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Abstract

Many computer vision tasks can be formulated as la-

beling problems. The desired solution is often a spatially

smooth labeling where label transitions are aligned with

color edges of the input image. We show that such solutions

can be efficiently achieved by smoothing the label costs with

a very fast edge preserving filter. In this paper we propose

a generic and simple framework comprising three steps: (i)

constructing a cost volume (ii) fast cost volume filtering and

(iii) winner-take-all label selection. Our main contribution

is to show that with such a simple framework state-of-the-

art results can be achieved for several computer vision ap-

plications. In particular, we achieve (i) disparity maps in

real-time, whose quality exceeds those of all other fast (lo-

cal) approaches on the Middlebury stereo benchmark, and

(ii) optical flow fields with very fine structures as well as

large displacements. To demonstrate robustness, the few pa-

rameters of our framework are set to nearly identical values

for both applications. Also, competitive results for interac-

tive image segmentation are presented. With this work, we

hope to inspire other researchers to leverage this framework

to other application areas.

1. Introduction

Discrete label-based approaches have been success-

fully applied to many computer vision problems such as

stereo, optical flow, interactive image segmentation or ob-

ject recognition. In a typical labeling approach, the input

data is used to construct a three-dimensional cost volume,

which stores the costs for choosing a label l (i.e. disparities

in stereo) at image coordinates x and y. For stereo, these

costs are given by pixel-wise correlation (e.g. absolute dif-

ferences of the intensities) between corresponding pixels.

Then the goal is to find a solution which (i) obeys the

label costs, (ii) is spatially smooth; and (iii) label changes

are aligned with edges in the image. To this end, a popular

approach is to utilize a Conditional (Markov) Random Field

model (CRF). This means that an energy function is formu-

lated, where the label costs are encoded in a data term and

the spatially smooth edge-aligned solution is enforced by an

e.g. pairwise smoothness term. This cost function can then
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be minimized using global energy minimization approaches

such as graph cut or belief propagation. A drawback is that

such global methods are often relatively slow and do not

scale well to high-resolution images or large label spaces.

Fast approximations (e.g. [26]) usually come at the price of

loss in quality, due to less-global optimization schema.

Continuous counterparts to discrete labeling methods are

based on convex energy functionals which can be efficiently

optimized on the GPU, e.g. [17, 13, 10]. A drawback is

that many of these approaches have a restricted form of

the data and smoothness term. For instance, the brightness

constancy assumption in optical flow is usually linearized

and thus only valid for small displacements. To overcome

this problem, a coarse-to-fine framework is commonly used

which however, still cannot handle objects whose scale is

much smaller than their motion. Another problem is posed

by the convexity of the smoothness term, which might over-

smooth the solution. This may be the reason why convex

models have not reported state-of-the-art stereo results yet.

An interesting alternative to an energy-based approach

is to apply a local filtering method. The filtering operation

achieves a form of spatially-local smoothing of the label

space, in contrast to a potential spatially-global smoothing

of a CRF. Despite this conceptual drawback, an observa-

tion of this and previous work [31] is that “local smooth-

ing” is able to achieve high quality results. We believe that

the reason is the dominance of the data term with respect

to the smoothness term.1 An important observation is that

the data term will play an even more dominant role in the

future, since both video and still-picture cameras are con-

sistently growing in terms of frame-resolution and also dy-

namic range. Note, a detailed comparison between energy-

based and filtering-based methods is beyond the scope of

this paper, and we will only briefly discuss them in sec. 6.

In general, relatively little work has been done in the do-

main of filter-based methods for discrete labeling problems

[31, 19, 8]. Above all, there is no filter-based approach for

general multi-labeling problems which is both fast (real-

time) and achieves high quality results. The key contribu-

tion of this paper is to present such a framework.

