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ABSTRACT High-efficiency image corner detection, one of the most important and critical basic

technology in industrial image processing, is to detect point features from an input image in real-time. In this

paper, we propose a new corner detection method which has both good performance of corner detection and

real-time processing abilities. Firstly, the integral image and the box filter are combined to obtain the second-

order derivative response in each direction of the image. Secondly, a new coarse screening mechanism for

candidate corners is presented to reduce the complexity of the corner metric. Thirdly, a non-maximum

suppression operation is utilized to obtain corners. Finally, the performance evaluation on accuracy of

corner detection, localization error, average repeatability, region repeatability, different lighting conditions,

and execution time are used to assess the proposed method against twelve state-of-the-art methods. The

experimental results show that our proposed detector has good corner detection performance and achieves

the requirement of real-time processing.

INDEX TERMS Corner detection, real-time processing, directional derivative, detection performance.

I. INTRODUCTION

C
ORNERS are one of the most important local features

in an image, which have been widely applied in

many computer vision and image processing tasks such

as 3D reconstruction [1], autonomous driving [2], object

recognition [3], and image registration [4]. The existing

corner detection methods can be divided into three cate-

gories [5]: contour-based [6]–[11], template-based [12]–[15],

and intensity-based [5], [16]–[27]. Contour-based methods

usually firstly extract edge contours from an input image by

an edge detector [28]–[30], and then the information of shape

changes on contours are analysed for detecting corners.

Template-based methods find corners by fitting a small

patch of an image with predefined corner templates. Smith

and Brady [12] used the similarity ratio information between

image and smallest univalue segment assimilating nucleus

(SUSAN) template to detect corners. Rosten et al. [13], [14]

followed the SUSAN method [12] and applied a decision

tree technique to detect corners. Su et al. [31] applied the

Hessian matrix and correlation matrix of an image to detect

candidate junctions. And then the average intensity in all

directions, and the zero-mean normalized cross correlation

were utilized to improve the accuracy of junction detection.

Xia et al. [15] presented an interest point detector based on

the change of edge pixel intensity in a linear scale space.

Xue et al. [32] extended the Xia et al.’s method [15] that

junctions are detected from edge contours in a nonlinear scale

space.

Following Moravec’s definition [16] that the intensity

variations of corners are large in all directions, Harris and

Stephens [17] utilized first-order image derivatives along the

horizontal and vertical directions to construct a 2×2 structure

tensor for detecting corners from an input image. Subse-

quently, multi-scale technique [33], log-Gabor filter [34], and

shearlet filter [23] are applied to smooth the input image

and extract corners in the framework of the Harris method.
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Zhang and Sun [5], [27] showed that it is necessary to

extract local structure information of corners from an input

image along multiple filter orientations. The reason is that the

first- or second-order directional derivatives along a pair of

orthogonal directions cannot properly identify the differences

between edges and corners. Then Zhang and Sun [27]

presented the second-order generalized Gaussian directional

derivative (SOGGDD) method for detecting corners from

images. In [27], the SOGGDD filters are employed to smooth

the input image, and then the second-order directional

derivatives along multiple filter orientations are used to

construct a second-order directional derivative correlation

matrix for detecting corners. Wang et al. [35] applied Zhang

and Sun methods [5], [27] and multi-scale shearlet filters with

multiple directions are used to smooth the input image for

detecting corners.

Lindeberg [18] utilized Laplace-of-Gaussian (LoG) filters

to smooth the input image for detecting local features in

scale space. Lowe [19] extended the LoG method [18]

and presented the scale-invariant feature transform (SIFT)

algorithm. Difference of Gaussian (DoG) filters with multiple

scales are used to detect local features from images. Bay

et al. [20] applied box filters to speed up the execution time

of the SIFT method [19]. Alcantarilla et al. [21] applied the

anisotropic diffusion theory to construct a nonlinear scale

space and extract the maxima of the Hessian in this scale

space to detect local features. Hong-Phuoc and Guan [36]

utilized a sparse coding method to detect local features. Cho

et al. [22] utilized higher-order DoG and LoG filters to detect

local features. Verdie et al. [37] presented a model learned

by image sets about the same scene with different time and

seasons to detect local features. Yi et al. [38] employed

traditional detectors such as SIFT [19] to train their local

feature detector. Lenc and Vedaldi [39] trained a feature

detector by the local covariant constraint. Ono et al. [40]

applied interest points with high repeatability to train a local

feature detector. Dusmanu et al. [41] applied the response

from the pre-trained VGG-16 to detect local features.

Our research indicates that the detector proposed by Zhang

and Sun [27] has the ability to properly extract the local

structure information from each input image for detecting

corners. However, its computational complexity is very high

and cannot meet the requirements of real-time processing.

