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Fast Cost-Volume Filtering for Visual
Correspondence and Beyond

A. Hosni, C. Rhemann, M. Bleyer, C. Rother, and M. Gelautz

Abstract—Many computer vision tasks can be formulated as labeling problems. The desired solution is often a spatially smooth

labeling where label transitions are aligned with color edges of the input image. We show that such solutions can be efficiently

achieved by smoothing the label costs with a very fast edge-preserving filter. In this paper we propose a generic and simple

framework comprising three steps: (i) Constructing a cost volume; (ii) Fast cost volume filtering; and (iii) Winner-Takes-All label

selection. Our main contribution is to show that with such a simple framework state-of-the-art results can be achieved for several

computer vision applications. In particular, we achieve (i) disparity maps in real-time, whose quality exceeds those of all other

fast (local) approaches on the Middlebury stereo benchmark, and (ii) optical flow fields which contain very fine structures as well

as large displacements. To demonstrate robustness, the few parameters of our framework are set to nearly identical values for

both applications. Also, competitive results for interactive image segmentation are presented. With this work, we hope to inspire

other researchers to leverage this framework to other application areas.

Index Terms—Stereo matching, Optical flow, Interactive image segmentation.

✦

1 INTRODUCTION

D ISCRETE label-based approaches have been suc-
cessfully applied to many computer vision prob-

lems such as stereo, optical flow, interactive image
segmentation or object recognition. In a typical label-
ing approach, the input data is used to construct a
three-dimensional cost volume, which stores the costs
for choosing a label l (e.g. disparities in stereo) at
image coordinates x and y. For stereo, these costs are
given by pixel-wise correlation (e.g. absolute differ-
ences of the intensities) between corresponding pixels.

Then the goal is to find a solution which (i) obeys
the label costs, (ii) is spatially smooth; and (iii) label
changes are aligned with edges in the image. To this
end, a popular approach is to utilize a Conditional
(Markov) Random Field model (CRF). This means
that an energy function is formulated, where the label
costs are encoded in a data term and the spatially
smooth edge-aligned solution is enforced by an e.g.
pairwise smoothness term. This cost function can
then be minimized using global energy minimization
approaches such as graph cut or belief propagation.
A drawback is that such global methods are often rel-
atively slow and do not scale well to high-resolution
images or large label spaces. Fast approximations (e.g.
[1]) usually come at the price of loss in quality, due
to less-global optimization schema.
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Continuous counterparts to discrete labeling meth-
ods are based on convex energy functions which can
be efficiently optimized on the GPU, e.g. [2], [3], [4].
A drawback is that many of these approaches have
a restricted form of the data and smoothness term.
For instance, the brightness constancy assumption in
optical flow is usually linearized and thus only valid
for small displacements. To overcome this problem,
a coarse-to-fine framework is commonly used which,
however, cannot handle objects whose scale is much
smaller than their motion. Another problem is posed
by the convexity of the smoothness term, which might
over-smooth the solution. This may be the reason
why convex models have not reported state-of-the-art
stereo results yet.

An interesting alternative to an energy-based ap-
proach is to apply local filtering techniques. The
filtering operation achieves a form of spatially-local
smoothing of the label space, in contrast to a potential
spatially-global smoothing of a CRF. Despite this con-
ceptual drawback, an observation of our work, and
previous work [5], is that “local smoothing” is able to
achieve high-quality results. We believe that one of the
reasons may be the dominance of the (pixel-wise) data
term with respect to the smoothness term.1 An impor-
tant observation is that the data term will play an even
more dominant role in the future, since both video
and still-picture cameras are consistently growing in
terms of frame-resolution and also dynamic range.

1. As part of future work, it may be possible to show that
for some applications the smoothness term of a learned energy
propagates information only in a small neighborhood. Note that
for some applications global constraints exist such as the occlusion
constraint in stereo matching and optical flow. In our approach we
model the occlusion constraint with a fast additional operation.
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Note, a detailed comparison between energy-based
and filtering-based methods is beyond the scope of
this paper, and we will only briefly discuss them in
sec. 6.

In general, relatively little work has been done
in the domain of filter-based methods for discrete
labeling problems [5], [6], [7]. Most importantly, there
is no filter-based approach for general multi-labeling
problems which is both fast (real-time) and achieves
high-quality results. The key contribution of this paper
is to present such a framework.

1.1 Previous Filter-Based Methods

Let us briefly review the existing ideas of filter-based
methods, which are the motivation of our work (de-
tails in sec. 2). Apart from [7] all works have concen-
trated on the application of stereo matching. Yoon and
Kweon [5] showed that an edge-preserving bilateral
filter on the cost volume can achieve high-accuracy
results. Note that the authors of [5] did not use the
term “filtering” to describe their method, but called it
weighted support window aggregation scheme. This
means that they use a naive implementation of the
bilateral filter, which is slow and diminishes the run
time advantage of local over global methods. Richard
et al. [6] realized this shortcoming and suggested an
approximate but fast (real-time) implementation of
the filter. However, their solution could not even get
close to the state-of-the-art results in stereo matching.
Also, their approach is specifically tailored to stereo
matching and hence does not convey the important
insight that this filtering technique can be leveraged
to general labeling tasks, outside stereo matching. Re-
cently, [7] suggested edge-sensitive smoothing of label
costs for image editing tasks different from stereo.
However, their approach, based on fast geodesic filter
operations, is inherently limited to problems with two
labels only.

1.2 Our Approach

In this work, we overcome the above limitations and
present a filter-framework which efficiently achieves
high-quality solutions for general multi-label prob-
lems, hence is competitive with energy-based meth-
ods. This is possible due to the recently proposed
guided filter [8], which has the edge-preserving prop-
erty and a run time independent of the filter size.
Thus, state-of-the-art results can be achieved without
the need to trade off accuracy against efficiency.

Let us now detail our method from a stereo per-
spective. We first construct a cost volume with axes
(x, y, l), which is known as disparity space image
(DSI) in stereo [9]. Figure 1(i)(b) shows an (x, l) slice
through this volume for the scanline in figure 1(i)(a).
We can obtain a solution to the labeling problem by
choosing the label of the lowest cost at each pixel
(i.e. argmin over the columns of figure 1(i)(b)). The

pixels with the lowest costs are marked red in figure
1(i)(b). The resulting disparity map (figure 1(ii)(b)) is
very noisy, because the solution is not regularized.
However, this method is very fast.

To regularize the solution we can aggregate
(smooth) the costs within a support window before
applying the Winner-Takes-All label selection. This is
known as window-based matching in stereo literature.
It is known that this aggregation step is equivalent
to filtering the (x, y) dimensions of the cost volume
with a box filter [9]. The result of filtering the cost
volume in figure 1(i)(b) using a box filter is shown
in figure 1(i)(c). The disparity solution of minimum
costs (marked red in figure 1(i)(c)) is smooth but not
aligned with image edges. This is because the box fil-
ter overlaps depth discontinuities that are illustrated
with green dashed lines in figure 1. This leads to
the well-known “edge-fattening effect” in stereo (see
disparity map in figure 1(ii)(c)). While the quality of
the disparity map is poor, the advantage is that the
filtering process is very fast because it can be speeded
up via a sliding window technique.

