellar system was

working in open-loop, and hence no action control was appropriately

delivered. Plasticity occurred at PF-PC, MF-DCN, and PC-DCN synapses.

The evolution of synaptic weights at MF-DCN, PC-DCN connections related

to join 2 agonist muscle is also shown. For the sake of clarity only the

behavior of this second joint is shown, however similar results were found

throughout the learning process in both joints 1 and 3. MF-DCN and

PC-DCN synaptic weight stabilization was obtained from the 3000th trial.

(B2) Normalized PC firing rate (top) and DCN firing rate (bottom) during

different trials taken from the initial stages of the learning process: trial 1,

trial 500, and trial 1000. MF-DCN and PC-DCN synaptic weight adjustments

allowed the PC/DCN firing rate to operate in a proper range.
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FIGURE 4 | Weight evolution in the cerebellar model manipulating

different payloads with IO-DCN connection operating with multiple

plasticity mechanisms. Simulations were performed using plasticity

mechanisms at PF-PC, MF-DCN, and PC-DCN synapses using a

custom-configured IO-DCN connection for manipulating 2 and 10 kg external

payloads during 5000 trials. The initial cerebellar system gain was properly

set to operate with no payload. (A1,B1) Evolution of the average MAEs of the

three robot joints during the learning process for 2 and 10 kg payloads

respectively with/without IO-DCN fixed synaptic weights plus cerebellum or

with just the IO-DCN connection. Note that the configuration without IO-DCN

connection adjusted the DCN gain after approximately 500/1000 (2 kg/10 kg

configuration) trials on average. From the first trial to the 500th/1000th

(2 kg/10 kg configuration) the cerebellar system worked almost in open loop,

no remarkable corrective action was applied by the cerebellar adapting

system. The configurations with or just IO-DCN connection were capable of

supplying a proper adjustment from the beginning of the learning process.

(A2,B2) Evolution of synaptic weights at IO-DCN, MF-DCN, and PC-DCN

connections related to join 2 agonist muscle. For the sake of clarity only the

behavior of this second joint is shown, however similar results were found

along the learning process in both joints 1 and 3. MF-DCN and PC-DCN

weights stabilized in about 500/3000 trials (2 kg/10 kg configuration) at

different convergence speeds. This slow convergence was the consequence

of the existing inter-dependence between the PC-DCN learning and the DCN

activity which also depended on both MF-DCN and PC-DCN adaptation.

IO-DCN connection supplied cerebellar control action whilst MF-DCN and

PC-DCN synaptic weights were not stable yet.

term was assessed on manipulation of a 2 kg payload. In the

meantime, MF-DCN and PC-DCN weights were also allowed

to self-adapt during the learning process composed of 1 s trial

trajectories 5000 times.

Low MTP/MTD values (from 0.001 to 1) caused a smooth

self-regulated IO-DCN action or, in other words, an IO-DCN

optimal corrective action was not obtained at the very first trial

(Figure 6A). High MTP/MTD values (from 1 to 1000), caused a
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FIGURE 5 | Normalized synaptic contribution of each DCN afferent

throughout the learning process evolution using a self-adaptable

IO-DCN connection. Simulations were performed using plasticity

mechanisms at PF-PC, MF-DCN, and PC-DCN synapses using a self-adaptive

plasticity mechanism at IO-DCN connection for manipulating 2 and 10 kg

external payloads during 5000 trials. The evolution of the average MAEs of

the three robot joints during the learning process for 2 kg (A) and 10 kg

payloads (B) with a cerebellum equipped with IO-DCN connection

with/without self-adaptive synaptic weights is presented. The initial

cerebellar system gain was properly set to operate with no payload. Since

the manipulated masses were unexpected, the existing plasticity

mechanisms at MF-DCN and PC-DCN adjusted the cerebellar output to cope

with these masses. At initial learning stages, the cerebellar model presenting

an adjustable IO-DCN connection provided a more accurate corrective action

to properly perform the manipulation task. The distributed adaptation of

IO-DCN, MF-DCN, and PC-DCN synaptic strengths when using 2 kg (A) and

10 kg payloads (B) related to join 2 agonist muscle is also presented. For the

sake of clarity only the behavior of this second joint is shown, however

similar results were found throughout the learning process in both joints 1

and 3. The self-adjustable IO-DCN connection was capable of supplying a

proper adjustment from almost the beginning of the learning process. The

control action of this connection was relevant only in early learning stages;

once the learning process settled down, the IO control action became

negligible (see zoom-in of normalized synaptic weight evolution plots).

sharp self-regulated IO-DCN action. However, MTP/MTD val-

ues higher than 10e 6 (black line plot) made the arm-robot-

system unstable (Figure 6A). At this point, a windup effect

appeared. Wind-up occurred when the IO-DCN connection

control command exceeded the physical limits of the arm-robot-

system (i.e., the corrective actions delivered at each integration

step were more than those the arm-robot-system could handle).