Inspired by the SURF method [20], the integral image and

box filter are combined to approximate the second-order

Gaussian directional derivative (SOGDD) filters. In this way,

the time complexity of the convolution operation can be

reduced from O(N2) (N represents the size of the convo-

lution template) to O(1). Furthermore, a mechanism that

filters out candidate corners was proposed to reduce the time

consumption of the process about constructing the image

corner measure map. Finally, the performance evaluation on

the accuracy of corner detection, localization error, average

repeatability, region repeatability, and execution time are

used to assess the proposed method against twelve state-

of-the-art methods. The experimental results show that our

proposed detector has good corner detection performance and

achieves the requirement of real-time processing.

The remainder of the article is arranged as follows. In

Section II, a succinct review of second-order Gaussian

directional derivative filter and detailed introduction of our

proposed corner detector are provided. In Section III, the

performances for the thirteen state-of-the-art approaches

based on evaluation criteria (detection accuracy, affine trans-

formation [9], region repeatability [42], different lighting

conditions, and execution time) are discussed. Finally, a

conclusion is presented in Section IV.

II. PROPOSED CORNER DETECTOR

In [5], Zhang and Sun proved that it is necessary for us

to extract local structure information along multiple filter

orientations from an input image for detecting corners.

Our research indicates that convolution operation of multi-

directional filtering increases the computational complexity

of the SOGGDD algorithm [27], which makes the SOGGDD

algorithm unable to meet the needs of real-time corner

detection. The goal of this paper is to present a corner

detector which has good performance of corner detection

and has the ability to meet the requirement of real-time

processing.

A. SECOND-ORDER GAUSSIAN DIRECTIONAL

DERIVATIVE FILTERS

In this subsection, a brief review of the SOGGDD filter

is given. The Gaussian filters Gσ,ρ,ϕ(x, y) in continuous

domain can be expressed as [5], [27]:

Gσ,ϕ(x, y) =

1

2πσ2 exp

(

− 1

2σ2 [x, y]Ψ−ϕ

[

ρ2 0
0 ρ−2

]

Ψϕ[x, y]
T

)

,

(1)

with

Ψϕ =

[

cosϕ sinϕ
− sinϕ cosϕ

]

where T represents matrix transpose, σ is scale factor, ρ is the

anisotropic factor, and Ψϕ is the rotation matrix in orientation

ϕ.

The first-order generalized Gaussian directional derivative

filter Λσ,ϕ(x, y) with orientation ϕ is shown as follow:

Λσ,ρ,ϕ(x, y) =
∂Gσ,ρ

∂ϕ

(

Ψϕ[x, y]
⊤
)

= −
ρ2(x cosϕ+ y sinϕ)

σ2
Gσ,ρ,ϕ(x, y),

(2)

The SOGGDD filter φσ,ρ,ϕ(x, y) with orientation ϕ can be

obtained as follow:

φσ,ρ,ϕ(x, y) =
∂Λσ,ρ

∂ϕ

(

Ψϕ[x, y]
⊤
)

= ρ2

σ2

(

ρ2

σ2 (x cosϕ+ y sinϕ)2 − 1
)

Gσ,ρ,ϕ(x, y),

(3)
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FIGURE 1. Integral image schematic diagram.

It is worth to note that images are 2D discrete signals in the

integer grid, which means that the SOGGDD filter should be

discretized for performing different image processing tasks.

Given a scale σ and K oriented angles ϕk = (k − 1)2π/K
(k = 1, 2, . . . ,K), and the location (m,n) in the image, the

discrete version of the SOGGDD filters can be represented

as:

φσ,ρ,ϕk
(m,n)

= ρ2

σ2

(

ρ2

σ2 ([cosϕk, sinϕk][m,n]T )2 − 1
)

Gσ,ρ,ϕk
(m,n),

(4)

In the following, the anisotropic factor with ρ2 = 1 and the

scale factor with σ2 = 1.5 of the second-order Gaussian

directional derivative filters are utilized in our proposed

method.

B. INTEGRAL IMAGE

In this subsection, we first give a concise review on the

integral image [43]. The integral image has the same image

resolution as the original image. As shown in Fig. 1, the pixel

‘O’ represents the first pixel in the upper left corner of the

image. The value at position (m,n) in the integral image is

the sum of all pixels covered by black region in the original

image

β(m,n) =
∑

m′≤m, n′≤n

I (m′, n′) , (5)

where β represents an integral image, I represents an original

image, (m,n) is a pixel position in the integral image, and

(m′, n′) is a pixel position in the original image.

An optimization method is introduced to efficiently calcu-

late the integral image as follows:

c(m,n) = c(m,n− 1) + I(m,n),
β(m,n) = β(m− 1, n) + c(m,n),

(6)

where c(m,n) represents the pixel sum of the column

(ending at row m) in the original image.