To overcome the “edge-fattening problem”, we can
smooth the cost volume with a weighted box filter
where weights are chosen such that the filter pre-
serves edges of the input color image. For instance,
one can apply a joint bilateral filter. Here, weights
are computed from the color image and weighted
averaging is performed on the cost values. In this
case, the approach becomes very similar to the one
proposed in the original adaptive support weight
paper [5].2 Figure 1(d) shows that applying the joint
bilateral filter on the cost volume leads to a spatially
smooth disparity solution that is also aligned with
image edges. While this method leads to high-quality
results, its computational speed represents a problem.
The runtime of an exact implementation of the joint
bilateral filter depends on the size of the support
window (i.e. is slow for applications like stereo match-
ing that require a large support window) and fast
approximations degrade the quality considerably (see
section 2).

In our work, we propose an algorithm that pro-
duces high-quality results at real-time frame rates
and hence combines the advantages of all filtering
approaches outlined above. We use the recently pro-
posed guided filter [8] to smooth the cost volume
in a way that color edges are preserved (see figure
1(e)). In our experiments, this filtering technique can
even outperform the joint bilateral filter in terms of
quality of results. Even more importantly, it can be
implemented as a sequence of box filters so that
runtime is independent of the filter window size.
Moving away from the stereo perspective, we show
that the concept of filtering the cost volume leads to a

2. The approach in [5] is motivated from a different perspective
and does not show its relations to filtering explicitly.
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Fig. 1: Our approach applied on the stereo matching problem. (i) Cost volume filtering. (a) Zoom of the
green line in the input image. (b) Slice of the cost volume (white/black/red: high/low/lowest costs) for the
line in (a). (c-e) Cost slice smoothed along x and y-axes (y is not shown here) using (c) the box filter, (d)
the joint bilateral filter and (e) the guided filter [8], respectively. (f) Ground truth labeling. (ii) Crops of the
“Tsukuba” disparity maps that are computed using different methods of filtering in (i). In contrast to the other
illustrated methods, our approach shown in (e) produces high-quality disparity maps and is computationally
efficient (real-time).

generic and fast framework that is widely applicable
to other computer vision problems. In particular, we
instantiate our framework for three applications:

• A real-time stereo approach that outperforms all
other local methods on the Middlebury benchmark
both in terms of speed and accuracy.
• A discrete optical flow approach that handles both
fine (small scale) motion structure and large displace-
ments. We tackle the huge label space by fast cost
filtering.
• A fast and high-quality interactive image segmen-
tation method.

2 RELATED WORK

As mentioned above, there have only been a few
attempts to simulate the edge-preserving smoothness
properties of a CRF by filtering the label costs. We
review those now. We also review three application
areas related to this work (i.e. stereo, optical flow and
interactive image segmentation). In each application
area a large number of methods have been proposed,
and in the following we will only focus on the most
relevant ones.

2.1 Stereo

In local stereo matching, Yoon and Kweon [5] have
proposed a weighted support aggregation scheme.
The main idea is to choose an appropriate local sup-
port region for each pixel adaptively. This is done
via adjusting the support weights of the pixels in a
typically squared support window by comparing the
pixels’ color and spatial position against the ones of
the center pixel. Several subsequent works, which are
based on the same idea, have been proposed since
then (e.g. [10], [11]), and are summarized in [12], [13].
These methods give results comparable to those based
on global energy minimization. However, adaptive
support weight approaches are usually computation-
ally slow, which cancels out the runtime advantage
of local over global methods. The problem is that,
when using adaptive weights, the computation of
aggregated costs can no longer be accomplished in an
incremental way (using a sliding window technique).
Consequently, the computational complexity depends
on the size of the match window. This is a major dis-
advantage, because adaptive support weight methods
typically use large windows (e.g., 35×35 pixels). In the
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following, we review previous work that concentrates
on overcoming the dependency on the match window
size, i.e., so-called O(1) approaches.

Some O(1) algorithms for adaptive support weights
stereo [14], [15], [6] concentrate on the bilateral filter.
However, an exact implementation of the bilateral
filter is slow, because its runtime heavily depends on
the filter size. Thus these methods resort to approxi-
mations of the bilateral filter in order to achieve real-
time performance. In [14] and [15] the bilateral filter
is approximated using integral histograms [16], while
in [6] the bilateral grid [17] is used. These approxi-
mations cannot be easily applied to color images due
to runtime limitations or high memory requirements.
For instance, the authors of [6] report a memory
consumption of 764 GB when applying their method
on full-color (e.g. RGB) stereo images. As a con-
sequence, these approaches are limited to grayscale
input images, giving poor results at disparity bound-
aries. This is also reflected in the Middlebury stereo
benchmark [18], where the method of [6] is on the
90th rank out of over 110 methods 3. In contrast, our
real-time implementation ranks 16th. To increase the
quality, the authors of [6] proposed an alternative
that uses two color channels. However, this method is
13 times slower than their monochromatic approach
(no real-time performance) and still inferior to their
re-implementation of [5]. In contrast, we use the
guided filter [8] that enables real-time performance
on grayscale and color images, and leads to results
that even outperform the exact implementation of [5]
in terms of quality.

Zhang et al. [19] also proposed an O(1) method for
local stereo matching. The speed-up comes from using
(i) a cross-shaped support region and (ii) only binary
support weights. The problem of the applied cross-
shaped support region is that the algorithm fails for
thin structures that are neither horizontal nor vertical.
The problem of using only binary support weights
is that slanted surfaces cannot be reconstructed well,
which has also been noted in [20]. The reason is that
pixels at the borders of the match window may have
the same influence on the aggregated costs as pixels
close to the center point, since a spatial weighting
is missing. Binary support weights have also been
used in [20] and [21]. The idea is to compute a color
segmentation in a preprocessing step and then apply
a modified version of the sliding window technique
which leads to a runtime independent of the match
window size. Apart from binary support weights
being a suboptimal choice, computing the color seg-
mentation becomes a new bottleneck in the algorithm.

After publication of the conference version of this
paper [22], De-Maeztu et al. [23] proposed a stereo
matching approach that is based on a cost aggregation

3. The methods of [14] and [15] are not ranked in the Middlebury
table, but the qualitative results are clearly inferior to our method.

strategy very similar to ours. In more detail, [23] pre-
sented a symmetric stereo approach that aggregates
costs according to both input images simultaneously.
It is worth noting that we have also presented a
symmetric formulation in [22] that is in fact identical
to the symmetric stereo method in [23]. However,
in general, our approach aggregates costs based on
a single image. This enables a generalization of our
strategy to other vision problems such as interactive
image segmentation where only a single input image
is available, whereas [23] only works for stereo match-
ing.

It is also interesting to note that we recently ex-
tended the proposed stereo matching technique to the
spatio-temporal domain, see Hosni et al. [24]. The key
idea is to filter the cost volume in the spatio-temporal
domain in order to achieve temporally consistent
disparity maps, where disparity changes are aligned
with spatio-temporal edges of the video cube.

