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ABSTRACT
RAMCloud is a DRAM-based storage system that provides inex-
pensive durability and availability by recovering quickly after crashes,
rather than storing replicas in DRAM. RAMCloud scatters backup
data across hundreds or thousands of disks, and it harnesses hun-
dreds of servers in parallel to reconstruct lost data. The system uses
a log-structured approach for all its data, in DRAM as well as on
disk; this provides high performance both during normal operation
and during recovery. RAMCloud employs randomized techniques
to manage the system in a scalable and decentralized fashion. In a
60-node cluster, RAMCloud recovers 35 GB of data from a failed
server in 1.6 seconds. Our measurements suggest that the approach
will scale to recover larger memory sizes (64 GB or more) in less
time with larger clusters.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design—Distributed
systems; D.4.2 [Operating Systems]: Storage Management—Main
memory; D.4.5 [Operating Systems]: Reliability—Fault-tolerance;
D.4.8 [Operating Systems]: Performance—Measurements

General Terms
Design, Measurement, Performance, Reliability, Experimentation

Keywords
Storage systems, Main memory databases, Crash recovery, Scala-
bility

1. INTRODUCTION
The role of DRAM in storage systems has been increasing rapidly

in recent years, driven by the needs of large-scale Web applica-
tions. These applications manipulate very large datasets with an
intensity that cannot be satisfied by disks alone. As a result, ap-
plications are keeping more and more of their data in DRAM. For
example, large-scale caching systems such as memcached [3] are
being widely used (in 2009 Facebook used a total of 150 TB of
DRAM in memcached and other caches for a database containing

200 TB of disk storage [15]), and the major Web search engines
now keep their search indexes entirely in DRAM.

Although DRAM’s role is increasing, it still tends to be used in
limited or specialized ways. In most cases DRAM is just a cache
for some other storage system such as a database; in other cases
(such as search indexes) DRAM is managed in an application-specific
fashion. It is difficult for developers to use DRAM effectively in
their applications; for example, the application must manage con-
sistency between caches and the backing storage. In addition, cache
misses and backing store overheads make it difficult to capture
DRAM’s full performance potential.

RAMCloud is a general-purpose storage system that makes it
easy for developers to harness the full performance potential of
large-scale DRAM storage. It keeps all data in DRAM all the time,
so there are no cache misses. RAMCloud storage is durable and
available, so developers need not manage a separate backing store.
RAMCloud is designed to scale to thousands of servers and hun-
dreds of terabytes of data while providing uniform low-latency ac-
cess (5-10 μs round-trip times for small read operations).

The most important factor in the design of RAMCloud was the
need to provide a high level of durability and availability with-
out impacting system performance. Replicating all data in DRAM
would have solved some availability issues, but with 3x replication
this would have tripled the cost and energy usage of the system.
Instead, RAMCloud keeps only a single copy of data in DRAM;
redundant copies are kept on disk or flash, which is both cheaper
and more durable than DRAM. However, this means that a server
crash will leave some of the system’s data unavailable until it can
be reconstructed from secondary storage.

RAMCloud’s solution to the availability problem is fast crash re-
covery: the system reconstructs the entire contents of a lost server’s
memory (64 GB or more) from disk and resumes full service in 1-2
seconds. We believe this is fast enough to be considered “continu-
ous availability” for most applications.

This paper describes and evaluates RAMCloud’s approach to fast
recovery. There are several interesting aspects to the RAMCloud
architecture:

• Harnessing scale: RAMCloud takes advantage of the sys-
tem’s large scale to recover quickly after crashes. Each server
scatters its backup data across all of the other servers, allow-
ing thousands of disks to participate in recovery. Hundreds
of recovery masters work together to avoid network and CPU
bottlenecks while recovering data. RAMCloud uses both
data parallelism and pipelining to speed up recovery.

• Log-structured storage: RAMCloud uses techniques sim-
ilar to those from log-structured file systems [21], not just
for information on disk but also for information in DRAM.
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The log-structured approach provides high performance and
simplifies many issues related to crash recovery.