In other words, the IO-DCN connection control momentum

was incapable of responding instantaneously to changes in the

next-integration-step-incoming error. In this case, the rate of IO-

DCN synaptic weight evolution was faster than the error-speed

of the robot-arm-system. Thus, the IO-DCN corrective action

control exceeded by far the optimal control value but it kept

on growing in the very same integration step. When the next-

integration-step-incoming error reached the cerebellar system,

the sign of the error was then reversed, thus causing the IO-DCN

control action to start “winding” down. (Figure 6A, black line

plot).

Therefore, beyond the unstable point, as predicted by the

windup theory, the output of the IO-DCN corrective action

was decoupled from the optimal IO-DCN synaptic weight. It

demanded a significant amount of time so as to recover the proper

optimal range, thus causing certain lags (overshooting transients)

in the cerebellar response as shown in Figure 6A, black line plot.

As in any other sort of windup effect, this process may occur

repeatedly or eventually converge depending on global cerebellar

control gain (IO-DCN, MF-DCN, and PC-DCN synaptic weigh

balance) and the robot-arm-system response.

The effect of the modulated term MTP/MTD is shown in

Figure 6B. In all cerebellar configurations equipped with an IO-

DCN connection the number of samples needed to reach the final

average error decreased exponentially with increasing MTP/MTD

values. When reaching a certain MTP/MTD value, the cerebel-

lar system was able to deliver the appropriate adjustment of

DCN synaptic weights from the very beginning of the learning

process. MTP/MTD values beyond this limit caused neither a
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FIGURE 6 | Modulated Term impact at self-adaptive IO-DCN connection.

Simulations were performed using plasticity mechanisms at PF-PC, MF-DCN,

and PC-DCN synapses using a self-adaptive plasticity mechanism at IO-DCN

connection for manipulating 2 kg external payload during 5000 trials. (A)

Evolution of the average MAEs of the three robot joints during the learning

process for a 2 kg payload with a cerebellum equipped with a self-adaptive

synaptic weight IO-DCN connection. The modulating term plasticity at

IO-DCN connection (see Equation 6) was ranged from base MTP/MTD values

of 0.001 to 1000 respectively. The higher the values, the faster and the

stabler the system converged. At values greater than 100 the system

became unstable, a sort of windup effect appeared. The IO-DCN connection

control command exceeded the physical limits of the robot-arm-system (it

delivered a more corrective action at each integration step than the system

could handle and needed). The IO-DCN connection control momentum was

incapable of immediately responding to changes in the next-integration-step

incoming error. (B) Normalized MAE convergences obtained during the

learning process for a 2 kg payload when the modulating term plasticity at

IO-DCN connection ranged from [0.001, 100].

faster convergence nor a better accuracy. The exponential nature

of the convergence speed meant that, when reaching a certain

MTP/MTD value, the cerebellar performance was stabilized. In

conclusion, the MTP/MTD regulated the speed at which the con-

tributions of IO-DCN and MF-DCN/PC-DCN connections pro-

gressively combined facilitating an accurate and stable learning

process and providing the cerebellar system with the capability of

self-adaptation from the initial learning stage.

IMPROVED CONTROL OF PERTURBING FORCES

To demonstrate whether the IO-DCN connection contributed to

cerebellar control in more demanding operative scenarios, the

system was exposed to an external force field. The force field

was made up of an external set of variables and periodical forces

(along x, y, and z axes) applied to the robot arm end-effector (see

Equation 8). In these simulations, all adaptation sites at PF-PC,

MF-DCN, PC-DCN, and IO-DCN synapses were enabled. The

learning process occurred over 1 s trial trajectories repeated 5000

times and the MTP/MTD value was set to 10.

The actual torque values operating the robot-arm-end effec-

tor under a variable periodic force field are shown in Figure 7B.

This force field made the torque values exceed the magni-

tude of ideal ones. To accurately perform the eight-shape

trajectory, the cerebellum was committed to compensate the

existing difference between them. As expected, the manipula-

tion problem increased its complexity compared to the unper-

turbed task; throughout a learning trial, both torque gra-

dient and torque value in each robot-arm-joint were con-

tinuously changing (sign and magnitude), thus making the

agonist-antagonist synaptic weight adaptation become crucial

during the learning process. The mismatch between actual

joint position and ideal ones was compensated thanks to

the IO-DCN connection (Figure 7A). An initial rough con-

trol action was delivered, allowing the cerebellar system to

provide a corrective torque in ameliorating manipulation

(Figure 7C).