Once an integral image is obtained, the sum of pixel values

of a certain rectangular area in the original image can be

obtained by putting three addition operation to the values

of the corresponding four positions in the integral image,

which is extremely compatible with the box filter in terms of

reducing the calculation complexity of an image convolution

operation.

As shown in Fig. 1, the pixel sum of the white area S in

the original image is calculated

S = βA + βD − βC − βB , (7)

where βA, βB , βC , and βD are the values at positions A, B,

C, and D in the integral image respectively.

C. BOX FILTER

The existing corner detection algorithms usually apply a pre-

designed filter to convolve the input image for obtaining

multi-directional response of an input image. The process of

the convolution operation usually cause high computational

cost for image corner detectors. Furthermore, many complex

filters (e.g., shearlet filter and log-Gabor filter) are not as

separable as Gaussian filters, so they cannot be decomposed

into two one-dimensional filter kernels for fast calculation.

For a SOGDD convolution template with the size of N ×N
pixels, a complete convolution process will include N2

multiplication operations and N2 − 1 addition operations.

For some applications that have high-resolution input images,

such as high-resolution remote sensing [44] and astronomical

image processing [45], the time consumption of pixel-by-

pixel convolution operation is very high.

In this paper, the box filter is applied to approximate

complex multi-directional SOGDD filters for detecting cor-

ners from an input image. Take a vertical second-order

derivative filter template as an example as shown in Fig. 2,

an SOGDD filter and a box filter are shown in Fig. 2(a) and

(b) respectively. It can be seen from Fig. 2(a) that the weight

distribution of the SOGDD filter can be divided into three

parts. The weight of the two white areas is greater than 0

and the weight of the black area is less than 0. According to

Equation (4) and the properties of the SOGDD filter, it can

be found that the absolute value of the weight of the pixels in

the black area is twice that of the corresponding pixels in the

white area.

In addition, in order to be consistent with the property

of integral image that it can efficiently calculate the sum

of pixels in the rectangular area, the main area of the

second-order Gaussian directional derivative filter template

is approximated to three square areas with the size of 3 × 3
pixels (the selection of template size will be discussed in

Section III). As shown in Fig. 2(b), the weights of the black,

white, and gray areas are -2, 1, and 0 respectively. Taking into

account the needs of real-time detection and the accuracy of

corner detection, the box filters with six filter orientations are

used in our method. The box filter templates with six filter

orientations are shown in Fig. 3.
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FIGURE 2. One SOGDD filter template in vertical direction in (a) and its

corresponding box filter template in (b).

-2

1

1

-2

1

1

-2

1

1

-2

1

1

-2

1

1

-2

1

1

-2

1

1

-2

1

1

1 -2 1-2 111 -2 11

-2

1

1

-2

1

1

FIGURE 3. The templates of box filter with six filter orientations.

Based on the aforementioned analysis, it can be found that

the combination of the integral image and the box filter has

the ability to properly obtain the second-order directional

derivative information as the SOGGDD method [27] does.

Furthermore, the combination of the integral image and the

box filter has the ability to meet the requirement of real-time

processing. As shown in Fig. 1 and Fig. 2(b), for one image

pixel, only 3×3+2 addition operations are required to obtain

the SOGDD information along one direction in our proposed

method. The computational complexity of the box filter and

the SOGDD filter with six filter orientations (the size of the

template is N ×N pixels) are shown in Table 1.

TABLE 1. The comparison of the computational complexity between the box

filter and the original filter.

Filter
Addition Multiplication Total

operation operation operation

SOGDD 6× (N2
− 1) 6N2 6× (2N2

− 1)

Box 6× (3× 3 + 2)− 15 0 51

It can be seen from Table 1 that the computational

complexity of the box filter to obtain the second-order

directional derivative from one image pixel is O(1), while the

computational complexity of the SOGDD filter [27] to obtain

the second-order directional derivative from one image pixel

is O(N2). And when the size of the SOGDD filter template

increases, the acceleration effect of the box filter will become

more apparent.

D. ROUGH SCREENING FOR CANDIDATE CORNER SET

BASED ON SUM OF DIRECTIONAL DERIVATIVES

Our research indicates that the corner measurement map

constructed by the SOGGDD algorithm [27] is very complex.

For one pixel in the input image, there are 49 × 49 + 5
multiplication operations, 48 × 48 + 6 addition operations,

one division operation, 2 × 49 memory access operations,

and one operation about finding the eigenvalue of a matrix to

obtain the corner measure. Meanwhile, the detector needs to

apply this operation on all pixels of the input image to obtain

the corner measurement map of the entire image, which

undoubtedly increases the computational complexity of the

detector to an extremely high level. However, the sparseness

of corners indicates that the method which calculates corner

measure pixel by pixel is extremely inefficient. In our

proposed method, a method that pre-screens candidate points

from the whole image was proposed to reduce the number of

operations for calculating the corner measure. Following the

corner definition proposed in [5], a corner is the point where

the pixel value derivative is large in multiple directions, we

can utilize the sum of multi-directional derivative values to

filter out candidate corner point set.