• Randomization: RAMCloud uses randomized approaches
to make decisions in a distributed and scalable fashion. In
some cases randomization is combined with refinement: a
server selects several candidates at random and then chooses
among them using more detailed information; this provides
near-optimal results at low cost.

• Tablet profiling: RAMCloud uses a novel dynamic tree struc-
ture to track the distribution of data within tables; this helps
divide a server’s data into partitions for fast recovery.

We have implemented the RAMCloud architecture in a work-
ing system and evaluated its crash recovery properties. Our 60-
node cluster recovers in 1.6 seconds from the failure of a server
with 35 GB of data, and the approach scales so that larger clus-
ters can recover larger memory sizes in less time. Measurements of
our randomized replica placement algorithm show that it produces
uniform allocations that minimize recovery time and that it largely
eliminates straggler effects caused by varying disk speeds.

Overall, fast crash recovery allows RAMCloud to provide durable
and available DRAM-based storage for the same price and energy
usage as today’s volatile DRAM caches.

2. RAMCLOUD
Crash recovery and normal request processing are tightly inter-

twined in RAMCloud, so this section provides background on the
RAMCloud concept and the basic data structures used to process
requests. We have omitted some details because of space limita-
tions.

2.1 Basics
RAMCloud is a storage system where every byte of data is present

in DRAM at all times. The hardware for RAMCloud consists of
hundreds or thousands of off-the-shelf servers in a single datacen-
ter, each with as much DRAM as is cost-effective (24 to 64 GB
today). RAMCloud aggregates the DRAM of all these servers into
a single coherent storage system. It uses backup copies on disk or
flash to make its storage durable and available, but the performance
of the system is determined by DRAM, not disk.

The RAMCloud architecture combines two interesting proper-
ties: low latency and large scale. First, RAMCloud is designed
to provide the lowest possible latency for remote access by appli-
cations in the same datacenter. Our goal is end-to-end times of
5-10 μs for reading small objects in datacenters with tens of thou-
sands of machines. This represents an improvement of 50-5,000x
over existing datacenter-scale storage systems.

Unfortunately, today’s datacenters cannot meet RAMCloud’s la-
tency goals (Ethernet switches and NICs typically add at least 200-
500 μs to round-trip latency in a large datacenter). Thus we use
low-latency Infiniband NICs and switches in our development envi-
ronment as an approximation to the networking hardware we hope
will be commonplace in a few years; this makes it easier to explore
latency issues in the RAMCloud software. The current RAMCloud
system supports 5 μs reads in a small cluster, and each storage
server can handle about 1 million small read requests per second.

The second important property of RAMCloud is scale: a single
RAMCloud cluster must support thousands of servers in order to
provide a coherent source of data for large applications. Scale cre-
ates several challenges, such as the likelihood of frequent compo-
nent failures and the need for distributed decision-making to avoid
bottlenecks. However, scale also creates opportunities, such as the
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Figure 1: RAMCloud cluster architecture. Each storage server contains a
master and a backup. A central coordinator manages the server pool and
tablet configuration. Client applications run on separate machines and ac-
cess RAMCloud using a client library that makes remote procedure calls.

ability to enlist large numbers of resources on problems like fast
crash recovery.

RAMCloud’s overall goal is to enable a new class of applications
that manipulate large datasets more intensively than has ever been
possible. For more details on the motivation for RAMCloud and
some of its architectural choices, see [18].

2.2 Data Model
The current data model in RAMCloud is a simple key-value

store. RAMCloud supports any number of tables, each of which
contains any number of objects. An object consists of a 64-bit iden-
tifier, a variable-length byte array (up to 1 MB), and a 64-bit version
number. RAMCloud provides a simple set of operations for creat-
ing and deleting tables and for reading, writing, and deleting ob-
jects within a table. Objects are addressed with their identifiers and
are read and written in their entirety. There is no built-in support for
atomic updates to multiple objects, but RAMCloud does provide a
conditional update (“replace the contents of object O in table T

only if its current version number is V ”), which can be used to im-
plement more complex transactions in application software. In the
future we plan to experiment with more powerful features such as
indexes, mini-transactions [4], and support for large graphs.