The contribution of the IO-DCN (Figure 7A) connection

was maximal in the initial learning stage. However, the ago-

nist/antagonist balance could not be properly achieved initially.

The IO-DCN connection initially supplied a position error-based

control that made PF-PC synaptic activity to operate in its opti-

mal range. The position error was early compensated (Figure 7A)

whilst the agonist/antagonist balance required (Figure 7A) the

combined MF-DCN/PC-DCN adaptation (Figure 7C, green and

blue lines). Whilst time was passing, the IO-DCN contribu-

tion was progressively substituted by the distributed learning at

MF-DCN/PC-DCN synapses, and the contribution to the DCN

output at final learning stages was completely supplied by these

latter connections. During the final learning stages, the learning

process stabilized (Figure 7A, MAE plateau phase), thus infer-

ring and storing in DCN synapses the control action needed to

compensate the external variable force (Figure 7C).

DISCUSSION

By using closed-loop robotic simulations, this paper reveals the

internal dynamics of long-term plasticity and neuronal firing in a

cerebellar network model incorporated into a system control plat-

form. The cerebellar network exploits the IO-DCN connection to

implement an internal feed-back loop and embeds multiple forms

of synaptic plasticity (Garrido et al., 2013a). The main obser-

vation is that plasticity at the IO-DCN connection accelerates

convergence of learning by 1–2 orders of magnitude. In this way

learning approaches the speed demonstrated by behaviorally rel-

evant tasks such as eye-blink classical conditioning (Smith et al.,

2006) and force-field adaptation (Shadmehr et al., 2010).

IO-DCN plasticity was modeled as a Hebbian learning mech-

anism and was added to MF-DCN and PC-DCN plasticity, so

that three different forms of plasticity impinged on the same

Frontiers in Computational Neuroscience www.frontiersin.org August 2014 | Volume 8 | Article 97 | 11

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Luque et al. Fast convergence of cerebellar learning

FIGURE 7 | MAE and synaptic strength evolution during the learning

process at IO-DCN, MF-DCN, and PC-DCN synapses when an external

variable force is applied to the end effector. Simulations were performed

using plasticity mechanisms at PF-PC, MF-DCN, and PC-DCN synapses

accompanied with a self-adaptive plasticity mechanism at IO-DCN

connection under an external variable force field during 5000 trials. (A)

Illustrates the mean absolute error evolution of the three robot joints

during the learning process throughout 5000 trials accompanied with a

zoom-in of the first 500 trials with/without the self-adaptive plasticity

mechanism at IO-DCN synapses. Plot (A) also illustrates the distributed

adaptation of the normalized synaptic strength evolution at MF-DCN,

PC-DCN, and IO-DCN connections (for the sake of clarity just second

agonist and antagonist paired joint muscle have been represented). The

contribution of the IO-DCN (red line) connection from the 1st trial was

maximal; but the agonist/antagonist balance was not properly settled

down. Agonist IO-DCN connection supplied a position-error-base- control

action, thus facilitating the proper PF-PC firing range operation. The

combined contribution of MF-DCN/PC-DCN connections (green and blue

lines) became strong enough from 500th trial to keep the system under

control allowing a fine-tuning of agonist/antagonist balance whilst the

IO-DCN contribution was progressively self-neglected. (B) Perturbing

torque values resulting from force field action compared to desired torque

values needed to perform the eight-like trajectory (C) Torque value

evolution during the learning process for the second joint with/without the

self-adaptive plasticity mechanism at IO-DCN synapses. Three time stamps

were shown: 1, 500, and 1500 trial. IO-DCN contribution was responsible

for correcting the initial torque output in a rough manner (first trial). With

the passage of time the fine agonist/antagonist balance at

MF-DCN/PC-DCN connections allowed the arm-robot-system to

compensate torque deviations due to force field action.
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DCN neurons. Significantly, IO-DCN plasticity caused a learning

acceleration that synergized with the error-detection and gener-

alization properties conferred by the other DCN synapses. This

model therefore suggests that a putative form of IO-DCN plas-

ticity may play a critical role in controlling DCN activity and

determining the cerebellar output, mainly at improving the learn-

ing speed and maintaining certain control stability from the very

initial stages, which is also important to avoid potential damage

caused by unstable behaviors.