2.2 Optical Flow

Many optical flow methods rely on continuous
optimization strategies. In the continuous domain,
Tschumperl‘e and Deriche [25] showed that a dif-
fusion tensor-based smoothness regularizer can be
transformed into local convolutions with oriented
Gaussians. In the optical flow approach of Xiao et
al. [26], the Gaussian kernels were replaced by the
bilateral filter. In this line of research, Werlberger et
al. [27] and Sun et al. [28] incorporated the adaptive
support weights of [5] into a variational approach. In
contrast, the goal of our work is to apply local filtering
in a discrete framework.

All aforementioned approaches are based on the
popular variational coarse-to-fine framework that can-
not handle large displacements of small objects, as
shown in [29], [30]. To overcome this problem, a dis-
cretized data term can be integrated into a variational
framework as a soft constraint (see [29], [30], [31]). Re-
cently, Xu et al. [31] presented a method that handles
both large and small displacements in a coarse-to-fine
framework by using a discrete optimization approach
to refine the flow estimates of the coarser level.

Purely discrete label-based approaches do not suffer
from this problem, but a major challenge is the huge
label space (each flow vector is a label and sub-pixel
accuracy further increases the label space). Due to
these difficulties, discrete approaches [32] could not
report state-of-the-art performance for a long time
and usually have to trade off search space (quality)
against speed. A discrete-continuous approach was
proposed by Lempitsky et al. [33] which fuse con-
tinuous proposal solutions in a discrete optimization
framework. A similar approach has been taken in
[34]. In [35] an energy function is defined over a tree
of over-segmentations and minimized using dynamic
programming. Recently, [36] developed a discrete ana-
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log to the work of [26] (see above), based on highly-
connected graph structures. While all aforementioned
discrete optical flow methods trade off search space
(quality) against speed, our filter based method effi-
ciently deals with the search space and handles both
large displacements and fine small-scale structures.

2.3 Interactive Image Segmentation

Interactive image segmentation is a binary labeling
problem. It aims to separate the image into fore-
ground and background regions given some hints
by the user. In the seminal work of Boykov and
Jolly [37], the user assigns a few pixels in the image
to foreground and background. The assigned pixels
are used to build appearance models (i.e. histograms
of intensities), which define the costs for labeling a
pixel as foreground or background. The optimal seg-
mentation is computed using graph cuts, regarding
the user-assigned pixels as hard constraints. Based
on [37], the GrabCut approach of Rother et al. [38]
proposes an even simpler user interface that requires
only a bounding box around the object of interest.
The appearance models are then iteratively refined
in the optimization process. Criminisi et al. [7], [39]
showed an approach which is applicable to problems
with two labels, like binary image segmentation and
panoramic stitching of two overlapping images. The
idea is to filter a likelihood ratio mask with a fast
geodesic morphological operator. It remains unclear
whether this approach could be extended to multi-
label problems such as stereo. Also, the relationship
between their morphological operator and e.g. the
bilateral filter is not discussed in detail.

Related to interactive segmentation, [8] adopted the
guided filter to compute a soft-segmentation, i.e., a
so-called alpha matte [40]. This is done by filtering
a binary segmentation mask, as opposed to the cost
volume as in our approach. We close the loop by
estimating the binary segmentation via filtering the
cost volume constructed from coarse user input. This
results in a purely filter-based segmentation and mat-
ting pipeline.

3 COST-VOLUME FILTERING

We now describe our labeling framework. Let us
consider a general labeling problem, where the goal
is to assign each pixel i with coordinates (x, y) in the
image I a label l from the set L = {1, . . . , L}. The
label assigned to pixel i is denoted by fi and f is the
collection of all label assignments. Our approach con-
sists of three steps: (i) constructing the cost volume,
(ii) filtering the cost volume and (iii) label selection.
The cost volume C is a three dimensional array which
stores the costs for choosing label l at pixel i = (x, y).

The L slices of the cost volume are now filtered.
To be more precise, the output of the filtering at
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Fig. 2: 1D step edge. We show µ and σ for a kernel
centered exactly at the edge. See text for details. Figure
courtesy from [8].

pixel index i with label l is a weighted average of
neighboring pixels in the same slice:

C ′
i,l =

∑

j

Wi,j(I)Cj,l. (1)

Here, C ′ is the filtered cost volume and i and j are
pixel indices. The filter weights Wi,j depend on the
guidance image I , which is in the case of e.g. stereo
the reference image.

Once the cost volume is filtered, the label at pixel i
is simply chosen in a Winner-Takes-All manner as

fi = argmin
l∈L

C ′
i,l. (2)

The filter weights Wi,j in eq. (1) should be chosen
such that intensity changes in the guidance image are
maintained in the filter output. In this work we use
the weights of the guided filter [8], which we briefly
review now (but other weights are also possible).

For simplicity, we start by using a grayscale guid-
ance image I . Then the weights Wi,j are given by:

Wi,j =
1

|ω|2

∑

k:(i,j)∈ωk

(1 +
(Ii − µk)(Ij − µk)

σ2
k + ǫ

), (3)

where µk and σk are the mean and variance of I in a
squared window ωk with dimensions 2r + 1× 2r + 1,
centered at pixel k.4 We denote the number of pixels in
this window with |ω| and ǫ is a smoothness parameter
explained below.

To see why the filter weights preserve edges of I in
the filter output, let us consider figure 2 which shows
a 1-D step edge. The numerator (Ii−µk)(Ij−µk) in eq.
(3) has a positive sign if Ij is located on the same side
of the edge as Ii, and has a negative sign otherwise.

Thus the term 1+
(Ii−µk)(Ij−µk)

σ2

k
+ǫ

in eq. (3), is large for

pixel pairs which are on the same side of the edge
and small otherwise. Hence, pixels are not averaged
if they are separated by an image edge. The strength
of the averaging effect is controlled by the parameter
ǫ in eq. (3). If σ2

k ≪ ǫ (then µk is similar to Ii and Ij),
then the numerator in eq. (3) is much smaller than the
denominator. Hence, the kernel converges to an (un-
weighed) low-pass filter: Wi,j =

1
|ω|2

∑

k:(i,j)∈ωk
1. The

4. The size of the filter kernel itself is (4r+1)2, because the sum
in eq. (3) is defined over all windows which include pixel indices
i and j.
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Fig. 3: Filter kernels. We show kernels of the guided
filter with r = 9 and ǫ = 0.012 at different locations
in an image taken from the Middlebury optical flow
evaluation webpage [41].

filter weights are similarly defined for color images:

Wi,j =
1

|ω|2

∑

k:(i,j)∈ωk

(1+(Ii−µk)
T (Σk+ǫU)−1(Ij−µk)).

(4)
Here, Ii, Ij and µk are 3 × 1 (color) vectors and the
covariance matrix Σk and identity matrix U are of
size 3 × 3. The filter weights for some image regions
are visualized in figure 3. The weights are high in
regions which are self-similar to the central pixel and
low otherwise. It has been shown [8] that a weighted
average with weights as defined in eq. (3) or (4) can be
implemented efficiently on the CPU as a sequence of
box filters using the integral imaging technique [42].
We apply the same technique to obtain an even more
efficient GPU implementation.

4 APPLICATIONS

We now apply our cost filtering framework to three
different vision applications. Note that the method for
stereo and optical flow is almost identical and only
one parameter is set differently in the experiments
(see explanation in sec. 5).

