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Abstract 

Reconstructing cortical surfaces from structural magnetic resonance imaging (MRI) is a prerequisite for surface-based 
functional and anatomical image analyses. Conventional algorithms for cortical surface reconstruction are compu-
tationally inefficient and typically take several hours for each subject, causing a bottleneck in applications when a 
fast turnaround time is needed. To address this challenge, we propose a fast cortical surface reconstruction (FastCSR) 
pipeline by leveraging deep machine learning. We trained our model to learn an implicit representation of the cortical 
surface in volumetric space, termed the “level set representation”. A fast volumetric topology correction method and a 
topology-preserving surface mesh extraction procedure were employed to reconstruct the cortical surface based on 
the level set representation. Using 1-mm isotropic T1-weighted images, the FastCSR pipeline was able to reconstruct 
a subject’s cortical surfaces within 5 min with comparable surface quality, which is approximately 47 times faster than 
the traditional FreeSurfer pipeline. The advantage of FastCSR becomes even more apparent when processing high-
resolution images. Importantly, the model demonstrated good generalizability in previously unseen data and showed 
high test–retest reliability in cortical morphometrics and anatomical parcellations. Finally, FastCSR was robust to 
images with compromised quality or with distortions caused by lesions. This fast and robust pipeline for cortical sur-
face reconstruction may facilitate large-scale neuroimaging studies and has potential in clinical applications wherein 
brain images may be compromised.
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1 Introduction
The human cerebral cortex can be viewed as a 2-dimen-
sional surface sheet folded in 3-dimensional (3D) space 
with highly individualized organizational and topologi-
cal patterns [1–4]. Reconstructing cortical surfaces from 
magnetic resonance imaging (MRI) not only facilitates 

the quantification of brain morphometric measures, 
such as cortical thickness [4, 5] and sulcal depth [6, 7], 
but also allows for visualization of surface-based render-
ings displaying a variety of functional and anatomical 
measures [8]. Surface-based image analyses have shown 
advantages over traditional volume-based approaches 
in aligning imaging data from different subjects [9] and 
have been widely adopted in both basic and clinical 
neuroscience research [10–16]. For these reasons, auto-
matic cortical surface reconstruction has become a criti-
cal step in the processing pipelines for analyses of data 
derived from functional MRI (fMRI) [17], magnetoen-
cephalography (MEG) [18], and electroencephalography 
(EEG) [19] techniques. However, current cortical surface 
reconstruction (CSR) algorithms are computationally 
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inefficient, restricting their use in some scenarios where 
fast processing is desired [3, 20–23]. For example, recon-
structing a single subject’s brain surface using the Free-
Surfer pipeline typically takes several hours [24, 25]. The 
high computational cost is mainly driven by traditional 
computer vision algorithms and their dependency on 
multi-step preprocessing. Recently, advances in machine 
learning have offered opportunities to accelerate brain 
image processing. For example, Henschel et al. proposed 
a “FastSurfer” pipeline to speed up anatomical segmenta-
tion using deep learning [26] and Cheng et al. proposed 
a “SphereMorph” algorithm to accelerate surface regis-
tration [27]. Cruz and coworkers proposed a “DeepCSR” 
algorithm to reconstruct cortical surfaces using deep 
learning, which is capable of capturing precise cortical 
details but does not significantly shorten the processing 
time [25]. To date, an efficient approach for rapid recon-
struction of brain surfaces within a few minutes is still 
lacking.

Here, we propose a novel, fast cortical surface recon-
struction (FastCSR) algorithm based on deep learning. 
We trained a 3D  U-Net model to learn implicit repre-
sentations of cortical surfaces from original T1-weighted 
(T1w) images and then reconstructed topology-preserv-
ing cortical surface meshes from these representations. 
In contrast to explicit surface representation based on 
triangular meshes, the implicit cortical surface repre-
sentation, termed level set [28], reconstructs the cortical 
surface in volumetric space in an implicit manner. Specif-
ically, in the level set representation, voxels whose values 
equal zero represent surface boundaries, whereas a nega-
tive or positive value of a voxel represents the distance 
from the surface boundaries inward or outward, respec-
tively. Once the level set representations are learned 
from the inputted anatomical T1w images, the explicit 
surface meshes can be easily generated by extracting 
zero values in the representations without topological 
defects [29]. Herein, we aim to accelerate CSR while at 
the same time maintaining compatibility with the Free-
Surfer pipeline, the latter of which represents one of the 
most widely used automatic CSR pipelines currently 
available [7]. Therefore, we trained a supervised model 
using level set representations of cortical surfaces recon-
structed from FreeSurfer. Our FastCSR approach is able 
to reconstruct an individual’s brain surface within 5 min. 
In addition to quantifying differences in processing time, 
we also compared the displacement and morphometrics 
of reconstructed surfaces using our method compared 
to two commonly employed pipelines (i.e., FreeSurfer 
and FastSurfer) using multiple datasets that varied in 
their scanning protocols and acquisition parameters, as 
well as image quality. Finally, we examined the generaliz-
ability of our deep learning method in previously unseen 

datasets, and applied this method to reconstruct surfaces 
for brains with distortions caused by lesions.

2  Materials and methods
2.1  Datasets
Multiple datasets were employed in the current study. To 
train and validate the FastCSR model, we used publicly 
available T1w images of 808 subjects from the Consor-
tium for Reliability and Reproducibility (CoRR) and the 
Southwest University Adult Lifespan Dataset (SALD). 
Test–retest reliability was evaluated using a separate 
CoRR dataset collected in the Hangzhou Normal Uni-
versity (CoRR-HNU). To test the generalizability of our 
method in previously unseen datasets, we utilized data 
of 30 subjects from the Human Connectome Project 
Young Adult (HCP) dataset and 30 autistic patients from 
the Autism Brain Imaging Data Exchange II (ABIDE-II) 
dataset. Furthermore, we examined the performance of 
our method in a few patients whose brains were distorted 
due to cerebral stroke (i.e., Stroke dataset). These datasets 
are described in detail below and demographics, usages, 
sources, clinical states, and scanners are summarized in 
the Additional file 1: Table S1.