2.3 System Structure
As shown in Figure 1, a RAMCloud cluster consists of a large

number of storage servers, each of which has two components: a
master, which manages RAMCloud objects in its DRAM and ser-
vices client requests, and a backup, which stores redundant copies
of objects from other masters using its disk or flash memory. Each
RAMCloud cluster also contains one distinguished server called
the coordinator. The coordinator manages configuration informa-
tion such as the network addresses of the storage servers and the
locations of objects; it is not involved in most client requests.

The coordinator assigns objects to storage servers in units of
tablets: consecutive key ranges within a single table. Small tables
are stored in their entirety on a single storage server; larger tables
are split across multiple servers. Client applications do not have
control over the tablet configuration; however, they can achieve
some locality by taking advantage of the fact that small tables (and
adjacent keys in large tables) are stored together on a single server.

The coordinator stores the mapping between tablets and storage
servers. The RAMCloud client library maintains a cache of this
information, fetching the mappings for each table the first time it
is accessed. Clients can usually issue storage requests directly to
the relevant storage server without involving the coordinator. If a
client’s cached configuration information becomes stale because a
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tablet has moved, the client library discovers this when it makes
a request to a server that no longer contains the tablet, at which
point it flushes the stale data from its cache and fetches up-to-date
information from the coordinator. Clients use the same mechanism
during crash recovery to find the new location for data.

2.4 Managing Replicas
The internal structure of a RAMCloud storage server is deter-

mined primarily by the need to provide durability and availability.
In the absence of these requirements, a master would consist of lit-
tle more than a hash table that maps from 〈table identifier, object
identifier〉 pairs to objects in DRAM. The main challenge is pro-
viding durability and availability without sacrificing performance
or greatly increasing system cost.

One possible approach to availability is to replicate each object
in the memories of several servers. However, with a typical repli-
cation factor of three, this approach would triple both the cost and
energy usage of the system (each server is already fully loaded, so
adding more memory would also require adding more servers and
networking). The cost of main-memory replication can be reduced
by using coding techniques such as parity striping [20], but this
makes crash recovery considerably more expensive. Furthermore,
DRAM-based replicas are still vulnerable in the event of power
failures.

Instead, RAMCloud keeps only a single copy of each object in
DRAM, with redundant copies on secondary storage such as disk
or flash. This makes replication nearly free in terms of cost and
energy usage (the DRAM for primary copies will dominate both
of these factors), but it raises two issues. First, the use of slower
storage for backup might impact the normal-case performance of
the system (e.g., by waiting for synchronous disk writes). Sec-
ond, this approach could result in long periods of unavailability or
poor performance after server crashes, since the data will have to be
reconstructed from secondary storage. Section 2.5 describes how
RAMCloud solves the performance problem, and Section 3 deals
with crash recovery.

2.5 Log-Structured Storage
RAMCloud manages object data using a logging approach. This

was originally motivated by the desire to transfer backup data to
disk or flash as efficiently as possible, but it also provides an effi-
cient memory management mechanism, enables fast recovery, and
has a simple implementation. The data for each master is organized
as a log as shown in Figure 2. When a master receives a write re-
quest, it appends the new object to its in-memory log and forwards
that log entry to several backup servers. The backups buffer this
information in memory and return immediately to the master with-
out writing to disk or flash. The master completes its request and
returns to the client once all of the backups have acknowledged re-
ceipt of the log data. When a backup’s buffer fills, it writes the
accumulated log data to disk or flash in a single large transfer, then
deletes the buffered data from its memory.

Backups must ensure that buffered log data is as durable as data
on disk or flash (i.e., information must not be lost in a power fail-
ure). One solution is to use new DIMM memory modules that in-
corporate flash memory and a super-capacitor that provides enough
power for the DIMM to write its contents to flash after a power out-
age [2]; each backup could use one of these modules to hold all of
its buffered log data. Other alternatives are per-server battery back-
ups that extend power long enough for RAMCloud to flush buffers,
or enterprise disk controllers with persistent cache memory.