4.1 Stereo Matching

For stereo matching the labels l correspond to vectors
(u, v) which define the displacement in x and y direc-
tions. In the x direction, the displacement corresponds
to the disparity d (u = d) and there is no shift in the
y direction (v = 0).

Cost computation: The cost volume expresses how
well a pixel i in image I matches the same pixel in
the second image I ′ shifted by vector l. We choose
our pixel-based matching costs to be a truncated
absolute difference of the color and the gradient at
the matching points. Such a model has been shown

to be robust to illumination changes and is commonly
used in optical flow estimation [29], [43]:

Ci,l = (1− α) ·min
[

||Ii − I ′i−l||, τ1
]

+ (5)

α ·min
[

||∇xIi −∇xI
′
i−l||, τ2

]

.

Here, ∇x is the gradient in x direction, α balances
the color and gradient terms and τ1, τ2 are truncation
values.5

We then filter the cost volume according to eq. (1)
with weights in eq. (4) using I as guidance image.
Finally, we compute the disparity map f for image I
as per eq. (2).
Occlusion detection and filling: To detect pixels with
unreliable disparity values, which are mainly caused
by occlusions, we apply a left-right cross checking
procedure. To this end, we additionally compute the
disparity map f ′ for the right image I ′ in the same
way as described above. The disparity map f , com-
puted from the left input image is shown in figure
4(a). We mark a pixel in the left disparity map as
invalid if the disparity of its matching pixel differs,
i.e. if fi 6= f ′

i−l. This process detects the occluded
pixels as well as mismatched ones. The invalid pixels
are marked red in figure 4(b). Each invalid pixel is
then assigned to the lowest disparity value of the
spatially closest non-occluded pixel which lies on the
same scanline (pixel row). This scanline-based filling
process is illustrated in figure 5, where the invalid
pixel i (outlined in yellow) is assigned to the disparity
of pixel j. The disparity map after filling is shown in
figure 4(c).
Post-processing: Our simple strategy for filling in-
validated pixels generates streak-like artifacts in the
disparity map (see inlet in figure 4(c)). To remove
these artifacts, while preserving the object boundaries,
we apply a weighted median filter for the filled-in
pixels. Note that the weighted median filter is applied
only to invalid pixels, i.e. pixels which fail the left-
right cross checking (red pixels in figure 4(b)). As filter
weights, we would ideally like to choose those of the
guided filter defined in eq. (4). However, computing
these weights involves building a sparse matrix of size
N ×N , where N is the number of image pixels. The
non-zero entries of this matrix increase tremendously
for large window sizes, thus immense memory and
time are required for computing this matrix6. Thus
we resort to the bilateral filter weights:

W bf
i,j =

1

Ki

exp(−
|i− j|2

σ2
s

) exp(−
|Ii − Ij |

2

σ2
c

), (6)

where σs and σc adjust the spatial and color similarity
and Ki is a normalization factor. We truncate the

5. One could also use a spatially varying α as it was recently
proposed in [31]. However, this approach gave worse results on
the stereo test images.

6. The filter weights do not have to be computed explicitly when
using a weighted average filter, which we use to smooth the cost
volume.
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( a ) Computed left disparity map ( b ) Disparity map of (a) with
invalidated pixels marked in red

( c ) Invalidated pixels of (b) filled
with scan-line procedure

( d ) Disparity map in (c) after applying
a joint bilateral median filter for

invalidated pixels

Fig. 4: Occlusion detection, filling and post-processing. (a) Disparity map of the left image. (b) Occlusions and
mismatches are detected by applying left-right consistency checking. Pixels that fail this check are marked in
red. (c) Scan-line based occlusion filling. (d) A joint bilateral median filter is applied on the invalidated pixels
(red pixels in (b)) to smooth the filled-in regions. Note that pixels that passed the left-right check (non-red
pixels in (b)) are not affected by this operation.

filter weights at a radius of 7 pixels. We discuss the
influence of the post-processing on the quality of the
disparity map in section 5.1.

Alternative - symmetric stereo: Let us consider figure
6(a). It shows a crop of the left input image of the
“Cones” image pair. The image regions in figure 6(a)
that are occluded in the right view are marked by
a red band. The pixel marked by a yellow cross in
figure 6(a) is visible in both images but is very close
to an occluded region. The filter weights, defined in
eq. (4), for a kernel centered at the marked pixel are
shown in figure 6(b). The kernel weights are high
in the occluded region (outlined in red), hence the
disparity for the yellow pixel will be influenced by
matching costs in the occluded regions. The matching
costs in the occluded regions are unreliable because
there are no matching points for these pixels in the
right stereo image. As a consequence, the unreliable
matching costs are propagated into the visible regions
and lead to artifacts as shown in figure 6(c).

To avoid propagating mismatches from the oc-
cluded regions, the filter kernel centered at the yellow
pixel must not overlap the occluded region. This can
be achieved by computing the filter weights based on
both input images. In particular, we compute the filter
weights for pixel i in eq. (4) based on the color of the
pixel in the left image Ii and its matching pixel in the
right image I ′i−l that can be computed using disparity
hypothesis l. To this end, we replace the 3×1 vector Ii
in eq. (4) with a 6× 1 vector whose entries are given
by the RGB color channels of both Ii and I ′i−l. The
dimensions of Ij , Σk, U and µk change accordingly.

The filter weights computed with this symmetric
approach are visualized in figure 6(d). We see that
the filter weights are low in the occluded regions.
As a consequence, disparity artifacts do not leak out
of the occluded region (see figure 6(e)). We found
that the symmetric stereo approach gives visible im-
provements near occlusion boundaries, which results

Fig. 5: Filling strategy. A pixel grid is shown. The
disparity values are indicated by gray-scale values
(dark means low disparity). Pixels invalidated by the
left-right cross check are shown in red. For the invalid
pixel i marked in yellow, we find the closest valid
pixels (here j and k) which lie on the same scanline.
Pixel i is then assigned to the lower of the two
disparities fj and fk, which is fj in this example.

in a slight quality gain over the asymmetric approach.
We compare the asymmetric with the symmetric ap-
proach in section 5.1.

4.2 Optical Flow

Our optical flow approach is almost identical to
stereo. Here, the labels l correspond to vectors (u, v)
which define the flow in x and y directions, respec-
tively.
Cost computation: We compute the matching costs of
corresponding pixels as in stereo, but additionally use
the gradient ∇y in y direction:

Ci,l = (1− α) ·min
[

||Ii − I ′i−l||, τ1
]

+ (7)

α ·min
[

||∇xIi −∇xI
′
i−l||+ ||∇yIi −∇yI

′
i−l||, τ2

]

.