2.1.1  CoRR datasets
To train and validate our method, we used 11 datasets 
from CoRR, which included 331 healthy participants 
(ranging from 6 to 62 years of age). These datasets were 
collected on different 3  T scanners, including Siemens 
TrioTim (Siemens Healthcare), GE Signa HDxt, and 
GE Discovery MR750 (GE Healthcare System) at voxel 
resolutions varying from 0.9 to 1.3  mm. These data-
sets are listed in the Additional file 1: Table S1. Detailed 
descriptions of scanning protocols and demographics 
can be found in the previous report [30] and the website 
(https://fcon_1000.projects.nitrc.org/indi/CoRR/html/
index.html).

2.1.2  CoRR‑HNU dataset
To evaluate test–retest reliability, we used the CoRR-
HNU dataset which consists of 30 healthy adults, each 
of whom underwent 10 scanning sessions across a one-
month period [30]. Of note, the CoRR-HNU dataset was 
not part of the 11 CoRR datasets described above. The 
T1w images were acquired on a GE Discovery MR750 3 T 
scanner equipped with an 8-channel head coil using a 3D 
“spoiled-gradient-echo” (SPGR) sequence (TR = 8.06 ms, 
TE = min full, TI = 450  ms, flip angle = 8°, field of view 
(FOV) = 250 × 250, voxel size = 1 × 1 × 1  mm3). The study 
was approved by the Ethics Committee of the Center 
for Cognition and Brain Disorders at Hangzhou Normal 
University and written informed consent was obtained 
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from each participant before commencement of any 
experimental procedures.

2.1.3  SALD dataset
We used all 494 subjects from the SALD dataset (307 
women; 187 men; 19–80  years old). Participants’ T1w 
images were acquired on a Siemens TrioTim 3  T scan-
ner using a magnetization-prepared rapid gradient echo 
(MPRAGE) sequence (repetition time (TR) = 1.9 s, echo 
time (TE) = 2.52 ms, flip angle = 90°, voxel size = 1 × 1 × 1 
 mm3). This study was approved by the Research Ethics 
Committee of the Brain Imaging Center of Southwest 
University. Written informed consent was obtained from 
each participant prior to the start of the study.

2.1.4  HCP dataset
We randomly sampled 30 young healthy partici-
pants from HCP S900 release (15 females; 15 males; 
22–35  years old). Their T1w images were acquired 
with a Siemens Connectome Skyra 3  T scanner using 
a high-resolution MPRAGE sequence (TR = 2.4  s, 
TE = 2.14  ms, TI = 1  s, flip angle = 8°, FOV = 224 × 224, 
voxel size = 0.7 × 0.7 × 0.7  mm3). The local review board 
at Washington University in St. Louis approved all study 
procedures. Written informed consent was obtained 
from each participant before study enrollment.

2.1.5  ABIDE‑II dataset
The ABIDE-II project consists of 521 autistic patients 
from 19 different sites [31] (http://fcon_1000.projects.
nitrc.org/indi/abide/abide_II.html). We used stratified 
sampling to select 30 patients from the full dataset. The 
sampling data were acquired using a Philips Achieva 
1.5 T scanner and various other 3 T scanners, including 
the GE MR750, Siemens TriTim, Allegra, and Skyra scan-
ners, and a Philips Ingenia scanner. The spatial resolu-
tions of sampled data varied from 0.7 to 1.3  mm. Prior 
to data collection, all sites were required to confirm 
that their local Institutional Review Board (IRB) or eth-
ics committee have approved study procedures. Scan-
ning protocols and demographics of this dataset were 
described in a previous report published by [31].

2.1.6  Stroke dataset
We examined our FastCSR method on three stroke 
patients whose brains were distorted due to severe cer-
ebral hemorrhage. Their T1w images were acquired 
on a Philips Ingenia 3  T scanner (Philips Healthcare, 
Best) with a sagittal 3D T1w sequence (TR = 1000  ms, 
TE = 2.15  ms, flip angle = 8°, FOV = 256 × 256, voxel 
size = 1 × 1 × 1   mm3) at the China Rehabilitation 
Research Center, Beijing, China. Written informed con-
sent was obtained from each participant in accordance 

with guidelines and regulations previously approved by 
the Medical Ethics Committee of China Rehabilitation 
Research Center.

2.2  FastCSR pipeline
Our FastCSR pipeline for cortical surface reconstruction 
is summarized as follows (see Fig. 1): first, intensities of 
original T1w images are normalized to 0–255 and then 
z-scored. Second, the normalized images are fed to a 3D 
U-Net for segmentation and then white matter masks of 
both hemispheres are generated (Fig.  1a, b). The masks 
provide white matter priors separately for left and right 
hemispheres in the following level set regression. Third, 
the white matter masks and the normalized T1w images 
are fed to a 3D U-Net, which was adapted for regression 
to learn the level set representation (Fig.  1c). Finally, a 
topology-preserving surface extraction method is applied 
(Fig. 1d) to obtain the explicit surface mesh representa-
tions (Fig. 1e).

2.2.1  A uniform 3D U‑Net architecture for both segmentation 
and regression

To achieve accurate anatomical segmentation and level 
set regression from the 3D T1w images, we applied a 3D 
U-Net framework since this approach integrates features 
at different scales and captures both complex and fine-
grained surface boundaries, as well as global features. 
Here, we adopted a state-of-the-art 3D U-Net network 
architecture, using the no-new-U-Net (nnU-Net) frame-
work [32]. The nnU-Net was designed to efficiently per-
form automatic configuration for arbitrary new datasets 
and can achieve high performance for a variety of seg-
mentation tasks [32–34].