1For some applications it may be possible to show that the smoothness

term of a learned energy propagates information only locally. Note that

for some applications global constraints exist such as the occlusion con-

straint in stereo matching and optical flow. In our approach we model the

occlusion constraint with a fast additional operation.
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Let us briefly review the existing ideas of filter-based

methods, which are the motivation of our work (details in

sec. 2). Apart from [8] all work has concentrated on the ap-

plication of stereo matching. Yoon and Kweon [31] showed

that an edge-preserving bilateral filter on the cost volume

can achieve high-accuracy results. Note that the authors

of [31] did not use the term “filtering” to describe their

method, but called it weighted support window aggregation

scheme. This means that they use a naive implementation of

the bilateral filter, which is slow and diminishes the runtime

advantage of local over global methods. Richard et al. [19]

realized this shortcoming and suggested an approximate but

fast (real-time) implementation of the filter. However, their

solution could not even get close to the state-of-the-art re-

sults in stereo matching. Also, their approach is specifically

tailored to stereo matching and hence does not convey the

important insight that this filtering concept can be leveraged

to general labeling tasks, outside stereo matching. Recently,

[8] suggested edge-sensitive smoothing of label costs for

image editing tasks different from stereo. However, their

approach, based on fast geodesic filter operations, is inher-

ently limited to problems with two labels only.

In this work, we overcome the above limitations and

present a filter-framework which efficiently achieves high-

quality solutions for general multi-label problems, hence

is competitive with energy-based methods. This is possible

due to the recently proposed guided filter [11], which has

the edge-preserving property and a runtime independent of

the filter size. Thus, state-of-the-art results can be achieved

without the need to trade off accuracy against efficiency.

Let us now detail our method from a stereo perspective.

We first construct a cost volume with axes (x, y, l), which is

known as disparity space image (DSI) in stereo [21]. Figure

1(b) shows an (x, l) slice through this volume for the scan-

line in figure 1(a). We can obtain a solution to the labeling

problem by choosing the label of the lowest cost at each

pixel (i.e. argmin over the columns of figure 1(b)). The

pixels with the lowest costs are marked red in figure 1(b).

The result is noisy, because the solution is not regularized.

To regularize the solution we can aggregate (smooth)

the costs over a support window (known as window-based

methods in stereo matching). It is known that this aggre-

gation is equivalent to filtering the (x, y) dimensions of the

cost volume [21] with a box filter. The result is shown in

figure 1(c), where we filtered the cost volume in figure 1(b).

The solution with the minimum costs (marked red in figure

1(c)) is smooth but not aligned with the image edges. This is

because the box filter overlaps depth discontinuities, which

are illustrated with green dashed lines in figure 1. This leads

to the well-known “edge-fattening effect” in stereo.

To overcome this problem, we smooth the cost volume

with a weighted box filter. The weights are chosen such

that they preserve edges in the input image. For instance,
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Figure 1. Cost volume filtering. (a) Zoom of the green line

in the input image. (b) Slice of cost volume (white/black/red:

high/low/lowest costs) for line in (a). (c-e) Cost slice smoothed

along x and y-axes (y is not shown here) with box filter, bilateral

filter and guided filter [11], respectively. (f) Ground truth labeling.

smoothing the cost volume with the bilateral filter (figure

1(d)) gives a spatially smooth solution, which is also aligned

with the image edges. Since fast approximations of the bi-

lateral filter degrade the quality, we use the guided filter

[11]. Figure 1(e) shows its edge-preserving properties.

Our generic and fast cost-filtering framework, is widely

applicable, which we demonstrate for three applications:

• A real-time stereo approach that outperforms all other lo-

cal methods on the Middlebury benchmark both in terms of

speed and accuracy.

• A discrete optical flow approach that handles both fine

(small scale) motion structure and large displacements. We

tackle the huge label space by fast cost filtering.

• A fast and high-quality interactive image segmentation

method.

2. Related Work

As mentioned above, there have only been a few attempts

to simulate the edge-preserving smoothness properties of an

CRF by filtering the label costs. We review those now.

Criminisi et al. [8, 7] showed an approach which is ap-

plicable to problems with two labels, like binary image seg-

mentation and panoramic stitching of two overlapping im-

ages. The idea is to filter a likelihood-ratio mask with a fast

geodesic morphological operator. It remains unclear if this
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approach could be extended to multi-label problems such as

stereo.2 Also, the relationship between their morphological

operator and e.g. the bilateral filter is not discussed in detail.

In the continuous domain, Tschumperlè and Deriche

[25] showed that a diffusion tensor-based smoothness regu-

larizer can be transformed into local convolutions with ori-

ented Gaussians. In the optical flow approach of Xiao et

al. [29], the Gaussian kernels were replaced by the bilateral

filter. In this line of research, Werlberger et al. [28] and Sun

et al. [24] incorporated the adaptive support weights of [31]

into a variational approach. In contrast, the goal of our work

is to apply local filtering in a discrete framework.