As for stereo, we filter C using I as guidance image
and obtain the flow field in a Winner-Takes-all man-
ner.
Occlusion detection and filling: We apply the same
left-right cross checking procedure as in stereo to find
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( a ) Zoom of left stereo image ( b ) Asymmetric filter weights
for yellow marked pixel in (a)

( c ) Asymmetric disparity map ( d ) Symmetric filter weights
for yellow marked pixel in (a)

( e ) Symmetric disparity map

Fig. 6: Symmetric stereo matching. The pixel, which is marked in (a) by a yellow cross, is close to an occlusion
region, which is marked by a red band. When using the asymmetric approach, occluded pixels obtain high
support weights as illustrated in (b). (Bright intensities correspond to high weights.) Hence matching costs
computed in the occluded region influence the disparity assignment of the yellow pixel. This leads to disparity
artifacts as shown in (c). Image (d) shows the support mask of our symmetric approach where we use both
color images to compute the support weights. Note that pixels of the occluded region now have very small
influence in the matching cost aggregation for the yellow pixel. Hence, our symmetric approach improves
disparity reconstruction for pixels close to occluded regions as shown in (e).

unreliable flow estimates caused mainly due to occlu-
sions7. To fill the invalidated pixels with meaningful
flow vectors, we cannot simply assign the flow vector
with the lowest magnitude of the spatially closest
pixels (as we have done for stereo). This is because
objects with a smaller flow magnitude can occlude
objects with higher flow magnitude. Therefore, we
use a weighted median filter to fill the occluded
regions based on their color similarity to the visible
flow regions. In detail, we apply a weighted median
filtering with weights as in eq. (6) to the occluded
pixels. The windows of the median filter overlap
the valid regions. Hence, we can propagate the flow
vectors into the invalid image parts. If the invalidated
region is larger than the size of the window used in
weighted median filtering, some pixels will not be
assigned to any flow vector. In such situations, we
iterate the median filtering procedure to incrementally
fill invalid pixels.
Sub-pixel precision: To find sub-pixel accurate flow
vectors, we simply upscale the cost volume in label
dimension and derive the image colors at sub-pixel
positions via bicubic interpolation. Hence, this process
increases the runtime. In practice, we found that
smoothing the final flow vectors with the guided filter
can compensate for a lower upscaling factor8. We
empirically found that an upscaling factor of 4 gives
visually pleasing results. However, in this paper, we
apply an upscaling factor of 8 to demonstrate the best
possible performance.
Alternative - symmetric flow: Similar to stereo, it
is possible to formulate a symmetric approach for
optical flow computation. We tested this approach and
report the results in section 5.2. Practically, we found

7. In optical flow literature this process is called forward-
backward consistency check.

8. An alternative to achieve sub-pixel precision is to upscale the
final flow vectors with the joint bilateral filter or the guided filter.

a slight overall performance improvement over the
asymmetric approach.

4.3 Interactive Image Segmentation

In interactive image segmentation the labels encode
whether a pixel belongs to the foreground F or the
background B, thus L = {F,B}. For initialization,
the user assigns parts of the image to foreground and
background.
Cost computation: From the user assignments, we
build fore- and background color histograms denoted
as θF and θB , which sum up to 1. Each histogram
has K bins and we denote the bin into which pixel
i falls with b(i). We can also use a bounding box as
input, where the pixels outside the box build θB and
all pixels inside the box build θF as in [44]. Then the
cost volume is given by:

Ci,l = 1− θlb(i); l ∈ L. (8)

For binary labeling problems we can reduce the cost
volume Ci,l to a two-dimensional cost surface Ci

which denotes the costs of a pixel to belong to fore-
ground:

Ci = 1− θFb(i)/(θ
F
b(i) + θBb(i)). (9)

If a pixel i has been assigned to fore- or background
by the user, Ci is set to 0 or 1, respectively. After
filtering the cost surface, a pixel i is assigned to
foreground if Ci < 0.5 and assigned to background
otherwise. When using bounding boxes, we iteratively
update the color models as in [38]. In practice, we
achieved good results using 5 iterations.

To account for semi-transparent pixels along the
object boundary in an efficient manner, we filter the
computed binary mask with the guided filter. This
has been shown [8] to approximate an alpha matting
method.
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Our disparity maps

Error maps corresponding to our disparity maps

Fig. 7: Our results on the four evaluation Middlebury images. All results are generated using constant
parameter settings. 1st row shows the disparity maps computed by our algorithm. 2nd row shows a comparison
against the ground truth maps. Disparity errors larger than one pixel in non-occluded regions are plotted as
black pixels, while gray pixels correspond to errors in occluded areas.

5 EXPERIMENTAL RESULTS

In this section, we experimentally demonstrate that
our method is capable to generate state-of-the-art
results for stereo matching, optical flow and interac-
tive image segmentation. We use the following, same
constant parameter settings for stereo and optical flow
to generate all of our results: {r, ǫ, α, σs, σc, τ1} =
{9, 0.012, 0.9, 9, 0.1, 0.028}. This demonstrates the ro-
bustness of our method. The only exception is the
truncation value τ2 of the matching costs in eq. (6)
and (8). This value depends on the signal-to-noise
ratio of an image [9] as well as on the size of the
occluded regions. Thus we use τ2 = 0.008 for stereo
and τ2 = 0.016 for optical flow.

Interactive image segmentation is a very different
problem; hence we found different, constant parame-
ter settings (i.e. more smoothing) work well: {r, ǫ} =
{11, 0.22}. Note that for interactive segmentation the
only further parameter we use is K = 32, which
defines the number of bins of the color histogram.

We implemented our method on the graphics card
using CUDA. All experiments were conducted on an
Intel Core 2 Quad, 2.4GHZ processor and an NVIDIA
GeForce GTX480 graphics card with 1.5GB of memory.
Our approach takes about 2.85ms to filter a 1Mpix
image. Thus we can process about 351 labels per
second in a 1Mpix image. Problem specific timings are
reported below. A (slower) Matlab implementation of
our stereo method is available on our webpage.9

9. http://www.ims.tuwien.ac.at/research/costFilter/index.html

5.1 Stereo Matching

To evaluate our stereo approach we conducted exper-
iments on (i) the Middlebury stereo benchmark [18],
(ii) real outdoor images recorded by ourselves and (iii)
a live video stream in order to show that our approach
works well for real-time application scenarios.

First, we discuss results on the Middlebury stereo
benchmark [18] which provides 35 image pairs with
known ground truth. A subset of these images (four
images) are used to compare over 110 stereo matching
methods in the Middlebury online evaluation table.
The disparity maps generated by our approach on
these four test images are shown in figure 7. We can
see that our method generates high quality disparity
maps and preserves the boundaries of thin objects. We
report quantitative results that we have taken from
the Middlebury online evaluation system for the four
test images in table 1.10 The table plots Middlebury
ranks and average percentages of bad pixels (right-
most column of the Middlebury online table) using
the Middlebury default error threshold of 1. Our
approach (CostFilter) takes rank 16 out of more than
110 methods.

We also tested our alternative symmetric stereo ap-
proach described in section 4.1 (see entry “CostFilter
(sym.)” in table 1). We found that the average error
for the four test images is reduced from 5.55% to
5.35% leading to an improvement in the ranking from
position 16 to position 12. The entry “CostFilter(w/o

10. Note that table 1 shows only selected approaches from the
Middlebury table that compete with our algorithm in terms of
method (local techniques) and quality, similar to the comparison
in [6].
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Fig. 8: Effect of post-processing. Post-processing was applied only in invalidated regions (i.e. red regions that
fail the left-right cross checking in the top row). 1st row shows our disparity maps with invalidated pixels
marked in red. 2nd row shows disparity maps after scanline-based filling. 3rd row shows disparity maps after
applying weighted median filtering for invalid pixels marked red in top row.

post-processing)” in table 1 shows the error rate of our
method without post-processing (i.e. without filtering
the invalid regions by a weighted median filter). We
see that the average error slightly increases, which
results in a slightly worse overall rank 23. This can
largely be attributed to a higher error percentage in
occluded regions.