THE IMPACT OF IO-DCN PLASTICITY ON CEREBELLAR LEARNING

These simulations revealed three remarkable functional aspects

involving the IO-DCN connection.

(1) Firstly, the feedback control loop through the IO-DCN con-

nection ensured stability during the initial phase of the

learning process.

(2) Secondly, the distributed learning process through different

pathways ensured a relatively fast synaptic weight strength

adjustment by using the PF-PC plasticity mechanism and the

subsequent slow adaptation of the excitation and inhibition

levels by means of the MF-DCN and PC-DCN synaptic plas-

ticity mechanisms. These mechanisms also helped to keep the

PF-PC synaptic weights working within their optimal range.

(3) Thirdly, regulation of DCN neuron discharge was dynamic in

that plasticity at its synapses evolved over time.

Thus, plasticity served to regulate DCN neuron excitability, and

this regulation required the dynamic intervention of the whole

cerebellar network.

INSIGHTS ON CEREBELLAR LEARNING

There is no agreement about the type of information conveyed

by the climbing fibers into the cerebellum or about their poten-

tial role. The Marr-Albus motor learning theory maintains that

climbing fibers carry either an error signal related to directional

information (Kawato and Gomi, 1992) or a binary teaching signal

(Houk and Barto, 1992; Bazzigaluppi et al., 2012; De Gruijl et al.,

2012). Conversely, considering the periodic nature of climbing

fiber activity, others (Llinas and Welsh, 1993) maintain that IO

activity is related with the timing of movement. However, inves-

tigations in which this periodicity was not observed (Keating and

Thach, 1995) suggested that the climbing fiber activity was cor-

related with the onset of movements. The controversy extends to

IO functional properties, which are not yet univocally defined (De

Zeeuw et al., 1998; Bengtsson and Hesslow, 2006; Welberg, 2009).

Finally, different cerebellar plasticity mechanisms have recently

been observed in the cerebellum suggesting that motor learning

may not be exclusively related to climbing fiber activity (Hansel

et al., 2001; Evans, 2007; Ohtsuki et al., 2009; D’Angelo, 2010).

In the present model, the climbing fibers provide a teaching sig-

nal driving long-term synaptic plasticity both at the IO-PC and

IO-DCN connections.

The present simulations suggest that cerebellar gain con-

trol can be adjusted through MF-DCN and PC-DCN synap-

tic plasticity working in equilibrium with IO-DCN plasticity.

The homeostatic mechanisms that allow this balance are imple-

mented by using different learning laws which drive the cerebellar

model to improve its learning accuracy. IO-DCN connections

ensure stable outputs in the early learning stages, when the

strength of MF-DCN and PC-DCN connections is not set yet

through the learning process. When the strength of the synaptic

weights of MF-DCN and PC-DCN connections begins to stabi-

lize, the synaptic strength of the IO-DCN connection diminishes.

Therefore, at the end of the learning process, the effect of the

IO-DCN connection in determining the cerebellar output is neg-

ligible. Nonetheless, the IO-DCN connection remains ready to act

when new unexpected patterns have to be learnt. In addition, a

proper synaptic weight adjustment at DCN synapses allows the

PFs to operate over their complete frequency range, enhancing

the precision of the cerebellar output.

To sum up, the IO-DCN pathway allowed a global feedback

error reduction facilitating early and fast corrections. The MF-PF-

PC-DCN system operated by achieving more accurate corrections

in the long term but it required slow learning (Luque et al.,

2011b).

BIOLOGICAL REALISM AND MODEL LIMITS

Here we have used a set of assumptions in order to generate

a model which is biologically realistic but also mathematically

tractable. The limits imposed by such a modeling approach,

which were previously discussed in Garrido et al. (2013a), are

considered here under the light of the improvements conferred to

network functionality by the introduction of IO-DCN plasticity.

(1) Two main assumptions are that PCs operate as state-error

correlators and that the granular layer acts as a state gener-

ator (states that are unambiguous throughout the trajectory,

they may be generated in relation with the movement timing

or with the sensory-motor states). Since the exact function

of these structures is not fully resolved, an assessment of the

assumption may come from a reverse engineering approach.

Electrophysiological analysis has revealed complex properties

in cerebellar neurons and plasticity mechanisms (D’Angelo

and De Zeeuw, 2009; De Zeeuw et al., 2011). Here, plasticity

mechanisms are implemented, neglecting details on signal-

ing cascades and the neurons are not spiking. It remains to

be established whether a biologically precise representation

of plasticity mechanisms and spike generation (e.g., Solinas

et al., 2010) could substantially modify the core conclusion

of this model.