RAMCloud manages its logs using techniques similar to those in
log-structured file systems [21]. Each master’s log is divided into

Master

Hash table

In-Memory Log

Backup

DiskBuffered Segment

Backup

DiskBuffered Segment

Backup

DiskBuffered Segment

1.Process write

request

2. Append object to log and

update hash table

3. Replicate object

to backups

4. Respond to

write request

Figure 2: When a master receives a write request, it updates its in-memory
log and forwards the new data to several backups, which buffer the data
in their memory. The data is eventually written to disk or flash in large
batches. Backups must use an auxiliary power source to ensure that buffers
can be written to stable storage after a power failure.

8 MB segments. The master keeps a count of unused space within
each segment, which accumulates as objects are deleted or over-
written. It reclaims wasted space by occasionally invoking a log
cleaner; the cleaner selects one or more segments to clean, reads
the live records from the segments and rewrites them at the head of
the log, then deletes the cleaned segments along with their backup
copies. Segments are also the unit of buffering and I/O on backups;
the large segment size enables efficient I/O for both disk and flash.

RAMCloud uses a log-structured approach not only for backup
storage, but also for information in DRAM: the memory of a mas-
ter is structured as a collection of log segments identical to those
stored on backups. This allows masters to manage both their in-
memory data and their backup data using a single mechanism. The
log provides an efficient memory management mechanism, with
the cleaner implementing a form of generational garbage collec-
tion. In order to support random access to objects in memory, each
master keeps a hash table that maps from 〈table identifier, object
identifier〉 pairs to the current version of an object in a segment.
The hash table is used both to look up objects during storage op-
erations and to determine whether a particular object version is the
current one during cleaning (for example, if there is no hash table
entry for a particular object in a segment being cleaned, it means
the object has been deleted).

The buffered logging approach allows writes to complete with-
out waiting for disk operations, but it limits overall system through-
put to the bandwidth of the backup storage. For example, each
RAMCloud server can handle about 300,000 100-byte writes/second
(versus 1 million reads/second) assuming 2 disks per server, 100 MB/s
write bandwidth for each disk, 3 disk replicas of each object, and
a 100% bandwidth overhead for log cleaning. Additional disks can
be used to boost write throughput.

3. RECOVERY
When a RAMCloud storage server crashes, the objects that had

been present in its DRAM must be reconstructed by replaying its
log. This requires reading log segments from backup storage, pro-
cessing the records in those segments to identify the current version
of each live object, and reconstructing the hash table used for stor-
age operations. The crashed master’s data will be unavailable until
the hash table has been reconstructed.

Fortunately, if the period of unavailability can be made very
short, so that it is no longer than other delays that are common in
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Figure 3: (a) Disk bandwidth is a recovery bottleneck if each master’s data is mirrored on a small number of backup machines. (b) Scattering log segments
across many backups removes the disk bottleneck, but recovering all data on one recovery master is limited by the network interface and CPU of that machine.
(c) Fast recovery is achieved by partitioning the data of the crashed master and recovering each partition on a separate recovery master.

normal operation, and if crashes happen infrequently, then crash re-
covery will be unnoticeable to the application’s users. We believe
that 1-2 second recovery is fast enough to constitute “continuous
availability” for most applications; our goal is to achieve this speed
for servers with at least 64 GB of memory.

3.1 Using Scale
The key to fast recovery in RAMCloud is to take advantage of

the massive resources of the cluster. This subsection introduces
RAMCloud’s overall approach for harnessing scale; the following
subsections describe individual elements of the mechanism in
detail.

As a baseline, Figure 3a shows a simple mirrored approach where
each master chooses 3 backups and stores copies of all its log seg-
ments on each backup. Unfortunately, this creates a bottleneck for
recovery because the master’s data must be read from only a few
disks. In the configuration of Figure 3a with 3 disks, it would take
about 3.5 minutes to read 64 GB of data.

RAMCloud works around the disk bottleneck by using more
disks during recovery. Each master scatters its log data across all
of the backups in the cluster (each segment on a different set of
backups) as shown in Figure 3b. During recovery, these scattered
log segments can be read simultaneously; with 1,000 disks, 64 GB
of data can be read into memory in less than one second.