In figure 8, we show the effect of our post-
processing method. The top row highlights those
pixels in red which were invalidated by the left-right
checking. We observe that most invalid pixels are lo-
cated in the proximity of object boundaries and hence
seem to correspond well to the occluded areas in
these image pairs. The middle row shows the result of
our simple scanline-based disparity filling procedure.
Scanline streaking artifacts produced by this filling
scheme are then removed using the bilateral median
filter. We show the results of this step in the bottom
row. We would like to emphasize again that our post-
processing filter only affects invalid pixels (red pixels
in the top row of figure 8) and hence influences the
results only marginally. We note that it would be
counter-productive to apply the filter on the whole
disparity map, as the resulting smoothing may lead
to a loss of disparity details.

An important observation from the Middlebury
online table is that, to our knowledge, our stereo

algorithm is top-performer among all local stereo
methods, which are listed in the ranking. In particular,
as can be seen in table 1, it can outperform the
geodesic approach (GeoSup), the original adaptive
support weight algorithm of [5] (AdaptWeight) and
a fast approximation of the latter technique (DCB-
Grid). To understand why our method performs better
than [5], we plugged their support weights into our
algorithm. Hence, we use the same matching costs,
occlusion handling and post-processing methods as
in our algorithm. We tuned the parameters of the
resulting algorithm to optimize the Middlebury rank-
ing. This approach (CostFilter (Y & K Weights [5]))
ranks behind our guided filter-based algorithm, i.e.
on rank 24 in contrast to rank 16. This suggests that
the guided filter and the joint bilateral filter are both
well suited for stereo matching. However, our guided
filter-based approach seems to perform slightly better
in terms of quality and considerably better in terms
of computational efficiency, as we discuss later.

In table 2 we compare the performance of lo-
cal stereo matching methods on all 35 Middlebury
ground truth images. This test is important not only
because it is a richer test set, but also because the
four Middlebury evaluation images are close to be-
ing “solved”, which means that a minor error in
the disparity map leads to a large difference in the
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Algorithm Rank
Avg.

Error (%)

CostFilter (sym.) 12 5.35
CostFilter 16 5.55
GeoSup [10] 21 5.80
CostFilter (w/o post-processing) 23 5.77
CostFilter (Y & K Weights [5]) 24 5.86
AdaptWeight [5] 48 6.67
DCBGrid [6] 90 10.9

TABLE 1: Rankings for selected local stereo methods.
We are the best performing local method and overall
in the top 15.

Algorithm Rank
Avg.

Error (%)

CostFilter (sym.) 1 8.16
CostFilter 2 8.36
CostFilter (w/o post-processing) 3 8.51
GeoSup [10] (our GPU impl.) 4 9.21
CostFilter (Y & K Weights [5]) 5 9.28
AdaptWeight [5] (our GPU impl.) 6 15.69
DCBGrid [6] 7 16.73

TABLE 2: Evaluation for selected local stereo meth-
ods on all 35 Middlebury stereo image pairs. The
second column represents the rank of each method
according to its average error measured on all 35
image pairs.

ranking. Since only four of the 35 test scenes are
used for the online evaluation, no results are available
for competitors to our algorithm. To obtain results of
competing techniques, we have performed a GPU-
based reimplementation of [5] (AdaptWeight [5](our
GPU impl.)) as well as [10] (GeoSup [10] (our GPU
impl.)) and used the GPU-based implementation of
[6] obtained from the authors of the respective paper
(DCBGrid). To measure matching performance, we
compute the percentage of pixels that have a disparity
error larger than one pixel in non-occluded regions
and build the average of this measure over all 35 test
images. We plot the corresponding values in table
2. It can be seen that the ranking of the selected
methods in table 1 is almost the same as in table 2,
i.e. our symmetrical method is the winner and slightly
outperforms our asymmetrical technique. Note that in
this test, the parameters for each method were first
tuned to give best results for the four images which
are used in the online Middlebury evaluation. These
settings were then used for all 35 test pairs, shown in
table 2, where the 4 evaluation images are a subset.

Let us now focus on computational efficiency of the
methods in table 2. As stated above, we have imple-
mented all of these methods on the GPU. To keep
the runtime comparison fair, we have run them on
the same computer, whose specifications were given
at the beginning of this section. We measure compu-
tational performance in a unit of Million Disparity
Estimations per second (MDE/s), as done previously
in e.g. [45]. The MDE/s measure of an algorithm for

a stereo test pair is computed as:

MDE/s = (imgW × imgH ×D × FPS)/106. (10)

Here, imgW and imgH are the image width and
height in pixels, D represents the number of allowed
disparities and FPS is the number of frames per
second.11 Hence, a larger MDE number means a better
performing system.

In figure 9 we plot the MDE/s performance of
various methods with respect to different sizes of the
support window. As can be seen, our method is the
only one for which the runtime is independent of the
support window size. The runtime performance of all
other algorithms, except of DCBgrid (see discussion
below), increases with larger window sizes, which is a
disadvantage considering that large window sizes are
needed to give good results. We have marked optimal
window sizes for each method using black arrows in
figure 9.12 Note that for a window size of 35× 35 our
algorithm “CostFilter” is more than eight times faster
than our GPU implementation of the asymmetric joint
bilateral filter “CostFilter (Y & K Weights)”.

In figure 9 it is worth to note that there is no consid-
erable difference in runtime between “CostFilter (Y &
K Weights)” and “GeoSup (our GPU impl.)”, although
computation of geodesic weights is more expensive
than those of the joint bilateral filter. This is for the
following reason. To optimize runtime performance,
we precompute the weight masks (i.e., geodesic or
joint bilateral filter masks) at the beginning of the
algorithm. When aggregating the matching costs at
each disparity level, we can then look-up the pre-
computed mask at each pixel. Since the aggregation
process, which happens for each possible disparity,
is considerably more expensive than the precompu-
tation, which happens only once, the difference in
runtime between “CostFilter (Y & K Weights)” and
“GeoSup (our GPU impl.)” is negligible. Note that
this trick does not work for ”AdaptWeight (our GPU
impl.)”, because it is a symmetrical formulation in
which weight masks change depending on the dispar-
ity under consideration. Hence our reimplementation
of [5] spends a considerable amount of time on com-
puting the support weights and hence is the slowest
algorithm among those evaluated. For DCBGrid [6]
there is no explicit window size. We plot the average
MDE/s for varying σs.13 DCBGrid is the algorithm
that is closest to ours in terms of runtime. However,

11. Note, MDE/s can be converted into frames per second by:
FPS = (MDE/s×106)/(imgW × imgH ×D).

12. Here, optimal means the window size reported in the corre-
sponding paper.

13. σs in the DCBGrid [6] is the spatial sampling rate. It can
be considered as being equivalent to the window size in naive
aggregation methods because it controls the amount of smoothing.
The number of grid cells is inversely proportional to the sampling
rate: a larger σs yields a smaller number of grid cells and requires
less memory. This explains why the average MDE/s for this method
increases with the increasing values of σs.
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Fig. 9: Efficiency comparison of our method in
comparison to competitors. Note that large MDE/s
score means better performance. The optimal window
size for each method is marked by an arrow. Our
algorithm is independent of the window size.

it is considerably inferior in terms of matching quality
(see tables 1 and 2) and results get worse with larger
σs, in which case the algorithm would be attractive in
terms of runtime.