In the real-time stereo approach of Richardt et al. [19]

the cost volume is smoothed with a fast approximation of

the bilateral filter. Due to this approximation, huge amounts

of memory would be required ([19] reported 764 GB) when

applied to full-color (e.g. RGB) stereo images. Therefore,

[19] is limited to grayscale input images, giving poor results

at disparity boundaries. This is also reflected in the Middle-

bury stereo benchmark [2], where their method is on the

76th rank out of over 90 methods. In contrast, our real-time

implementation uses color images and ranks 9th. To in-

crease the quality, [19] proposed an alternative that uses two

color channels. However, this method is 13 times slower

than their grayscale approach (non-real-time) and still infe-

rior to their re-implementation of [31].

Since we also apply our labeling framework to optical

flow and interactive segmentation, we now briefly review

those methods most relevant in the context of this work.

For optical flow, a popular approach is to use a vari-

ational coarse-to-fine framework that cannot handle large

displacements of small objects, as shown in [5, 23]. To

overcome this problem, discrete data terms can be inte-

grated into a variational framework (see [23, 5, 30]). Purely

discrete label-based approaches do not suffer from this

problem, but a major challenge is the huge label space

(each flow vector is a label and subpixel accuracy further

increases the label space). Due to these difficulties, discrete

approaches, e.g. [4, 16, 15], usually have to trade off search

space (quality) against speed. In contrast, our filter based

method efficiently deals with the search space and handles

both, large displacements and fine small-scale structures.

Related to interactive segmentation, [11] adopted the

guided filter to compute a soft-segmentation, so called alpha

matte [18]. This is done by filtering a binary segmentation

mask, as opposed to the cost volume as in our approach.

3. Cost-Volume Filtering

In this section we describe our labeling framework and

apply it to three different vision applications in section 4.

2To generate a smooth real-valued output for image editing tasks, such

as denoising or cartoonization, [8] smoothes the input image (as opposed

to a multi-labeled likelihood map).

We consider a general labeling problem, where the goal

is to assign each pixel i with coordinates (x, y) in the image

I to a label l from the set L = {1, . . . , L}. The label as-

signed to pixel i is denoted by fi and f is the collection of

all label assignments. Our approach consists of three steps:

constructing the cost-volume, filtering the cost volume and

label selection. The cost volume C is a three dimensional

array which stores the costs for choosing label l at pixel

i = (x, y).
The L slices of the cost volume are now filtered. To be

more precise, the output of the filtering at pixel index i at

label l is a weighted average of all pixels in the same slice:

C ′
i,l =

∑

j

Wi,j(I)Cj,l. (1)

Here, C ′ is the filtered cost volume and i and j are pixel

indexes. The filter weights Wi,j depend on the guidance im-

age I , which is in the case of e.g. stereo the reference image.

Once the cost volume is filtered, the label at pixel i is

simply chosen in a winner-take-all manner as

fi = argmin
l

C ′
i,l. (2)

The filter weights Wi,j in eq. (1) should be chosen such

that intensity changes in the guidance image are maintained

in the filter output. In this work we use the weights of the

guided filter [11], which we briefly review now (but other

weights are also possible).

For simplicity, we start by using a grayscale guidance

image I . Then the weights Wi,j are given by:

Wi,j =
1

|ω|2

∑

k:(i,j)∈ωk

(1 +
(Ii − µk)(Ij − µk)

σ2
k + ǫ

), (3)

where µk and σk are the mean and the variance of I in a

squared window ωk with dimensions r×r, centered at pixel

k.3 We denote the number of pixels in this window with |ω|
and ǫ is a smoothness parameter explained below.

To see why the filter weights preserve edges of I in the

filter output, let us consider figure 2 which shows a 1-D

step edge. The numerator (Ii − µk)(Ij − µk) in eq. (3)

has a positive sign if Ij is located on the same side of the

edge as Ii, and has a negative sign otherwise. Thus the term

1 +
(Ii−µk)(Ij−µk)

σ2

k
+ǫ

in eq. (3), is large for pixel pairs on the

same side of the edge and small otherwise. Hence, pixels

are not averaged if they are separated by an image edge.