As shown in Fig. 1c, the nnU-Net architecture closely 
resembles the original U-Net [35] and its 3D counterpart 
[36] with a contracting path (the left arm) and an expan-
sive path (the right arm). In the contracting steps, each 
layer consists of a 3 × 3 × 3 convolution followed by a 
leaky rectified linear unit (LReLU), and then a 2 × 2 × 2 
max pooling with strides of two in each dimension for 
downsampling. In the expansive steps, each layer con-
sists of an up-convolution of 2 × 2 × 2 with strides of two 
in each dimension for upsampling, and then a 3 × 3 × 3 
convolution followed by a LReLU. The shortcut connec-
tions copy layers with equal resolution in the contract-
ing path and concatenate layers in the expansive path to 
add essential high-resolution features during upsampling 
processing.

For the segmentation of the hemispheric white mat-
ter masks, benefiting from the automatic configuration, 
we directly applied this framework without manual tun-
ing architectures or parameters. For the level set regres-
sion, we adapted the uniform 3D U-Net architecture and 
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modified the output layer and the loss function for the 
regression task. Specifically, we replaced the output layer 
from a softmax layer to a convolutional layer and used 
the mean squared error (MSE) instead of cross-entropy 
as the loss function. Moreover, to avoid loss of precision 
in the regression task, we turned off data enhancement 
parameters, such as scaling, rotation, and flipping. In 
sum, the 3D U-Net architecture consisted of 116 layers, 
including 30,785,248 trainable parameters.

2.2.2  Surface extraction and optimization
To efficiently extract surface meshes from the implicit 
surface representation, we used a fast volumetric topol-
ogy correction method and a topology-preserving 
surface extraction method, packaged in the Nighres 
toolbox [29]. The volumetric topology correction 
method leveraged an efficient propagation algorithm 
using all available information from level set repre-
sentation [37] and a topology-preserving geometric 
deformable surface model to extract the surface mesh 
from the level set [38]. A surface optimization method 

from FreeSurfer (see command mris_make_surfaces) 
could be optionally added to further improve the sur-
face reconstruction accuracy.

2.3  Model training
2.3.1  Training data and labels
For model training, we used stratified sampling to 
select 80% of subjects (n = 646) from the CoRR and the 
SALD datasets. The remaining subjects (n = 162) com-
prised the validation dataset. All training data were 
processed using FreeSurfer v6.0 release [7, 39] (http:// 
surfer. nmr. mgh. harva rd. edu/). To train the segmen-
tation model, we generated white matter mask labels 
based on the anatomical segmentation from FreeSurfer. 
To train the level set representation learning model, we 
obtained the training labels of level set representations 
by estimating the voxel-wise distance from the surfaces 
reconstructed by FreeSurfer, using the FreeSurfer com-
mand mris_volmask. Throughout the transformation, 
the explicit surfaces were embedded in the implicit sur-
face representations.

Fig. 1 Schematic of the fast cortical surface reconstruction (FastCSR) workflow. The FastCSR workflow can be summarized in four steps: a original 
T1w images are normalized and fed to a 3D U-Net for segmentation of white matter from gray matter. b After segmentation, hemispheric white 
matter masks are generated, distinguishing the two hemispheres in the T1w images. c The hemispheric masks and the original T1w images are 
fed to another 3D U-Net to predict the level set representation of the cortical surface. Level set is an implicit representation of the cortical surface. 
The U-shaped network architecture can be briefly described as follows: each blue arrow represents a 3 × 3 × 3 convolution process followed by 
a leaky rectified linear unit (LReLU). Each orange downward arrow indicates a 2 × 2 × 2 max pooling. Each red upward arrow indicates a 2 × 2 × 2 
upsampling followed by a convolution (Up-Conv). The long-range skip connections using the copy-and-concatenate (Copy & Concat) operation 
are indicated by green arrows. d The level set representations of the surfaces are generated by the deep learning model. The voxels whose 
level set value equals to zero delineate the boundary of the cortical surface. Negative voxels indicated by dark colors are below the surface and 
positive voxels indicated by light colors are above the surface. The red box shows the level set representation in the left frontal cortex magnified 
to better visualize the details in the surface boundary. e An explicit surface mesh is reconstructed from the level set representation through a fast 
topology-preserving isosurface extraction algorithm. The resulting surface is visualized using a dorsal orientation

http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/
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2.3.2  Network implementation
The network model was implemented in Python 3.8.8 
using PyTorch framework 1.6.0 [40]. The model was 
trained using an Adam optimizer [41] with a batch 
size of 2, a patch size of 128 × 160 × 112, and an initial 
learning rate of 0.001 that decreased by  10–6 for each 
epoch. The maximal number of training epochs was set 
to 1000 and training was terminated once the loss func-
tion converged in 50 consecutive epochs. We trained 
the model in a hardware environment that consisted 
of an Intel Xeon Platinum 8259CL CPU and a Nvidia 
Tesla T4 GPU with 16  GB RAM. The training time of 
the model was 127.2 h.

2.4  Model evaluations
We compared our FastCSR method with the “recon-all” 
pipeline from the FreeSurfer v6.0 release (https:// surfer. 
nmr. mgh. harva rd. edu) and the “recon-surf ” pipeline 
from the FastSurfer (https:// github. com/ Deep- MI/ 
FastS urfer). To evaluate the performance of these dif-
ferent methods compared to our FastCSR pipeline, we 
examined the processing time, mesh quality and sur-
face displacement. Moreover, we evaluated the gener-
alizability of methods in unseen datasets by examining 
anatomical cortical parcellations, morphometrics (i.e., 
cortical thickness, sulcal depth), and gray–white con-
trast. Finally, we evaluated the test–retest reliability of 
the aforementioned morphometrics and anatomical 
parcellations in a multi-session dataset.