In our method, we preset an appropriate threshold to

compare with the sum of multi-directional derivatives of

each pixel in the input image. In this way, we only need

performing five summation operations and one comparison

operation for each pixel to reduce the computational

complexity for obtaining corner measures by orders of

magnitude. After the coarse screening process, only a small

number of pixels are needed to construct the second-

order directional derivative correlation matrix to carry out

further screening. For an input image with the size of

W × V , the corner number of candidate corner set is

CC and CC ≪ W × V . The comparison between our

corner detector applying a rough screening method and

the detector applying a pixel-by-pixel traversal method

on the computation complexity for computing the corner

measure map is shown in Table 2 (the image direction

derivative response has been obtained), which shows that

our method greatly improves the running speed of obtaining

the cornerness map of an input image. In our method, the

threshold for the rough screening processing was set as 3×Th

(the selection of threshold will be discussed in Section III.)

and Th means the average value of the sum of the multi-

directional derivatives of all pixels in the input image.

E. CONSTRUCT MULTI-DIRECTIONAL CORNER

STRUCTURE TENSOR PRODUCT

The three areas in the pre-designed box filter template as

shown in Fig. 2(b) are denoted as area X, area Y, and area Z

from top to bottom respectively. Meanwhile, corresponding

image location of the center point of the three areas are

denoted as (Xm, Xn), (Ym, Yn), and (Zm, Zn) respectively.

The sum of the pixel values of the image region covered by
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TABLE 2. The computational complexity of our method with rough screening and without rough screening in the cornerness map calculation.

Method Addition operation Multiplication operation Division operation Finding eigenvalues of the SODDC matrix

Without rough screening (5 + 48 + 6)×WV WV × (7× 7 + 5) WV WV

Rough screening 5× (WV − CC) + (48 + 6)× CC CC × (7× 7 + 5) CC CC

area X is defined as SX , which is shown as follow:

SX = β(Xm − 2, Xn − 2) + β(Xm + 1, Xn + 1)
−β(Xm + 1, Xn − 2)− β(Xm − 2, Xn + 1).

(8)

The sums of the pixel values of the regions covered by

area Y and area Z are defined as SY and SZ , which have

the same form with Equation (8). In this way, the second-

order Gaussian directional derivative ∇kI(Ym, Yn) of pixel

I(Ym, Yn) (the center point of the black area is also the

center point of the convolution template) in the k-th (k =
1, 2, . . . ,K)) direction is defined as:

∇kI(Ym, Yn) = SX + SZ − 2SY . (9)

Following the SOGGDD algorithm [27], the second-

order directional derivative correlation (SODDC) matrix is

constructed for each image pixel, which is given in Equation

(10). In Equation (10), (m+ i, n+ j) is a point in a

neighbourhood within a certain range centered on (m,n) and

(i, j) is within the region of a rectangular window. Then, the

corresponding eigenvalues {λ1, λ2, . . . , λK} of the SODDC

matrix M are obtained to construct a corner measure Ω.

Ω (m,n) =

K
∏

k=1

λk

K
∑

k=1

λk + ǫ

, (11)

where ǫ is a tiny constant
(

ǫ = 1× 10−16
)

which is used

to avoid a singular denominator. Finally, the pixel that has a

local maxima value on the corner measure map and is larger

than a threshold T is marked as a corner.

The outline of the proposed corner detection method is

summarized as follow:

1) Calculating the integral image of the input image by

Equation (6).

2) Applying a box filter bank to approximate the SOGDD

filter with multiple directions and obtaining the image

second-order directional derivative information.

3) Screening candidate corners by the sum of directional

derivative in all directions.

4) Constructing the SODDC matrix and calculating the

corner measure Ω for each candidate corner.

5) Integrating Ω of all pixels in the input image (the Ω of

the pixel that is not candidate corner is set to 0) to obtain

a corner measure map (CMP ).

6) Applying the non-maximum suppression technique on

CMP to obtain corners.

(a) (b) (c)

FIGURE 4. The ground truth of corner positions in three test image. (a), (b),

and (c) are the image ‘Block’, ‘Lab’, and ‘Checkerboard’ respectively.

III. PERFORMANCE EVALUATION

In this section, six performance evaluation criteria (accuracy

of corner detection [27], localization error [27], average

repeatability under image affine transformation [9], region

repeatability [42], execution time, and different lighting

conditions) are utilized to evaluate the performance for our

proposed method and twelve state-of-the-art detectors (Har-

ris [17], Harris-Laplace [33], ANDD [46], ACJ [15], SOG-

GDD [27], DoG [19], SURF [20], D2-Net [41], LF-Net [40],

New-Curvature [11], Gabor [47], and NRANDD [10]). The

codes for ANDD [46], ACJ [15], SOGGDD [27], D2-

Net [41], LF-Net [40], New-Curvature [11], Gabor [47], and

NRANDD [10] come from authors. The codes for Harris-

Laplace [33] and DoG [19] are from [48]. The codes for

SURF [20] and Harris [17] are from MATLAB and [49]

respectively.