Table 3 shows the ranking of our algorithm com-
pared to all other real-time algorithms in the Middle-
bury online ranking. The right-most column in the
table shows the average MDE/s computed for all
algorithms. The values are taken from the respective
papers.14 Note that performance values were obtained
using different hardware and hence table 3 can only
give a rough idea about the computational efficiency
of the listed methods. From this table we observe that
there is only one method (RTCensus [46]) which has
a larger MDE/s value compared to ours (hence, is
faster than our method). However, there is a large
gap in terms of ranking of this method and our al-
gorithm.15 To summarize, our method is currently the
best performing real-time method in the Middlebury
table and shows an excellent tradeoff between speed
and quality of results.

We also show results of our algorithm when applied
to real outdoor scenes. We captured outdoor im-
ages with a consumer stereo camera (Fujifilm FinePix
Real3D W1). The images were rectified manually af-
ter recording. The input images and corresponding

14. If different implementations are published, the fastest is re-
ported.

15. This method mainly relies on a very simple way for cost
aggregation without any process for weight computation, which
usually requires large processing time. Moreover, this method is
limited to grayscale input images.

Algorithm Rank
Avg. Avg.

Error [%] MDE/s

CostFilter 16 5.55 343.9
PlaneFitBP 20 5.78 9.35
RT-ColorAW 46 6.55 36.87
RealTimeABW 54 7.9 4.42
RealtimeBFV 59 7.65 112.47
RealtimeBP 61 7.69 20.89
FastAggreg 65 8.24 18.90
OptimizedDP 74 8.83 10.62
RealtimeVar 74 9.05 21.28
RTCensus 79 9.73 660.90
RealTimeGPU 80 9.82 53.91
ReliabilityDP 83 10.7 35.03
DCBGrid 90 10.9 130.64

TABLE 3: Rankings of all real-time algorithms of
the Middlebury online database. Our algorithm is
the best-performing real-time algorithm in terms of
quality and the second best-performing real-time al-
gorithm in terms of computational efficiency. Note
that large MDE/s score means better performance.

disparity maps generated by our method for two
complex outdoor scenes are shown in figure 10. Note
that we neither applied occlusion filling nor post-
processing on the disparity maps. Instead, invali-
dated pixels were set to disparity zero (visualized in
black). Our method seems to work very well although
the input images contain many challenges including
untextured regions (e.g. walls), thin structures (e.g.
bicycles) or different illumination conditions in left
and right image.

Finally, we show results of our system when pro-
cessing live video streams that we acquired using a
Point Grey Bumblebee stereo camera. We match the
640 × 480 pixel images of the video stream with
allowed disparities ranging from 0 to 40. Our live
system runs at 33.3 fps (excluding the computational
overhead for rendering and rectification). Figure 11
shows two disparity maps computed for selected
frames captured by our live system. We believe that
the quality of calculated disparity maps is high, espe-
cially when considering the speed of our method. We
also found that although we do not enforce temporal
consistency, the disparity maps appear temporally
smooth, i.e. there is only little disparity flickering
visible. This is a good indicator that our method is
robust. Please also see the video in the supplementary
material for a demonstration.

5.2 Optical Flow

We evaluate our approach on the Middlebury flow
benchmark [41]. The benchmark comprises an evalu-
ation dataset of 8 images with hidden ground truth
flow as well as 8 training scenes with publically
available ground truth flow. Table 4 shows the results
of our method on the evaluation dataset16. To be more

16. Note that table 4 shows only selected approaches from the
Middlebury table that compete with our algorithm in terms of
method and quality.
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Left input image (1) Our disparity map Left input image (2) Our disparity map

Fig. 10: Stereo results for real outdoor scenes. Two stereo images captured by ourselves with a consumer stereo
camera. Here we only show the disparity maps without occlusion filling and post-processing (invalidated
pixels are shown in black).

Left input image (1) Our disparity map Left input image (2) Our disparity map

Fig. 11: Two sample frames captured by our live system and their corresponding disparity maps. We see
that thin structures marked by arrows are correctly preserved.

precise, we show the rank of our method computed
over all 8 evaluation datasets, as well as detailed
results for three challenging datasets “Schefflera”,
“Grove” and “Teddy”. We can see that overall, our ap-
proach ranks on the 10th and 13th rank, with respect to
the Average Angular Error (AAE) and Average End-
point Error (AEE), out of almost 60 methods. This per-
formance is comparable to the method of Werlberger
et al. (NL-TV-NCC) [27] that uses adaptive support
weights in a variational framework. However, our
method has several advantages over its competitors
including [27]. Firstly, our approach outperforms most
other methods on scenes with thin structures and
strong motion discontinuities such as in “Schefflera”,
“Grove” and “Teddy”, where we achieve an average
rank of 2.2 (not shown in the table) and rank 1 on the
“Teddy” scene (see details in table 4 and figure 14).
Secondly, our approach, which uses fixed parameter
settings, can handle scenes with large displacements,
which is difficult for approaches such as [27] that are
restricted by their coarse-to-fine framework. Finally,
the simplicity of our method is another advantage
over many other approaches, which often require a
large number of parameters to be tuned, e.g. number
of pyramid levels and interpolation strategy.

Our approach performs less well on the “Wooden”
and “Yosemite” sequence. This is because in the
“Wooden” sequence our algorithm assigns wrong
flow values to a shadowed region. Although the
difference to the top performers in terms of error

appears to be small, this has a large effect in the
ranking. The artificial “Yosemite” sequence contains
many untextured regions where the data term is
unreliable. Variational methods smoothly interpolate
over these regions while our method misinterprets
them as motion discontinuities. We observed that this
is less of a problem in natural high-resolution images
where the data term gives useful information even in
regions that appear homogeneous at a first glance.

The total runtime of our method for the “Urban”
scene, which has the largest label space (640 × 480
pixel with 30, 000 labels at a sub-sampling factor
of 8) is approximately 55.31 seconds. In figure 12
we study the effect of using different sub-sampling
factors. As can be seen from this plot, smaller sub-
sampling factors give results of comparable quality at
considerably lower runtimes. For example, an upscale
factor of four has a runtime of 13.52 seconds for the
“Urban” sequence.

For completeness, we show the performance of our
optical flow algorithm for the Middlebury training
images in figure 13. We use the Middlebury color
coding to visualize the computed optical flow field.
The measured AEE and AAE are shown at the bottom
of each image. Similar to the evaluation dataset our
method recovers fine structures very well and pre-
serves motion discontinuities. The reader is referred
to the supplementary material in order to see the
complete result.

Large displacement flow results. An important ad-
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Dimetrodon (0.20 / 3.90)

RubberWhale (0.09 / 2.91)

Grove2 (0.16 / 2.32)

Urban2 (0.33 / 2.89)

Grove3 (0.51 / 5.43)

Urban3 (0.59 / 4.51)

Hydrangea (0.17 / 2.15)

Venus (0.17 / 1.48)

Fig. 13: Optical flow results. Results for the training sequences of the Middlebury benchmark dataset. The
respective AEE and AAE are given in parentheses (AEE / AAE). Color coding as in [41].