2.4.1  Processing time
The processing time was estimated in the aforemen-
tioned hardware environment. We assessed processing 
time of both sequential and parallel processing pipe-
lines. The parallel processing indicates parallelization 
of two hemispheres. For both sequential and parallel 
processing, we assessed processing time for the sur-
face reconstruction step and for the whole pipeline. For 
the surface reconstruction step, the inputs contained 
the preprocessed T1w images and necessary files and 
the outputs were explicit mesh representations. The 
whole pipeline consisted of the necessary preprocessing 
steps and the surface reconstruction step. The process-
ing time was averaged across subjects. The coefficient 
of variation in the processing time  (CVPT) was defined 
as ratio of the standard deviations in processing time 
across subjects and the mean processing time across 
subjects. Lower CV value represented greater stability 
and certainty in processing time.

2.4.2  Mesh quality
The mesh quality was calculated by taking the average 
of triangle qualities across all triangles in the cortical 
meshes. The triangle quality was estimated by

 where A is the area of a triangle and ei are the edges of 
the triangle [42]. A Q value equivalent to 1 represents an 
equilateral triangle with high mesh quality, whereas a Q 
of zero represents a degenerated triangle, indicating low 
mesh quality.

2.4.3  Surface displacement
Surface displacement was estimated for each of the three 
different methods (i.e., FastCSR, FastSurfer or Free-
Surfer) by calculating the distance between the surface 
reconstructed at each vertex [24]. A smaller displacement 
indicated greater similarity between the two surfaces. We 
projected the vertex-wise displacement map to a com-
mon FreeSurfer surface space (i.e., fsaverage6) and aver-
aged the vertex-wise displacement values across subjects 
in the validation set [43].

2.4.4  Morphometrics
We also evaluated two commonly used morphomet-
rics, cortical thickness and sulcal depth. Cortical thick-
ness measures the thickness of the cortical gray matter 
and was estimated by calculating the shortest distance 
between white matter and pial surfaces at each vertex 
[4, 44]. Sulcal depth measures how far a vertex is from 
a hypothetical ‘midsurface’ point between the gyrus and 
sulcus [6]. A positive value indicated sulcus and a nega-
tive value indicated gyrus [45].

2.4.5  Dice coefficients of anatomical cortical parcellations
In the reconstructed surfaces, 34 anatomical regions of 
interest (ROIs) were automatically identified according 
to cortical neuroanatomical features using FreeSurfer 
[46, 47]. Spatial similarity of anatomical ROIs derived 
from FreeSurfer and FastCSR were compared using Dice 
coefficient.

2.5  Test–retest reliability
For the aforementioned morphometrics, instability was 
estimated as the standard deviations obtained from the 
vertex-wise morphometrics across 10 repeated scans of 
each subject. For the anatomical parcellation, instabil-
ity was estimated as the standard deviations in the Dice 
coefficients of anatomical ROIs between the session-level 
parcellation and the session-averaged parcellation across 

Q =
4
√
3A

e2
1
+ e2

2
+ e2

3

,

https://surfer.nmr.mgh.harvard.edu
https://surfer.nmr.mgh.harvard.edu
https://github.com/Deep-MI/FastSurfer
https://github.com/Deep-MI/FastSurfer


Page 6 of 16Ren et al. Brain Informatics             (2022) 9:6 

the 10 scan sessions for each subject. The instability val-
ues were averaged across all 30 subjects. Lower instability 
was indicative of higher test–retest reliability in the sur-
face reconstruction.

2.6  Statistical analyses
To test whether the surface displacements between 
FastCSR and FreeSurfer were different from displacement 
between FastSurfer and FreeSurfer, we used the two-sam-
ple Kolmogorov–Smirnov test between the two distribu-
tions. Similarly, distribution differences for instability of 
morphometrics and anatomical parcellations between 
FastCSR and FreeSurfer were also compared using two-
sample Kolmogorov–Smirnov tests. Two-tailed paired 
samples t-tests were applied to compare the mesh quality 
between FreeCSR and FreeSurfer as well as to compare 
the resulting morphometrics and anatomical parcella-
tions obtained from the FastCSR versus FreeSurfer pipe-
lines. For all statistical tests, multiple comparisons were 
corrected using false discovery rate (FDR).

3  Results
3.1  FastCSR efficiently reconstructs brain surfaces
To compare the computational efficiency of FreeSurfer, 
FastSurfer, and FastCSR, we employed these three 

methods to reconstruct brain surfaces using T1w images 
with 1.0-mm isotropic resolution in the validation data-
set (n = 162). Processing times for each method were 
evaluated in the same hardware environment (Fig.  2). 
The sequential FreeSurfer and FastSurfer pipelines took 
45.06 ± 63.86  min (mean ± std.) and 33.64 ± 16.42  min 
to complete the surface reconstruction step (surface 
recon), respectively, while our FastCSR model accom-
plished this task in 5.22 ± 0.92  min. Since our FastCSR 
method can process both hemispheres in parallel, the 
FastCSR pipeline further reduced the processing time to 
2.61 ± 0.46  min. The stability of processing time across 
methods was evaluated by  CVPT. The  CVPT of FreeSurfer, 
FastSurfer, and FastCSR were 1.42, 0.49, and 0.17, respec-
tively. The higher  CVPT obtained with FreeSurfer and 
FastSurfer pipelines indicated greater variability in pro-
cessing times resulting from differing numbers of initial 
topology defects encountered. In contrast, the processing 
time of FastCSR was highly stable and could be reliably 
estimated.

Computational time for the whole pipeline, which 
included multiple preprocessing steps in addition to the 
surface reconstruction step, was also examined. Our 
parallel FastCSR method completed the whole pipeline 
in 4.44 ± 0.46  min, approximately 47 times faster than 

Fig. 2 Processing time of FastCSR, FreeSurfer and FastSurfer. The bar graphs illustrate differences in the average processing time for the validation 
dataset using FreeSurfer, FastSurfer and FastCSR. We compared the processing times for the surface reconstruction step alone (surface recon) and 
the whole pipeline including all necessary preprocessing steps for surface reconstruction using either sequential or parallel processing, the latter 
of which processes both hemispheres simultaneously. Among the three methods, FastCSR achieved the highest computational efficiency for 
the surface reconstruction step (5.22 ± 0.92 min and 2.61 ± 0.46 min for sequential and parallel processing, respectively), as well as for the whole 
pipeline (7.05 ± 0.92 min and 4.44 ± 0.46 min for sequential and parallel processing, respectively). Error bars indicate standard deviations
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FreeSurfer (207.19 ± 62.22 min) and about 7 times faster 
than the parallel FastSurfer method (29.59 ± 9.08 min).