Once the segments have been read from disk into backups’ mem-
ories, they must be combined to find the most recent version for
each object (no backup can tell in isolation whether a particular
object in a particular segment is the most recent version). One ap-
proach is to send all the log segments to a single recovery master
and replay the log on that master, as in Figure 3b. Unfortunately,
the recovery master is a bottleneck in this approach: with a 10 Gbps
network interface, it will take about 1 minute to read 64 GB of data,
and the master’s CPU will also be a bottleneck.

To eliminate the recovery master as the bottleneck, RAMCloud
uses multiple recovery masters as shown in Figure 3c. During re-
covery RAMCloud divides the objects of the crashed master into
partitions of roughly equal size. Each partition is assigned to a
different recovery master, which fetches the log data for the parti-
tion’s objects from backups and incorporates those objects into its
own log and hash table. With 100 recovery masters operating in
parallel, 64 GB of data can be transferred over a 10 Gbps network
in less than 1 second. As will be shown in Section 4, this is also
enough time for each recovery master’s CPU to process the incom-
ing data.

Thus, the overall approach to recovery in RAMCloud is to com-
bine the disk bandwidth, network bandwidth, and CPU cycles of

thousands of backups and hundreds of recovery masters. The sub-
sections below describe how RAMCloud divides its work among
all of these resources and how it coordinates the resources to re-
cover in 1-2 seconds.

3.2 Scattering Log Segments
For fastest recovery the log segments for each RAMCloud mas-

ter should be distributed uniformly across all of the backups in the
cluster. However, there are several factors that complicate this ap-
proach:

• Segment placement must reflect failure modes. For example,
a segment’s master and each of its backups must reside in
different racks, in order to protect against top-of-rack switch
failures and other problems that disable an entire rack.

• Different backups may have different bandwidth for I/O (dif-
ferent numbers of disks, different disk speeds, or different
storage classes such as flash memory); segments should be
distributed so that each backup uses the same amount of time
to read its share of the data during recovery.

• All of the masters are writing segments simultaneously; they
should coordinate to avoid overloading any individual backup.
Backups have limited buffer space.

• Storage servers are continuously entering and leaving the
cluster, which changes the pool of available backups and may
unbalance the distribution of segments.

Making decisions such as segment replica placement in a cen-
tralized fashion on the coordinator would limit RAMCloud’s scal-
ability. For example, a cluster with 10,000 servers could back up
100,000 or more segments per second; this could easily cause the
coordinator to become a performance bottleneck.

Instead, each RAMCloud master decides independently where
to place each replica, using a combination of randomization and
refinement. When a master needs to select a backup for a segment,
it chooses several candidates at random from a list of all backups in
the cluster. Then it selects the best candidate, using its knowledge
of where it has already allocated segment replicas and information
about the speed of each backup’s disk (backups measure the speed
of their disks when they start up and provide this information to
the coordinator, which relays it on to masters). The best backup
is the one that can read its share of the master’s segment replicas
most quickly from disk during recovery. A backup is rejected if it
is in the same rack as the master or any other replica for the current
segment. Once a backup has been selected, the master contacts that
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backup to reserve space for the segment. At this point the backup
can reject the request if it is overloaded, in which case the master
selects another candidate.

The use of randomization eliminates pathological behaviors such
as all masters choosing the same backups in a lock-step fashion.
Adding the refinement step provides a solution nearly as optimal
as a centralized manager (see [17] and [5] for a theoretical analy-
sis). For example, if a master scatters 8,000 segments across 1,000
backups using a purely random approach, backups will have 8 seg-
ments on average. However, some backups are likely to end up
with 15-20 segments, which will result in uneven disk utilization
during recovery. Adding just a small amount of choice makes the
segment distribution nearly uniform and also allows for compen-
sation based on other factors such as disk speed (see Section 4.4).
This mechanism also handles the entry of new backups gracefully:
a new backup is likely to be selected more frequently than existing
backups until every master has taken full advantage of it.

RAMCloud masters mark one of the replicas for each segment
as the primary replica. Only the primary replicas are read during
recovery (unless they are unavailable), and the performance opti-
mizations described above consider only primary replicas.