(2) The feed-back signals required to correct the actual move-

ment, in addition to be conveyed to the cerebellum through

the internal feedback passing through the IO-DCN connec-

tion, also arrive through sensory afferents (MFs) and the

motor cortex (Kawato et al., 1987; Siciliano and Khatib,

2008). Moreover, the teaching signal is probably not only

conveyed through the IO but also through the granular layer

(Krichmar et al., 1997; Kistler and Leo Van Hemmen, 1999;

Anastasio, 2001; Rothganger and Anastasio, 2009). The intro-

duction of these further elements is expected to increase

the level of flexibility and efficiency in motor control and

learning.
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(3) We did not include the basal ganglia in our system controller.

Recent evidence has shown the existence of di-synaptic

pathways connecting the cerebellum with the basal ganglia

(Bostan et al., 2013). Both cerebellum (Swain et al., 2011)

and basal ganglia (Bellebaum et al., 2008) have been sug-

gested to contribute to reward-related learning tasks, but

how these subsystems interact and reciprocally improve their

operations remains an open issue.

(4) We have included in the model what, as far as we know, is the

most complex set of plasticity mechanisms ever considered

for the cerebellar network. However, there are multiple sub-

forms of plasticity in PC and GC connections as well as in PC

and GC intrinsic excitability (Hansel et al., 2001; Gao et al.,

2012; D’Angelo, 2014). The integration of the present model

into a spike-timing computational scheme including mul-

tiple PC plasticity mechanisms and MF-GC plasticity rule

remains a future challenge.

(5) Finally, and most importantly, it is worth mentioning that

there is neither a clear understanding of the information pro-

cessing nor a fully-detailed description of the DCN. Although

the implications that the IO-DCN excitatory pathway remain

yet to be demonstrated (Baumel et al., 2009; Uusisaari and

De Schutter, 2011), there are biological indications point-

ing to the existence of climbing fiber collaterals contacting

DCN (Uusisaari and Knöpfel, 2011) as well as MF collaterals.

In detail, there is physiological evidence in mice indicating

that both MF and CF collaterals are contacting the very same

sub region (neuron group) within the DCN (Uusisaari and

Knöpfel, 2011). Given the fact that the presence of specific

sites and signs of plasticity at DCN is an open issue together

with the MF/CF collaterals contacting the same DCN neuron

group which may lead to a plausible scenario where not only

MF-DCN collaterals undergo some form of plasticity.

Indeed, the lack of biological evidence in terms of IO-

DCN plasticity makes the presented working hypothesis

remain speculative awaiting new physiological experiments

that could provide evidence to refute/validate this.

THEORETICAL IMPLICATIONS

This model lies halfway between a classical black-box model

and a realistic biological model. A non-trivial consequence of

the way the model is constructed is that of providing a pre-

diction about the need for IO-DCN plasticity, which speeds up

learning. Moreover, this model could be compared to proto-

typical cases elaborated for dynamic neural networks (Spitzer,

2000; Hoellinger et al., 2013). In these networks, learning of

complex tasks is better accomplished when the number of hid-

den neurons increases, as they form complex categories that

are needed to interpret the multi-parametric input space. This

also introduced multiple time-constants. As a whole, the greater

the number of plasticity sites involved, the more extended and

diversified the learning properties approaching the complexity

observed in real life. This model thus suggests that multiple dis-

tributed learning mechanisms provide the key for explaining the

complex properties of biological learning and prompts the search

for yet unknown forms of synaptic plasticity in the cerebellar

network.

CONCLUSIONS

Whilst it has been claimed that “the cerebellum should be regarded

as a control machine rather than a learning machine” (Rokni et al.,

2008), a different view states that “the cerebellum certainly acts as a

control machine, but on top of that the cerebellum (particularly the

cerebellar cortex) provides a giant switchboard for associative learn-

ing” (Ohtsuki et al., 2009). Our model, though the intervention

of plasticity at the IO-DCN connection, establishes a connection

between these apparently divergent opinions. Whilst distributed

synaptic plasticity mechanisms may play an important role in

learning consolidation, the IO-DCN connection may act as an

embedded feedback controller ensuring stability in the first stages

of the learning process. These results also imply that degradation

or malfunctioning of the IO would affect fast adaptation in the

early stages of the learning of a control task. The predicted role

of the IO-DCN pathway for fast cerebellar adaptation could be

tested by using genetically modified animals (for review see Ito,

2013).
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