Furthermore, we evaluated the extent to which process-
ing time is influenced by the spatial resolution of the T1w 
images. We recorded processing times for the surface 
reconstruction step using FreeSurfer and our FastCSR 
method with high-resolution T1w images (0.7-mm iso-
tropic) obtained from the HCP dataset. FreeSurfer took 
almost 17 times longer to process the high-resolution 
0.7-mm isotropic T1w images (507.32 ± 470.62  min) 
compared to the lower resolution T1w 1.0-mm isotropic 
images (30.26 ± 59.15  min). In contrast to FreeSurfer, 
our FastCSR approach took about 1.5 times longer to 
process the higher resolution 0.7-mm isotropic images 
(3.93 ± 0.06  min) relative to the lower resolution 1.0-
mm isotropic images (2.61 ± 0.46  min), indicating that 
FastCSR is particularly well-suited for processing sub-
millimeter-resolution images in a temporally efficient 
manner.

3.2  FastCSR reconstructs brain surfaces with high mesh 
quality

Given that FreeSurfer is the most widely used pipeline 
for brain surface reconstruction, we compared the sur-
faces reconstructed by FastCSR and FreeSurfer. Geo-
metrical patterns of surfaces reconstructed by these two 
pipelines were highly similar (see Fig. 3a for results of a 
randomly selected subject). Likewise, the surface bound-
aries from these two pipelines also showed high degree 
of overlap (see Fig.  3b for a randomly selected subject). 
To quantitatively assess the similarity of surfaces derived 
from different pipelines, we measured the average dis-
placement between FastCSR and FreeSurfer surface 
across participants in the validation dataset. As a refer-
ence, we also compared the displacement between Fast-
Surfer and FreeSurfer results (Fig.  4). The displacement 
between FastCSR and FreeSurfer results was mainly 
observed near the orbitofrontal cortex (OFC), calcarine 
fissure, and pre- and post-central gyri. However, the aver-
age displacement was diminutive in comparison, and the 
maximum displacement was less than 0.5 mm, which is 
about half of the voxel size (Fig.  4a). The displacement 
between FastSurfer and FreeSurfer showed a similar pat-
tern (Spearman’s ρ = 0.71, p < 0.001; Fig. 4b), whereas the 
displacement of FastSurfer was significantly greater than 
that obtained using the FastCSR mainly in lateral gyri and 
visual cortices (Fig. 4c; two-tailed paired t-tests, p < 0.01, 
FDR corrected).

To compare the quality of cortical surface meshes 
obtained using the three different pipelines, we estimated 
the Q value of each mesh triangle, which indicates the 
uniformity of the triangle [26]. In the validation data-
set, surfaces reconstructed by FastCSR showed high Q 

values (QFastCSR = 0.903 ± 0.002, mean ± std.), indicating 
good mesh quality with triangles close to equilateral. Sur-
faces reconstructed by FreeSurfer showed slightly lower 
mesh quality (Fig. 5; QFreeSurfer = 0.899 ± 0.003; two-tailed 
paired t-test, t(161) = 122.01, p = 1.46 ×  10–160).

3.3  FastCSR has good generalizability in previously 
unseen data

Given that FastCSR is based on deep machine learn-
ing, which inherently relies on a training dataset, an 
important question is whether the trained model can be 
generalized to unseen datasets with different sample dis-
tributions from the training set. To examine the general-
izability of FastCSR, we employed the ABIDE-II dataset 
which consists of 30 autism spectrum disorder (ASD) 
patients [31] and the HCP dataset which consists of 30 
healthy participants [48]. The ABIDE-II dataset was col-
lected from 19 different centers utilizing different MR 
platforms (GE, Siemens, and Philips), spatial resolutions 
(from 0.7 to 1.3 mm), and magnetic field strengths (1.5 T 
and 3.0  T). The spatial resolution of T1w images of the 
HCP dataset is 0.7  mm isotropic, which is higher than 
the resolutions of our training data (1.0  mm isotropic). 
In these two test datasets, we first reconstructed the sur-
faces using the FreeSurfer pipeline as a reference, which 
does not rely on training.

In the first test, we compared cortical thickness and 
sulcal depth derived from FastCSR with those derived 
from the FreeSurfer pipeline. We observed high concord-
ance between results obtained from these two different 
pipelines (Fig.  6). Specifically, for the ABIDE-II dataset, 
0.07% of the vertices differed significantly with respect to 
cortical thickness (two-tailed paired t-tests, p < 0.01, FDR 
corrected) and 2.44% of the vertices differed significantly 
in sulcal depth (two-tailed paired t-tests, p < 0.01, FDR 
corrected). These differences were mainly observed in 
the insula, the precentral gyrus, and the OFC. Similarly, 
for the HCP dataset, 2.16% of the vertices differed sig-
nificantly in cortical thickness (two-tailed paired t-tests, 
p < 0.01, FDR corrected) and 5.87% of the vertices were 
significantly different in regard to sulcal depth (two-
tailed paired t-tests, p < 0.01, FDR corrected).

In the second test, we assessed the anatomical par-
cellations in the unseen datasets. We employed the 
FreeSurfer automatic parcellation approach and seg-
mented brain surfaces reconstructed by FastCSR into 
34 anatomical regions. Similarity of anatomical par-
cellations derived from FastCSR and FreeSurfer pipe-
lines was measured using the Dice coefficient. For the 
ABIDE-II dataset, the Dice coefficients ranged from 
0.843 to 0.988. Moreover, 95.59% of parcels showed 
a Dice coefficient greater than 0.90 (Fig.  7, Addi-
tional file 1: Table S2), indicating high concordance in 
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anatomical parcellations between these two pipelines. 
For the HCP dataset, the Dice coefficients range from 
0.781 to 0.990. Similarly, 94.12% of parcels showed a 
Dice coefficient greater than 0.90 (Fig.  7, Additional 
file  1: Table  S2). Taken together, these tests indicate 
that FastCSR can be generalized to unseen datasets, 
producing results comparable to that obtained with 
FreeSurfer, a pipeline that does not rely on training 
data.