A. EVALUATION OF DETECTION PERFORMANCE

BASED ON GROUND TRUTHS

In this subsection, the criteria on accuracy of detection and

location error [27] are used to evaluate the performance

of the thirteen methods. Three test images ‘Block’ [50],

‘Lab’ [50], and ‘Checkerboard’ [15] and their corresponding

ground truth (marked by cyan circle) are shown in Fig. 4.

The three test images ‘Block’, ‘Lab’, and ‘Checkerboard’

contain 59, 249, and 50 corners respectively. The ground

truths of ‘Block’ and ‘Lab’ come from [10] and the ground

truth of ‘Checkerboard’ is manually marked as described

in [51]. Ten experts are invited to mark corners for test image

‘Checkerboard’. Only when a corner is marked by at least

eight experts at the time will it be considered as a ground

truth corner for the image ‘Checkerboard’.

Let τdetected = {(r̂p, ĉp) , p = 1, 2, . . . , N1} refer to

the corner set detected by a corner detector and τtruth =
{(rq, cq) , q = 1, 2, . . . , N2} refer to the corner set con-

tained in the ground truth data. For a corner (rq, cq) selected

from the ground truth corner set, If there exists a corner

(r̂p, ĉp) that belongs to the detected corner set which is not

VOLUME 4, 2016 5
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(a) (b) (c)

FIGURE 5. Detection results on the test image ‘Lab’. (a)Range size with

3 × 3, (b) Range size with 5 × 5, (c) Range size with 7 × 7.

more than 4 pixels away from (rq, cq), a true matching corner

pair is obtained and the corner (r̂p, ĉp) will be considered as a

true corner. Otherwise, the corner (rq, cq) will be considered

as a missing point. If the detected corner (r̂p, ĉp) is far

away from the ground truth, the corner (r̂p, ĉp) will be

considered as a false corner. Meanwhile, the localization

error of the detected corner is also an important metric

to evaluate the detection accuracy of a corner detector.

Let {(r̂i, ĉi) , (ri, ci) : i = 1, 2, . . . ,M} be the matching pair

obtained from sets τdetected and τtruth, then the average

localization error can be calculated as:

Ld =

√

√

√

√

1

M

M
∑

i=1

(

(r̂i − ri)
2
+ (ĉi − ci)

2
)

. (12)

Test image ‘Lab’ [50] is used to illustrate the effect of

the filter template size on the accuracy of corner detection.

The corner detection results using a box filter with different

template sizes (i.e., 3×3, 5×5, and 7×7) are shown in Fig. 5.

The accuracy of corner detection and localization error are

summarized in Table 3. It can be found from Table 3 that the

box filter with a 3×3 template size achieves the best accuracy

of corner detection and the smallest localization error. In this

way, the box filter with a 3 × 3 template size is selected in

our method.

TABLE 3. Performance comparison for the proposed detectors with different

range sizes.

Range size Missed corners False corners Localization error (pixel)

3× 3 103 43 1.429

5× 5 104 57 2.270

7× 7 150 55 3.286

Our research indicates that an effective threshold of

rough screening can reduce the computational complexity

of the algorithm while not causing loss of corner detection

accuracy. Take test image ‘Lab’ [50] as an example, its

corresponding corner detection accuracy and execution time

with different rough screening thresholds are illustrated in

Table 4. It can be seen that when the threshold of rough

screening is 3 × Th (Th is the average of the sum of the

multi-directional derivatives of all pixels in an input image),

the proposed method achieves the smallest localization error,

the second-best accuracy of corner detection, and relatively

short execution time. In this way, 3 × Th is selected as the

threshold for rough screening processing.

TABLE 4. Performance comparison for the proposed method with different

rough screening thresholds.

Threshold Missed corners False corners
Localization Execution

(∗ × Th) error (pixel) time (s)

1 105 44 1.448 0.535

2 104 42 1.472 0.420

3 103 43 1.428 0.358

4 100 44 1.522 0.312

5 111 41 1.588 0.286

6 135 30 1.852 0.274

The results of corner detection of our method and five other

corner detectors (Harris [17], ACJ [15], Harris-Laplace [33],

ANDD [46], and SOGGDD [27]) on three test images

are shown in Fig. 6, Fig. 7, and Fig. 8 respectively. The

numbers of missed corners, false corners, and average

location distance error for all methods are shown in Table 5.

In this evolution, the threshold of all detectors was set as

the value which can make the number of detected corners

suitable for the ground truth. For our method, the threshold

for corner measure was set to 1025.