The strength of the averaging is controlled by the param-

eter ǫ in eq. (3). If σ2 ≪ ǫ (then µk is similar to Ii and Ij)
then the numerator in eq. (3) is much smaller than the de-

nominator. Hence, the kernel converges to an (unweighed)

low-pass filter: Wi,j =
1

|ω|2

∑

k:(i,j)∈ωk
1.

3The size of the filter kernel itself is (4r+ 1)2, because the sum in eq.

(3) is defined over all windows which include pixel indexes i and j.
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Figure 2. 1D step edge. We shown µ and σ for a kernel centered

exactly at the edge. See text for details. Figure courtesy from [11].
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Figure 3. Filter kernels. We show kernels of the guided filter with

r = 9 and ǫ = 0.01
2, at different locations in an image of [1].

The filter weights are similarly defined for color images:

Wi,j =
1

|ω|2

∑

k:(i,j)∈ωk

(1+(Ii−µk)
T (Σk+ǫU)−1(Ij−µk)).

(4)

Here, Ii, Ij and µk are 3× 1 (color) vectors and the co-

variance matrix Σk and identity matrix U are of size 3× 3.
The filter weights for some image regions are visualized in

figure 3. The weights are high in regions which are self-

similar to the central pixel and low otherwise. It has been

shown [11] that a weighted average with weights in eq. (3)

or (4) can be implemented efficiently on the CPU as a se-

quence of box filters using the integral imaging technique

[9]. We apply the same technique to obtain an even more

efficient GPU implementation.

4. Applications

We implemented three different vision applications in

our framework. Notice that the method for stereo and op-

tical flow is almost identical and only one parameter is set

differently in the experiments (see explanation in sec. 5).

4.1. Stereo Matching

For stereo matching the labels l correspond to vectors

(u, v) which define the displacement in x and y direction.

In the x direction, the displacement corresponds to the dis-

parity d (u = d) and there is no shift in y direction (v = 0).
Cost computation: The cost volume expresses how well

a pixel i in image I matches the same pixel in the second

image I ′ shifted by vector l. We choose our pixel-based

matching costs to be a truncated absolute difference of the

color and the gradient at the matching points. Such a model

has been shown to be robust to illumination changes and is

commonly used in optical flow estimation [5, 6]:

Ci,l = (1− α) ·min
[

||I ′i+l − Ii||, τ1
]

+ (5)

α ·min
[

||∇xI
′
i+l −∇xIi||, τ2

]

.

Here, ∇x is the gradient in x direction, α balances the

color and gradient terms and τ1, τ2 are truncation values.4

We then filter the cost volume according to eq. (1) with

weights in (4), using I as guidance image. We then compute

the disparity map f for image I as per eq. (2).

Occlusion detection and filling: To detect occlusions, we

additionally compute the disparity map f ′ for the right im-

age I ′ in a similar manner. We mark a pixel in the left dis-

parity map as occluded if the disparity of its matching pixel

differs. The occluded pixels are then assigned to the lowest

disparity value of the spatially closest non-occluded pixels

which lie on the same scanline (pixel row).

Post-processing: This simple occlusion filling strategy can

generate streak-like artifacts in the disparity map. To re-

move them, while preserving the object boundaries, we ap-

ply a weighted median filter to the filled pixels. As filter

weights, we would ideally like to choose those of the guided

filter defined in eq. (4). However, computing these weights

involves building a sparse matrix of size N ×N , where N
is the number of image pixels. The non-zero entries of this

matrix increase tremendously for large windows sizes thus

immense memory and time is required for computing this

matrix 5. Thus we resort to the bilateral filter weights:

W bf
i,j =

1

Ki

exp(−
|i− j|2

σ2
s

) exp(−
|Ii − Ij |

2

σ2
c

), (6)

where σs and σc adjust spatial and color similarity, Ki is a

normalization factor and we use filter dimensions rb × rb.
Alternative - symmetric stereo: Our stereo approach can

be extended to filter the cost volume, while preserving edges

in both input images simultaneously. To this end, we re-

place the 3 × 1 vector Ii in eq. (4) with a 6 × 1 vector

whose entries are given by the RGB color channels of Ii and

I ′i+l. The dimensions of Ij , Σk, U and µk change similarly.