3.4  FastCSR showed high intra‑subject test–retest 
reliability

To assess the intra-subject test–retest reliability of results 
derived from FastCSR, we compared cortical thickness, 
sulcal depth and anatomical parcellation across differ-
ent T1w scans of the same individual. We employed the 
CoRR-HNU dataset, in which each subject underwent 
10 T1w scan sessions. Results derived from our FastCSR 
pipeline showed statistically greater test–retest reliability 

Fig. 3 Surfaces reconstructed by FastCSR are comparable to results from FreeSurfer. a The cortical surfaces from a randomly selected healthy 
participant reconstructed using the FreeSurfer (the upper panel) and the FastCSR (the lower panel) pipelines. The surfaces generated by different 
methods show high similarity with small discrepancies that are highlighted by orange dashed boxes. b Horizontal slices at multiple levels taken 
from the participant’s T1w image showing the cortical surface identified using FreeSurfer (yellow lines) and FastCSR (red lines) show that both 
methods accurately capture the boundary between white and gray matter. The surfaces derived from these two methods showed a high degree of 
overlap in most of cortical areas, indicating high concordance between these two methods. Small discrepancies are highlighted by orange dashed 
boxes
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than that obtained from the FreeSurfer pipeline, includ-
ing greater stability in cortical thickness (two-sample 
Kolmogorov–Smirnov test, p = 1.13 ×  10–7), sulcal depth 
(two-sample Kolmogorov–Smirnov test, p = 9.70 ×  10–3), 
and anatomical parcellation measures (two-sample Kol-
mogorov–Smirnov test, p = 1.04 ×  10–37) (Fig. 8).

3.5  FastCSR is robust for images of lower quality 
or with distortions

To test the robustness of FastCSR, we qualitatively 
checked the performance of the pipeline using a few sub-
jects with lower data quality or with distortions. In a few 
individuals from the CoRR-HNU dataset that showed 
lower data quality, FreeSurfer produced jagged sur-
face reconstructions near the pre- and post-central gyri, 
whereas FastCSR reconstructed these anomalous regions 
with smoother surfaces (see Fig. 9a for some examples), 
indicating that FastCSR might be more robust against 
poor image quality due to distortions.

Reconstructing surfaces for brains with distortions 
is challenging but critical when studying patients with 
stroke, trauma, or tumors [49–51]. While we trained 
the FastCSR model using normal healthy brains, we 
also tested the pipeline using three patients with obvi-
ous stroke lesions. Intriguingly, FastCSR successfully 
reconstructed their cortical surfaces while the FreeSurfer 
pipeline failed in all instances (Fig. 9b). Surface bounda-
ries reconstructed by FastCSR depicted cortical folding 
details, as well as the geomorphological structure of the 
lesioned brain areas, suggesting that our FastCSR pipe-
line is relatively robust to images that contain distortions 

and performs superiorly to the FreeSurfer pipeline in 
patients with stroke-induced infarcts.

4  Discussion
Here, we introduced a novel method for fast cortical 
surface reconstruction based on the 3D U-Net network 
architecture and the level set representation. Our results 
demonstrated that this method can efficiently reconstruct 
the cortical surface within five minutes, which is approxi-
mately 47 times faster than FreeSurfer and 7 times faster 
than FastSurfer. Brain surfaces reconstructed by our 
method showed comparable mesh quality with surfaces 
reconstructed using the FreeSurfer pipeline. As a method 
based on machine learning, our approach exhibited good 
generalizability in previously unseen datasets and showed 
high test–retest reliability. Finally, our method was robust 
to images of poor quality or with distortions. A fast, reli-
able method for cortical surface reconstruction has great 
potential in brain imaging research, as well as has impor-
tant implications for clinical applications requiring fast 
and accurate surface renderings.

4.1  FastCSR achieves high processing efficiency, mesh 
quality, and reliability

Our FastCSR approach aims to accelerate the automati-
zation of CSR processing, while simultaneously remain-
ing sensitive enough to capture fine-grained features of 
sulci and gyri and robustness in atypical cases wherein 
T1w images of individuals’ brains may be distorted due 
to lesions induced by cerebral infarct, and that often 
fail to be reconstructed by FreeSurfer. FreeSurfer is 

Fig. 4 Differences in surfaces reconstructed by FastCSR, FreeSurfer and FastSurfer. a To quantitatively assess the surface agreement, we measured 
the average surface displacement between FastCSR and FreeSurfer across participants in the validation set. The maximal displacement between 
FreeSurfer and FastCSR was smaller than 0.5 mm, which is approximately half of the voxel size. b The average surface displacement between 
FastSurfer and FreeSurfer was also measured. The average surface displacement map showed a similar pattern with that observed from using the 
FastCSR method (Spearman’s ρ = 0.714, p < 0.0001). c The direct comparison of displacement maps between the FastCSR vs. FreeSurfer contrast and 
the FastSurfer vs. FreeSurfer contrast was performed. Results showed that the FastCSR approach achieved overall better performance. Lateral gyri 
and visual cortices showed significantly smaller displacement in the FastCSR versus FreeSurfer method than FastSurfer versus FreeSurfer (two-tailed 
paired t-tests, p < 0.01, FDR corrected)
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one of the most widely used pipelines with more than 
a 20-year history of processing individual anatomical 
images, including segmentation and automatic CSR [7]. 
Due to FreeSurfer’s high accuracy for performing CSR 
in typical brains, this approach has become the pre-
dominant method employed for reconstructing cortical 
surfaces with open-access datasets, such as the HCP, 
and other popular fMRI preprocessing pipelines, such 
as fMRIprep [17, 52]. However, despite its popularity, 
the low processing efficiency is the core bottleneck of 
FreeSurfer. To improve processing efficiency while 
simultaneously maintaining high accuracy, we trained 
a supervised learning model using level set represen-
tations of cortical surfaces reconstructed from Free-
Surfer as the training labels. We elected to employ a 
supervised deep machine learning approach, given the 
high performance achieved in processing efficiency 
and accuracy when using this method, as well as its 

robustness in atypical cases wherein the brain is dis-
torted due to trauma or injury.