In this evaluation, both the missed corners and false cor-

ners are used to assess the performance of each detection

method. As shown in Table 5, the numbers of missed cor-

ners and false corners for Harris [17], ACJ [15], Harris-

Laplace [33], ANDD [46], SOGGDD [27], and our proposed

method for the test image ‘Block’ are ‘21’, ‘10’, ‘76’, ‘9’,

‘11’, and ‘10’ respectively. For the test image ‘Lab’, the

numbers of missed corners and false corners for the six

detectors are ‘175’, ‘149’, ‘383’, ‘152’, ‘163’, and ‘146’
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(a) (b) (c)

(d) (e) (f)

FIGURE 6. Detection results on the test image ‘Block’. (a) Harris [17], (b)

ACJ [15], (c) Harris-Laplace [33], (d) ANDD [46], (e) SOGGDD [27], and (f)

Proposed detector.

(a) (b) (c)

(d) (e) (f)

FIGURE 7. Detection results on the test image ‘Lab’. (a) Harris [17], (b)

ACJ [15], (c) Harris-Laplace [33], (d) ANDD [46], (e) SOGGDD [27], and (f)

Proposed detector.

(a) (b) (c)

(d) (e) (f)

FIGURE 8. Detection results on the test image ‘Checkerboard’. (a) Harris [17],

(b) ACJ [15], (c) Harris-Laplace [33], (d) ANDD [46], (e) SOGGDD [27], and (f)

Proposed detector.

respectively. For the image ‘Checkerboard’, the numbers of

TABLE 5. Performance comparison for the six detectors on three ground truth

test images.

Method Missed corners False corners
Localization

error (pixel)

image ‘Block’

Harris 12 9 1.732

ACJ 6 4 1.660

Harris-Laplace 38 38 2.400

ANDD 4 5 1.763

SOGGDD 12 2 1.488

Proposed 10 0 1.558

image ‘Lab’

Harris 84 91 1.573

ACJ 77 72 2.009

Harris-Laplace 175 208 2.941

ANDD 57 95 1.625

SOGGDD 72 91 1.461

Proposed 103 43 1.429

image ‘Checkerboard’

Harris 0 15 1.400

ACJ 0 7 1.323

Harris-Laplace 36 42 2.141

ANDD 6 9 1.760

SOGGDD 5 0 1.137

Proposed 6 1 0.913

FIGURE 9. Test image set for the evaluation about repeatability under image

transformation.

missed corners and false corners for the six detectors are 15’,

‘7’, ‘78’, ‘15’, ‘5’, and ‘7’ respectively. For the localization

error metric, our method attains the smallest location error

for three test images. Benefiting from the extraction of multi-

directional derivative information, the double screening on

multi-directional derivative sum, and multi-directional struc-

ture tensor product, our method achieves good detection

performance.
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B. REPEATABILITY UNDER IMAGE TRANSFORMATION

In [9], the average repeatability metric Repeat precisely

measures the affine robustness, noise stability, and JPEG

compression invariance of the corner detector through the lo-

cal features extracted from original and transformed images,

which is calculated as follows:

Repeat =
Nummatched

2

(

1

Numori

+
1

Numtrans

)

, (13)

where Numori and Numtrans represent the count of

extracted corners from the original image ‘I’ and transformed

image ‘J’ respectively, and Nummatched is the number of the

matched corner pairs extracted from images ‘I’ and ‘J’.

The transformation relationship between the original and

affine transformed images is already determined when gen-

erating the transformed image, which avoids the error caused

by calculating the homography matrix between the images,

and the evaluation criteria can be adapted to any image. The

rule of determining a true match corner pair is defined as

follow: Firstly, we define two corners Co = (xo, yo) and

Ct = (xt, yt) which are detected in the original image and

transformed image respectively. Secondly, if the position of

corner Co after image transformation is in the neighbourhood

of Ct (the distance between the two corners does not exceed

4 pixels), then a matched corner pair is obtained.

There are 20 images with different scenes from the

ImageNet dataset [52] (shown in Fig. 9) which are utilized

to measure the average repeatability of the interest point

detectors. We followed the standard criteria proposed in [53]

that a total of 4,340 transformed test images were obtained by

applying the following six different types of transformations

on each original image:

• Rotation: Except for angle 0, the original image is rotated

by angle π/18 in the range [−π/2, π/2] to obtain a test

image.

• Uniform scaling: The image resolution factor in hor-

izontal and vertical direction are defined as σx and σy

respectively. Except for 1, resolution factor in both directions

change simultaneously in the range of [0.5, 2] with 0.1 apart.

• Non-uniform scaling: Except the situation σx = σy , the

factor σx is changed in the range of [0.7, 1.5] and σy is in

[0.5, 1.8] with 0.1 apart.