We tested this approach but found the average improvement

negligible. Thus we do not report results for this approach.

4.2. Optical Flow

Our optical flow approach is almost identical to stereo.

Here, the labels l correspond to vectors (u, v) which define

the flow in x and y direction, respectively.

4One could also use a spatially varying α as it was recently proposed in

[30]. However, this approach gave worse results on the stereo test images.
5The filter weights do not have to be computed explicitly when using a

weighted average filter, which we use to smooth the cost volume.

3020



Cost computation: We compute the matching costs of cor-

responding pixels as in stereo, but additionally use the gra-

dient ∇y in y direction:

Ci,l = (1− α) ·min
[

||I ′i+l − Ii||, τ1
]

+ (7)

α ·min
[

||∇xI
′
i+l −∇xIi||+ ||∇yI

′
i+l −∇yIi||, τ2

]

.

As for stereo, we filter C using I as guidance image and

obtain the flow field in a winner-take-all manner.

Occlusion detection and filling: We apply the same left-

right cross checking procedure as in stereo to find occluded

pixels. For occlusion filling we cannot simply assign the

flow vector with the lowest magnitude of the spatially clos-

est pixels. This is because objects with a smaller flow

magnitude can occlude objects with higher flow magnitude.

Therefore, we use a weighted median filter to fill the oc-

cluded regions based on their color similarity to the visible

flow regions. In detail, we apply a weighted median with

weights as in eq. (6) to the occluded pixels. The windows of

the median filter overlap the non-occluded regions thus can

propagate the flow vectors into the occluded image parts.

Subpixel precision: To find sub-pixel accurate flow vec-

tors, we follow [23] and simply upscale the input images

using bicubic interpolation. This increases the size of the

cost volume in the label dimension (but not in the x and

y dimensions) and hence raises the running time. In prac-

tice, we found that smoothing the final flow vectors with the

guided filter can compensate for a lower upscaling factor.6

We empirically found that an upscaling factor of 4 gives vi-

sually pleasing results, but in this paper we upscale by a

factor of 8 to demonstrate the best possible performance.

4.3. Interactive Image Segmentation

In interactive image segmentation the labels encode

whether a pixel belongs to the foreground F or the back-

ground B, thus L = {F,B}. For initialization, the user

assigns parts of the image to foreground and background.

Cost computation: From the user assignments, we build

fore- and background color histograms denoted as θF and

θB , which sum up to 1. Each histogram has K bins and we

denote the bin into which pixel i falls with b(i). We can

also use a bounding box as input, where the pixels outside

the box build θB and all pixels inside the box build θF as in

[27]. Then the cost volume is given by:

Ci,l = 1− θlb(i). (8)

For binary labeling problems we can reduce the cost vol-

ume Ci,l to a two-dimensional cost surface Ci which de-

notes the costs of a pixel to belong to foreground:

6An alternative to achieve subpixel precision is to upscale the final flow

vectors with the joint bilateral filter or the guided filter.

Ci = 1− θFb(i)/(θ
F
b(i) + θBb(i)). (9)

If a pixel i has been assigned to fore- or background by

the user, Ci is set to 0 or 1, respectively. After filtering the

cost surface, a pixel i is assigned to foreground if Ci < 0.5
and assigned to background otherwise. When using bound-

ing boxes, we iteratively update the color models as in [20].

In practice, we achieved good results with 5 iterations.

To account for semi-transparent pixels along the object

boundary in an efficient manner, we filter the computed bi-

nary mask with the guided filter. This has been shown [11]

to approximate an alpha matting method.

5. Experimental Results

We use the following, same constant parameter set-

tings for optical flow and stereo to generate all results:

{r, ǫ, α, σs, σc, rb, τ1} = {9, 0.012, 0.9, 9, 0.1, 19, 0.0028}.
This demonstrates the robustness of our method. The only

exception is the truncation value τ2 of the matching costs in

eq. (6) and (8). This value depends on the signal-to-noise

ratio of an image [21] as well as on the size of the occluded

regions. Thus we use τ2 = 0.008 for stereo and τ2 = 0.016
for optical flow.