Method
Angular Error Endpoint Error Time

Rank Schefflera Grove Teddy Rank Schefflera Grove Teddy (sec)

Layers++ 2 (1,1,12) (1,1,1) (2,1,6) 2 (1,1,8) (1,1,2) (1,1,7) 18206
Classic+NL [28] 5 (9,7,16) (5,3,4) (4,4,11) 5 (10,10,13) (3,3,5) (3,2,12) 972
MDP-Flow [31] 8 (5,5,22) (9,8,15) (27,29,30) 7 (4,5,17) (9,9,15) (29,32,28) 188

CostFilter 10 (2,2,4) (2,2,3) (1,2,1) 13 (2,2,8) (2,2,1) (1,4,3) 55.31
CostFilter (sym.) 11 (4,3,2) (2,3,1) (1,4,1) 12 (4,4,4) (3,3,1) (1,4,1) 110.65

OFH 12 (23,25,5) (11,11,21) (12,17,8) 8 (20,25,4) (18,17,21) (12,17,12) 620
NL-TV-NCC [27] 13 (16,16,2) (26,31,11) (11,13,10) 10 (16,16,2) (14,15,9) (10,11,2) 20

DPOF [35] 17 (4,4,13) (13,15,20) (9,6,5) 16 (4,4,17) (5,5,3) (7,4,1) 287
ACK-Prior [36] 18 (6,9,3) (19,13,27) (19,12,14) 20 (6,6,2) (15,14,18) (27,18,23) 5872

TABLE 4: Optical flow evaluation on Middlebury. Overall our method gives rank 10 and 13 with respect to
the angular error and endpoint error, respectively. Our approach works particularly well for the challenging
“Schefflera”, “Grove” and “Teddy” sequence. Note that fine structures and strong motion discontinuities
cannot be handled by many competitors. We report the ranks for these sequences in brackets (all, disc, untext).
Runtime is given for the “Urban” sequence (as requested by [41]), which has the largest label space.

Layers++ Classic+NL [24] DPOF [15] MDP!Flow [30]NL!TV!NCC [28]GT OursOurs

Layers++ MDP!Flow [30] DPOF [15] NL!TV!NCC [28]ACK!Prior [14]Ours OursGT

Fig. 14: Detailed flow results. Comparison of two sequences with thin structure (upper part: “Schefflera”
scene; lower part: “Grove” scene), where many competitors fail to preserve flow discontinuities. (We boosted
the colors in the second row from the top for better visualization.) Color coding as in [41].
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Fig. 12: Effect of subsampling factor on the average
AAE and AEE errors. Here we used the Middlebury
training images with their ground truth flow values
as reference.

vantage of our method is that it can also handle
large displacements without the need of changing any
parameters (see figures 15 and 16 for a comparison
to other methods). Our approach generates results
that are visually comparable, or better, than methods
which are specifically tailored on large displacement
flow and are not top performing for small displace-
ments (exceptions are [31], [36]).
Symmetric Approach. We also tested a symmetric
optical flow formulation of our approach, see table 4.
In contrast to stereo matching, the symmetric optical
flow formulation does not seem to have a big effect
on the results. For the AAE measure, the symmetric
approach even performs worse than our asymmetric
formulation (rank 11 in comparison to rank 10). How-
ever, the AEE error is slightly improved (rank 12 in
comparison to rank 13). We also tested the symmetric
optical flow approach on the training sequences from
Middlebury. We found that the overall improvement
is negligible. The average measured AEE error is
reduced from 0.28 to 0.27 and the average measured
AAE is reduced from 3.2 to 3.1.

5.3 Interactive Image Segmentation

To show that our approach also performs well for
image segmentation, we visually compare our results
to those of GrabCut [38], figure 17. As user input
we either use coarse scribbles/trimaps or a single
bounding box. The results are visually comparable at
lower runtimes (2.85ms versus approximately 300ms
using the graph cut implementation of [39] and 425ms
using the graph cut implementation of [47] on a
1Mpixel image). Furthermore, our method gives com-
parable results to GrabCut [38] on a ground truth
database of 50 images [38]. Here, error is measured
as the percentage of misclassified pixels in the area
not marked by the user. Given the trimap input of

(a) Input images (b) Steinbrücker et al.
[30]

(c) LDOF [29]

(d) ACK-Prior [36] (e) Ours (f) Our flow

Fig. 15: Large displacement flow (Beanbags). (b-d)
Motion magnitude for different methods specialized
on large displacement flow. (e) Motion magnitude for
our method. (f) Our flow vectors with the color coding
as in [41]. Our method nicely recovers the shape of the
hand.

(a) Input
images

(b) LDOF [29] (c) MDP-Flow
[31]

(d) Ours (e) GT

(f) LDOF [29] (g)
Steinbrücker

et al. [30]

(h) MDP-Flow
[31]

(i) Ours (j) Our flow

Fig. 16: Large displacement flow (HumanEva) [48].
(b-e) Backward warping results using flow of different
methods. The tip of the foot is correctly recovered by
our method. Note that the occluded portions cannot
be correctly recovered by any method. (f-i) The motion
magnitude of different methods. (j) Flow vectors with
the color coding as in [41].

[38], the error is 5.3% for GrabCut and 6.2% for our
method. This shows the potential of our approach to
be successfully applied to other vision applications. A
video of our real-time segmentation tool is shown in
the supplementary material.
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( a ) Input image with user
interaction

( b ) Our cutout ( c ) Cutout using Graph
Cuts

Fig. 17: Segmentation results. (b) Binary segmenta-
tion from user input in (a). (c) Result corresponding
to a single iteration of GrabCut [38]. For the “Bunny”
image (last row), we additionally filtered the cutout
masks in (b,c) with the guided filter to obtain a soft
alpha matte.

6 DISCUSSION AND FUTURE WORK

This paper presented a simple, yet powerful filter-
ing approach for solving discrete labeling problems.
As mentioned in the introduction, the relationship
between filtering-based operations and energy-based
optimization schema, for both continuous and discrete
label spaces, are to the best of our knowledge not fully
understood. One relationship, given in [8], is that the
guided filter is one step of a conjugate gradient solver
of a particular linear system. We believe that a better
understanding of this relationship can lead to fast and
even better (iterative) filtering approaches.

Finally, we note that all aforementioned stereo al-
gorithms, as well as ours, assume that pixels within
a support window have a constant disparity value.
This assumption is violated for slanted surfaces where
the support window comprises of pixels that lie on
different disparities. Recently, Bleyer et al. [49] pro-
posed to overcome this problem by estimating a 3D

plane at each pixel onto which the support region is
projected. To find the optimal 3D plane among all pos-
sible planes, whose number is infinite, a randomized
nearest neighbor search strategy, called PatchMatch
[50], was adopted. The work uses the adaptive sup-
port weights of [5] for matching cost aggregation to
improve results at disparity borders. The PatchMatch
algorithm [49] achieves excellent results, however, has
the major drawback that it does not operate in real-
time. An interesting future research direction is to
accelerate this technique by levering the insights of
our proposed approach.
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