• Shear transformations: Except the situation Sh = 0, the

shear factor Sh was changed in the range [−1, 1] with 0.1

apart. The image was transformed with the following formula

[

r′

c′

]

=

[

1 Sh

0 1

] [

r
c

]

• Lossy JPEG compression: The compression factor is

changed in the range of [5, 100] with 5 apart.

• Gaussian noise: The standard deviations of zero mean

white Gaussian noise which was added to the original image

was changed in the range of [1, 15] with 1 apart.

The experimental results of the thirteen detector are shown

in Fig. 10 and sumarized in Table 6. It can be found from

Table 6 that our proposed method achieves the second best

performance in image affine transformations.

C. REPEATABILITY SCORE UNDER REGION

REPEATABILITY EVALUATION

In [42], three parameters of the elliptic implicit equation are

applied to describe the range of the corresponding area of

the image covered by the features. A region overlap based

evaluation criterion and the Oxford database about naturally

textured scenes were proposed. For a given corresponding

image pairs, the ratio for the number of matched interest

point pairs and detected smaller region number in one of the

images is defined as the repeatability score. It is depicted as:

Rei =
IPP1i

min (IP1, IPi)
(i = 1, 2, . . . , 6), (14)

where the IPP1i is the number of interest point pair detected

in the original image and i-th transformation image. And the

IP1 is the number of interest point detected in the original

image. Meanwhile, IPi is the interest point number detected

in the i-th transformation image. A successful match was

determined when the overlap error of the interest point pair

is below 40 percent. And the overlap error is defined as :

ν = 1−
Ra ∩HTRbH

Ra ∪HTRbH
, (15)

where Ra represents the feature in the original image,

Rb is the corresponding interest point in the image after

transformation and H is the corresponding homography

matrix between the original image and the image after

transformation. HT means the transpose matrix for H . To

test the accuracy of feature matching, the matching score

defined as the ratio between the number of correct matches

and the smaller number of detected regions in the pair of

images was proposed. In this evaluation, we search six scenes

(‘Bark’ and ‘Boat’ was deleted) from all eight image scenes

(‘Bark’, ‘Bikes’, ‘Boat’, ‘Graffiti’, ‘Leuven’, ‘Trees’, ‘Ubc’,

and ‘Wall’) in the Oxford image database. The threshold for

each method is tuned to extract about 1,000 interest points

from each input image. The repeatability scores for the six

image sequences are illustrated in Fig. 11 and Table 7.

D. REPEATABILITY SCORE UNDER DIFFERENT

LIGHTING CONDITIONS

In this subsection, six image scenes (‘Metz’, ‘Notredame14’

(N14), ‘Notredame15’ (N15), ‘Riga’, ‘Trevi02’, and ‘Vati-

can’) selected from the Symbench dataset [54] are used to

assess the robustness to the illumination changes of corner

detectors using the evaluation criteria proposed in [42]. The

threshold for each method is tuned to extract about 1,500

corners from each image. The repeatability scores for each

detector are illustrated in Fig. 12 and Table 8. It can be

observed that our proposed method achieves the second-best

performance in images with different lighting conditions.
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FIGURE 10. Average repeatability under image transformation for thirteen detectors.

TABLE 6. Average result for repeatability under image transformation.

Detector Rotation Uniform scale Non-uniform scale Shear JPEG compression Gaussian noise Average

ACJ 0.768 0.730 0.720 0.708 0.769 0.746 0.740

ANDD 0.752 0.697 0.678 0.705 0.827 0.810 0.745

Harris 0.796 0.697 0.690 0.759 0.726 0.591 0.710

Harris- Laplace 0.791 0.782 0.710 0.666 0.749 0.742 0.740

LF-Net 0.525 0.618 0.647 0.631 0.852 0.820 0.682

D2-Net 0.470 0.467 0.488 0.494 0.622 0.557 0.516

SURF 0.694 0.736 0.668 0.620 0.862 0.833 0.736

DoG 0.750 0.628 0.525 0.542 0.578 0.512 0.590

New-Curvature 0.617 0.844 0.743 0.686 0.850 0.825 0.761

Gabor 0.651 0.682 0.644 0.638 0.792 0.772 0.697

NRANDD 0.538 0.746 0.687 0.544 0.725 0.694 0.656

SOGGDD 0.895 0.848 0.821 0.842 0.912 0.888 0.868

Proposed 0.860 0.772 0.766 0.815 0.912 0.876 0.833

E. EXECUTION TIME

In this evaluation criteria, each corner detector has been

implemented in MATLAB (R2016b) using a 2.20 GHz CPU

with 8 GB of memory. Seven images (‘Block’, ‘Lab’, ‘Boat’,

‘Polygon’, ‘Checkerboard’, ‘Bikes’, and ‘Tree’) are selected

to evaluate the execution time of each detector. Images

‘Boat’, ‘Bikes’, and ‘Tree’ come from the VGG dataset [42]

and images ‘Lab’, ‘Block’, ‘Polygon’, and ‘Checkerboard’

come from [15]. Each image is used for running 100 times to

find the average execution time for each detector. The average

execution time comparisons are sumarized in Table 9. It can

be found from Table 9 that our method achieves the shortest

execution time. Compared with the SOGGDD detector, our

proposed method is approximately 25 times faster. It can

also be found from Table 9 that our proposed method meets

the requirement of real-time processing. It is worth to note
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FIGURE 11. Average repeatability of different interest point detectors on six image scenes.