Interactive image segmentation is a very different prob-

lem, hence we found different, constant parameter settings

(i.e. more smoothing) work well: {r, ǫ} = {11, 0.22}. Also,

we use K = 32 bins for the color-model histogram.

We implemented our method on the graphics card us-

ing CUDA. All experiments were conducted on a 2.4GHZ

processor and an NVIDIA GeForce GTX480 graphics card

with 1.5GB of memory. Our approach takes about 5ms to

filter a 1Mpix image. Thus we can process about 200 labels

per second in a 1Mpix image. Problem specific timings are

reported below (we report runtimes of the full methods, in-

cluding postprocessing). A Matlab implementation of our

stereo method is available on our project website 7.

5.1. Stereo Matching

We evaluated our approach on the Middlebury stereo

benchmark [2] and list the results in table 1. Our approach

gives excellent results (see figure 4 and supp. material)

ranking 9th out of over 90 methods at the time of submis-

sion. Even more importantly, we are the best performing

local stereo method outperforming even the original imple-

mentation of [31] (rank 32). To understand why our method

performs better than [31], we plugged their weights into our

method. Hence, we use the same matching costs and occlu-

sion handling as in our method. This approach is about 230

times slower than ours but ranks closely behind it on rank

15 (we tuned the parameters of this approach to give best

7http://www.ims.tuwien.ac.at/research/costFilter/
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Method Rank Avg. Avg. Runtime

Error (%) (ms)

Ours 9 5.55 65

GeoSup [12] 12 5.80 16000

Plane-fit BP 13 5.78 650

Ours using AdaptWeight [31] 15 5.86 15000

AdaptWeight [31] 32 6.67 8550

Real-time GPU 66 9.82 122.5

Reliability DP 69 10.7 187.8

DCB Grid [19] 76 10.9 95.4*

Table 1. Stereo evaluation on Middlebury. Rankings for selected

stereo methods. We are the best-performing local approach. *The

runtime in [19] was reported before left-right consistency check.

For fairness, we report the approx. total runtime here.

Figure 4. Stereo results on Middlebury. Disparity maps for the

“Tsukuba” and “Cones” scenes using constant parameters.

possible results). This suggests that the guided filter and the

bilateral filter are both well suited for stereo matching.

The average runtime (we report times of the full method

including e.g. left-right post-processing) of our method and

its competitors are shown in table 1. Our approach works in

real-time (approx. 23fps on average) and is the fastest on

the Middlebury test set. Runtimes of the competing meth-

ods are taken from [19].8

5.2. Optical Flow

We evaluate our approach on the Middlebury flow bench-

mark [1] and report the results in table 2. Overall, our ap-

proach ranks on the 4th and 6th rank with respect to the

angle error and endpoint error out of almost 40 methods at

the time of submission. This performance is comparable

to the method of Werlberger et al. (NL-TV-NCC) [28] that

uses adaptive support weights in a variational method. Our

method has several advantages over its competitors. First,

our approach outperforms most other methods on scenes

with fine details and strong motion discontinuities such as

“Schefflera”, “Grove” and “Teddy”, where we achieve an

average rank of 2.2 and rank 1st on the “Teddy” scene (see

details in table 2 and figure 5). Second, our approach (using

identical parameter settings) can handle scenes with large

displacements, which is more difficult for approaches like

[28] that are restricted by their coarse-to-fine framework.

8Times were measured on different machines but still give a good indi-

cation of the computational complexity.

(a) Input images (b) Steinbrücker et al. [23] (c) LDOF [5]

(d) ACK-Prior [14] (e) Ours (f) Our flow

Figure 6. Large displacement flow (Beanbags). (b-e) Motion

magnitude for different methods. (f) Flow vectors with the color

coding as in [1]. Our method nicely recovers the shape of the hand.

Finally, the simplicity of our method is another advantage

over many approaches that require a large number of pa-

rameters to be tuned (e.g. number of pyramid levels and in-

terpolation strategy).

Our approach performs less well on the “Wooden” and

“Yosemite” sequence. This is because in the “Wooden” se-

quence our algorithm assigns wrong flow values to a shad-

owed region. Although the difference to the top perform-

ers in terms of error appears to be small, it has a larger

effect in the ranking. In the future, other matching cost

functions could be used to overcome this problem. The ar-

tificial “Yosemite” sequence contains many untextured re-

gions where the data term is unreliable. Variational methods

smoothly interpolate over these regions while our method

misinterprets them as motion discontinuities. We observed

that this is less of a problem in natural high-resolution im-

ages where the data term gives useful information even in

regions that appear homogeneous at a first glance.