Our FastCSR method significantly reduced the process-
ing time compared to FreeSurfer while simultaneously 
preserving quality and reliability of the surface render-
ings, which may be explained by some advantages of the 
deep learning framework. First, surface-based topol-
ogy correction within FreeSurfer represents a bottle-
neck from a computational perspective. This is because 
the processing time for this step is dependent upon the 
number of defective vertices on the original cortical sur-
face, and because solution space grows exponentially as 
the number of defective vertices increases [53]. Although 
a genetic algorithm proposed by FreeSurfer accelerates 
the search for optimal solutions, the topology correc-
tion usually takes around 30  min depending on image 
quality. In contrast, FastCSR leverages the level set rep-
resentation and the corresponding topology-preserving 
surface reconstruction to generate a cortical surface, sig-
nificantly reducing computational costs [29, 54]. Second, 
to successfully and reliably reconstruct cortical surface, 
FreeSurfer and FastSurfer both require multiple pre-
processing stages, including field uniformity normaliza-
tion, nonlinear intensity normalization, skull stripping, 
and anatomical segmentation, that typically take hours 
to complete. In comparison, FastCSR only requires some 
very basic preprocessing steps such as including intensity 
normalization and white matter mask segmentation that 
can be finished within minutes.

Cortical surfaces reconstructed by FastCSR are compa-
rable to results derived from FreeSurfer, as indicated by 
the surface displacement findings (Fig.  4) and quantita-
tive measures of cortical morphometrics, such as cortical 
thickness, sulcal depth (Fig.  6) and anatomical parcella-
tion (Fig. 7). Interestingly, FastCSR demonstrates higher 
test–retest reliability in morphometrics and anatomical 
parcellation across repeated scans of the same individu-
als compared to the FreeSurfer pipeline (Fig. 8). This sug-
gests that the deep leaning model is able to learn some 
stable features from the training set that are collected 
from various sites with diverse noise distributions. Addi-
tionally, the data augmentation strategies used in the 
model training enriched the data diversity. In contrast, a 
traditional algorithm with little a priori knowledge about 
the population might be more vulnerable to image arti-
facts and produce less reliable results.

4.2  Generalizability to unseen data
Compared with traditional computer vision algorithms, 
a common limitation of deep learning approaches is 
the uncertain generalizability to data outside the train-
ing dataset [26, 55]. To address this, we diversified our 
training set by incorporating various datasets that were 

Fig. 5 Surfaces reconstructed by FastCSR and FreeSurfer show 
comparable mesh quality. To assess the mesh quality of the 
FastCSR surface, we estimated the mesh quality in terms of Q 
value in the validation set. The Q values of FastCSR (blue dots) 
and FreeSurfer (purple dots) are illustrated using swarm plots, 
with the means of each distribution depicted by boxplots with 
boxes marks the high and low quartiles and whiskers indicating 
the minimum and maximum values. The Q values obtained with 
FastCSR (QFastCSR = 0.903 ± 0.002) are significantly higher than those 
of FreeSurfer (QFreeSurfer = 0.886 ± 0.003; two-tailed paired t-test, 
t(161) = 122.008, p = 1.462 ×  10–160), indicating greater mesh quality 
achieved with our approach
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Fig. 6 Surface morphometries measured in unseen datasets. To examine if FastCSR is generalizable to unseen datasets, we applied this method to 
the previously unseen ABIDE-II dataset with T1w images at 1.0-mm resolution and the HCP dataset with 0.7-mm resolution images. These data were 
also processed using the FreeSurfer pipeline. Cortical thickness and sulcal depth were estimated. a The average cortical thickness maps obtained 
from FreeSurfer (left) versus FastCSR (right) in the ABIDE-II dataset are similar, with only 0.07% of the vertices demonstrating significant difference 
(two-tailed paired t-tests, p < 0.01, FDR corrected). b For the HCP dataset, the average cortical thickness maps derived from FreeSurfer and FastCSR 
are also similar, with only 2.16% of the vertices showing significant difference (two-tailed paired t-tests, p < 0.01, i.e., −  log10(p) > 2.0, FDR corrected). 
c The positive values in the sulcal depth maps indicate sulci (warm colors) and negative values indicate gyri (cool colors). For the ABIDE-II dataset, 
2.44% of the vertices showed significant differences between the FreeSurfer and FastCSR method. Differences were mainly distributed in the insular 
cortices, the precentral gyrus, and the medial orbitofrontal cortices. d For the HCP dataset, 5.87% of the vertices showed significant difference in 
sulcal depth between FreeSurfer and FastCSR

Fig. 7 Anatomical parcellation in the ASD and HCP datasets. We assessed the similarity in anatomical cortical parcellation, measured by the Dice 
coefficient, for each cortical region obtained with FastCSR compared to FreeSurfer in both the ABIDE-II (left) and HCP (right) datasets. The Dice 
coefficients for most cortical areas (77.94% in ABIDE and 76.47% in HCP) are above 95%. Cortical areas with Dice coefficients smaller than 90% 
included the entorhinal region and the left rostral anterior cingulate cortex in both datasets, and the in the HCP dataset, additionally included the 
left parahippocampal area
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acquired by different scanners and that differed in data 
quality and demographic distributions. Moreover, we lev-
eraged a sliding-window strategy to split input images to 
multiple subunits [32, 56]. This strategy allows our model 
to flexibly receive input images with different sizes, 
capture local contextures more precisely, and reduce 
the model size [56]. We tested our FastCSR pipeline in 
unseen datasets with differing demographical distribu-
tions and scanning protocols. Our method showed good 
generalizability in these new datasets. Moreover, while 
our training set only included healthy participants, the 
model can reconstruct cortical surfaces for patients with 
brain disorders (i.e., the ABIDE-II dataset) or with rela-
tively large anatomical lesions (i.e., the Stroke dataset). 