(a) (b) (c)

(d) (e) (f)

FIGURE 12. Average repeatability of different corner detectors on six image scenes.
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TABLE 9. Performance comparison for the eight detectors on execution time (s).

Method

image

‘Block’ ‘Polygon’ ‘Lab’ ‘Checkerboard’ ‘Boat’ ‘Bikes’ ‘Tree’

(256× 256) (256× 256) (512× 512) (540× 420) (850× 680) (1000× 700) (700× 1000)

Harris 0.102 0.115 0.424 0.397 0.951 1.172 1.212

ACJ 0.629 0.258 1.994 0.786 10.036 9.887 15.846

Harris-Laplace 0.108 0.118 0.431 0.597 1.514 1.864 1.945

ANDD 0.872 0.570 4.537 1.718 11.186 6.294 11.168

NRANDD 0.092 0.218 0.393 0.459 2.246 1.048 8.339

Gabor 0.912 0.691 5.253 1.943 14.350 9.137 17.676

SOGGDD 1.984 2.178 8.142 7.337 22.135 35.369 35.789

Proposed 0.085 0.098 0.358 0.293 0.776 0.842 0.820

TABLE 7. Average result for repeatability under overlap rate.

Detector
Image

ALL
Trees Bikes Ubc Leuven Wall Graffiti

Harris 0.342 0.728 0.746 0.760 0.521 0.254 0.559

Harris-Laplace 0.221 0.332 0.685 0.578 0.409 0.319 0.424

SOGGDD 0.832 0.877 0.844 0.854 0.659 0.299 0.728

DoG 0.405 0.566 0.691 0.668 0.412 0.320 0.510

SURF 0.487 0.812 0.776 0.725 0.489 0.304 0.599

ACJ 0.459 0.586 0.510 0.642 0.434 0.277 0.485

ANDD 0.308 0.428 0.540 0.600 0.214 0.230 0.390

New-Curvature 0.471 0.527 0.645 0.664 0.315 0.213 0.466

D2-Net 0.561 0.658 0.727 0.681 0.530 0.185 0.557

LF-Net 0.640 0.741 0.796 0.742 0.558 0.277 0.626

Gabor 0.475 0.758 0.762 0.767 0.360 0.271 0.570

NRANDD 0.438 0.727 0.705 0.681 0.336 0.230 0.520

Proposed 0.734 0.970 0.836 0.845 0.608 0.280 0.712

TABLE 8. Average result for repeatability under different lighting conditions.

Detector
Image sets

ALL
Metz N14 N15 Riga Trevi02 Vatican

ACJ 0.590 0.569 0.632 0.587 0.618 0.818 0.636

ANDD 0.511 0.638 0.693 0.517 0.552 0.575 0.581

Gabor 0.509 0.735 0.795 0.550 0.665 0.659 0.652

Harris 0.638 0.647 0.673 0.614 0.726 0.536 0.639

Harris-Laplace 0.432 0.468 0.519 0.379 0.510 0.307 0.436

New-Curvature 0.488 0.590 0.595 0.513 0.450 0.610 0.541

SOGGDD 0.835 0.792 0.765 0.837 0.830 0.760 0.830

Proposed 0.657 0.768 0.804 0.700 0.777 0.619 0.721

that our method is 23.3 times faster than the SOGGDD

method when the image size is 256 × 256. When the image

size is 700 × 1000, our method is 43.6 times faster than

the SOGGDD detector. Therefore, when the image size

increases, the acceleration effect of our proposed method will

become more apparent.

IV. CONCLUSION

In this paper, a fast corner detection method is proposed

which has the ability to meet the requirement of real-

time processing and good corner detection performance.

The integral image, box filter, and a new rough screening

mechanism are utilized to obtain the second-order directional

derivative from an input image for efficiently detecting

corners. The experimental comparisons indicate that our

proposed corner detection algorithm has the good perfor-

mance of corner detection and the ability of real-time corner

detection in light of six evaluation criteria (accuracy of corner

detection, localization error, average repeatability under

image affine transformation, region repeatability, different

lighting conditions, and execution time). Furthermore, the

proposed corner detection method has a great potential to be

applied in object recognition, 3D reconstruction, and many

other image processing and computer vision tasks.
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