The total runtime of our method for the 640 × 480 “Ur-

ban” sequence (about 30, 000 labels when using a subsam-

pling factor of 8) was about 90 seconds. In practice we

found that much smaller subampling factors give visually

comparable results at considerably lower runtimes.

Large displacement flow results: An important advantage

of our method is that it also handles large displacements

without changing any parameters (see figures 6 and 7 for

a comparison). Our approach generates results that are vi-

sually comparable or better than methods which are mostly

specialized on large displacement flow and do not perform

best for small displacements (exceptions are [30, 14]).

5.3. Interactive Image Segmentation

To show that our approach also performs well for im-

age segmentation, we visually compare it to GrabCut [20]
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Method Angle Error Endpoint Error Time

Rank Schefflera Grove Teddy Rank Schefflera Grove Teddy (sec)

Layers++ 1 (1,1,9) (1,1,1) (2,1,3) 1 (1,1,6) (1,1,2) (1,1,6) 18206

Classic+NL [24] 2 (6,5,12) (3,3,3) (3,3,6) 2 (7,7,10) (3,3,4) (3,2,7) 972

MDP-Flow [30] 3 (4,4,15) (4,4,9) (19,20,23) 3 (3,4,11) (5,5,8) (20,22,19) 188

Ours 4 (2,2,3) (2,2,2) (1,2,1) 6 (2,2,6) (2,2,1) (1,3,3) 90

OFH 5 (15,16,4) (6,6,14) (6,10,4) 4 (13,16,3) (11,10,14) (6,10,7) 620

NL-TV-NCC [28] 6 (11,11,1) (18,21,6) (5,7,5) 5 (11,11,1) (7,8,5) (5,5,2) 20

DPOF [15] 9 (3,3,10) (8,9,13) (4,4,2) 9 (3,3,11) (4,4,3) (4,3,1) 287

ACK-Prior [14] 10 (5,6,2) (12,7,18) (12,6,9) 12 (5,5,1) (8,7,11) (18,11,16) 5872

Table 2. Optical flow evaluation on Middlebury. Our approach works well for the challenging “Schefflera”, “Grove” and “Teddy”

sequences. The fine structures and strong motion discontinuities cannot be handled by many competitors. We report the ranks for these

sequences in brackets (all, disc, untext). Runtime is given for the “Urban” sequence (as requested by [1]), which has the largest label space.

Layers++ Classic+NL [24] DPOF [15] MDP Flow [30]NL TV NCC [28]GT OursOurs

Layers++ MDP Flow [30] DPOF [15] NL TV NCC [28]ACK Prior [14]Ours OursGT

Figure 5. Detailed flow results. Comparison for two fine structured sequences (upper part: “Schefflera” scene; lower part: “Grove” scene),

where many competitors fail to preserve flow discontinuities. (We boosted the colors in the second upper row for better visualization.)

in figure 8. As user input we either use coarse scribbles or

a single bounding box. The results are visually comparable

at lower runtimes (5ms vs. about 300ms (425ms) using the

graph cut implementation of [7] ([3]) on a 1Mpixel image).

Furthermore, our method gives comparable results to Grab-

Cut [20] on a ground truth database of 50 images [20]. The

error (percentage of misclassified pixels in the regions not

marked by the user) using trimap input is 5.3% for GrabCut

and 6.2% for our method. This shows the potential of our

approach to be successfully applied to other vision applica-

tions. A video of our real-time segmentation tool is shown

in the supplementary material.

6. Discussion and Future Work

This paper presented a simple, yet powerful filter-

ing approach for solving discrete labeling problems. As

mentioned in the introduction, the relationship between

filtering-based operations and energy-based optimization

schema for continuous and discrete models, such as be-

lief propagation are, to the best of our knowledge, not fully

known. One relationship, given in [11], is that the guided

filter is one step of a conjugate gradient solver of a particu-

lar linear system. We believe that a better understanding can

lead to fast and even better (iterative) filtering approaches.
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