Importantly, FastCSR can reconstruct high-resolution 
images with very little extra cost in processing time com-
pared to images of lower resolution. The capability and 
efficiency of our method for reconstructing high-resolu-
tion images will be appreciated as more and more studies 
utilize ultra-high field (7 T) MRI [57–59].

4.3  Research and clinical implications
Our fast, robust pipeline for cortical surface reconstruc-
tion will benefit both neuroscience studies and clinical 
applications. First, FastCSR may facilitate various sur-
face-based multimodal neuroimaging analyses including 
data derived from MEG, EEG, anatomical and functional 
MRI [17–19, 60–62]. While surface-based analyses may 

Fig. 8 Surface morphometries and anatomical parcellation from FastCSR showed high intra-subject test–retest reliability. To examine the reliability 
of our FastCSR method, we measured the instability of surface morphometries and anatomical parcellation in a dataset consisting of 30 participants 
with 10 repeated scans for each participant. A The instability of morphometrics and parcellations was estimated by the standard deviation across 
the 10 sessions in each vertex for each participant. The lower instability, indicated by red color, suggests higher test–retest reliability. The average 
instability map across 30 individuals showed similar distributions for both the FreeSurfer (the upper panel) and FastCSR (the lower panel) methods. 
However, the FastCSR show lower instability for cortical thickness, sulcal depth, and parcellation than FreeSurfer. B Histograms illustrate the 
distribution of measurements obtained from FastCSR (blue bars) and FreeSurfer (purple bars). FastCSR shows lower instability relative to FreeSurfer 
in measures of cortical thickness (two-sample Kolmogorov–Smirnov test, p = 1.130 ×  10–7), sulcal depth (two-sample Kolmogorov–Smirnov test, 
p = 9.700 ×  10–3), and anatomical parcellation (two-sample Kolmogorov–Smirnov test, p = 1.037 ×  10–37)



Page 13 of 16Ren et al. Brain Informatics             (2022) 9:6  

generate more precise spatial localization than traditional 
volume-based analyses [9], this analytical technique takes 
much time. For example, the first step of a widely used 
fMRI preprocessing pipeline, fMRIprep, is reconstruct-
ing cortical surfaces using FreeSurfer [17]. Combined 
with other time-consuming steps, preprocessing a single 

subject using fMRIprep takes several hours depending 
on the data quality and size, which limits its application 
in large-scale datasets. As more and more large-scale 
imaging studies are being conducted [10, 63, 64], com-
putational resource costs have become an important 
consideration in data analyses. FastCSR can dramatically 

Fig. 9 FastCSR is robust against image quality and brain distortions. a Cortical surfaces of two individuals with poor imaging quality from the 
CoRR-HNU dataset are reconstructed by FreeSurfer and FastCSR. White arrows highlight the jagged gyri caused by noise in the image (see upper 
panel) using the FreeSurfer pipeline. Surfaces obtained from the same individuals are reconstructed using our FastCSR method (see lower panel) 
and yielded cortical surfaces with smoother gyri. b FreeSurfer failed to reconstruct brain surfaces for three stroke patients whose brains are distorted 
due to lesions, whereas our FastCSR successfully reconstructed the cortical surfaces in these patients. The anatomical boundaries demarcating 
white matter and pial boundaries (yellow lines) overlaid onto horizontal sections of the T1w images with white arrows indicating the stroke lesions 
(upper panel). The corresponding cortical surfaces of the lesional hemispheres are displayed (lower panel). The white arrows indicate the stroke 
lesions
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reduce the computational costs and accelerate analyses of 
data obtained from large-scale imaging studies while pre-
serving data quality.

Importantly, FastCSR showed robustness to images 
with distortions, enabling surface-based analyses in 
many patients, such as those with trauma, stroke, or sur-
gical resections, the most of which normally fail during 
the FreeSurfer cortical reconstruction step and require 
manual correction [49, 50]. The failures in FreeSurfer 
reconstruction in challenging cases exemplified by our 
stroke dataset may result from the relatively weak per-
formance demonstrated by loss functions in the unsuper-
vised learning algorithm. Given loss functions are highly 
dependent on a priori knowledge learned from datasets 
with typical brain morphometry and therefore, are par-
ticularly sensitive to abnormal image distributions. How-
ever, in the case of compromised images, this results in 
bad fitting in the original surface reconstruction and 
the generation of numerous topological surface defects. 
Moreover, the number of topological defects is often 
too large to correct within an acceptable time frame. 
Based on 3D U-Net architecture, our FastCSR approach 
extracts image features from local and global scales using 
overlapping convolutional kernels. During feature extrac-
tion, the local compromised features from brain lesions 
are subsequently smoothed. Thus, our FastCSR approach 
is capable of reconstructing cortical surfaces from dis-
torted brains in a temporally efficient manner while 
simultaneously preserving surface topology. This method 
may facilitate future clinical applications that require fast 
and accurate surface processing and renderings, such as 
that required during intraoperative neuronavigation for 
tumor biopsy and resection.

4.4  Limitations
The accuracy of FastCSR is dependent on the accuracy 
of labels in the training set. In this work, we directly 
employed the level set representations generated from 
FreeSurfer surfaces as labels to train our model. Hence, 
our network inevitably learned the systematic errors 
from FreeSurfer surfaces that were automatically recon-
structed without manual correction. For example, in 
both the OFC and insular cortex, wherein image noise 
commonly affects local data quality, both FreeSurfer 
and FastCSR showed relatively low reliability. To further 
improve the accuracy of FastCSR in the future, a larger 
training dataset with manually corrected surfaces will be 
needed.
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