We considered the possibility of storing one of the backup repli-
cas on the same machine as the master. This would reduce net-
work bandwidth requirements, but it has two disadvantages. First,
it would reduce system fault tolerance: the master already has one
copy in its memory, so placing a second copy on the master’s disk
provides little benefit. If the master crashes, the disk copy will be
lost along with the memory copy; it would only provide value in
a cold start after a power failure. Second, storing one replica on
the master would limit the burst write bandwidth of a master to the
bandwidth of its local disks. In contrast, with all replicas scattered,
a single master can potentially use the disk bandwidth of the entire
cluster (up to the limit of its network interface).

3.3 Failure Detection
RAMCloud detects server failures in two ways. First, RAM-

Cloud clients will notice if a server fails to respond to a remote
procedure call. Second, RAMCloud checks its own servers to de-
tect failures even in the absence of client activity; this allows RAM-
Cloud to replace lost replicas before multiple crashes cause perma-
nent data loss. Each RAMCloud server periodically issues a ping
RPC to another server chosen at random and reports failures to the
coordinator. This is another example of using a randomized dis-
tributed approach in place of a centralized approach. The proba-
bility of detecting a crashed machine in a single round of pings is
about 63% for clusters with 100 or more nodes; the odds are greater
than 99% that a failed server will be detected within five rounds.

In either case, server failures are reported to the coordinator.
The coordinator verifies the problem by attempting to communi-
cate with the server itself, then initiates recovery if the server does
not respond. Timeouts must be relatively short (tens of millisec-
onds) so that they don’t significantly delay recovery. See Section 5
for a discussion of the risks introduced by short timeouts.

3.4 Recovery Flow
The coordinator supervises the recovery process, which proceeds
in three phases:

1. Setup. The coordinator finds all replicas of all log segments
belonging to the crashed master, selects recovery masters,
and assigns each recovery master a partition to recover.

2. Replay. Recovery masters fetch log segments in parallel and
incorporate the crashed master’s partitions into their own logs.

3. Cleanup. Recovery masters begin serving requests, and the
crashed master’s log segments are freed from backup storage.

These phases are described in more detail below.

3.5 Setup

3.5.1 Finding Log Segment Replicas
At the start of recovery, replicas of the crashed master’s segments

must be located among the cluster’s backups. RAMCloud does not
keep a centralized map of replicas since it would be difficult to
scale and would hinder common-case performance. Only masters
know where their segments are replicated, but this information is
lost when they crash.

The coordinator reconstructs the locations of the crashed mas-
ter’s replicas by querying all of the backups in the cluster. Each
backup responds with a list of the replicas it has stored for the
crashed master (backups maintain this index in memory). The co-
ordinator then aggregates the responses into a single location map.
By using RAMCloud’s fast RPC system and querying multiple
backups in parallel, the segment location information is collected
quickly.

3.5.2 Detecting Incomplete Logs
After backups return their lists of replicas, the coordinator must

determine whether the reported segment replicas form the entire
log of the crashed master. The redundancy in RAMCloud makes
it highly likely that the entire log will be available, but the system
must be able to detect situations where some data is missing (such
as network partitions).

RAMCloud avoids centrally tracking the list of the segments that
comprise a master’s log by making each log self-describing; the
completeness of the log can be verified using data in the log itself.
Each segment includes a log digest, which is a list of identifiers
for all segments in the log at the time this segment was written.
Log digests are small (less than 1% storage overhead even when
uncompressed, assuming 8 MB segments and 8,000 segments per
master).

This leaves a chance that all the replicas for the newest segment
in the log are unavailable, in which case the coordinator would not
be able to detect that the log is incomplete (the most recent digest
it could find would not list the newest segment). To prevent this,
when a master creates a new segment replica it makes its transition
to the new digest carefully. First, a new digest is inserted in the
new replica, and it is marked as active. Then, after the new active
digest is durable, a final update to the prior active digest marks
it as inactive. This ordering ensures the log always has an active
digest, even if the master crashes between segments. Two active
log digests may be discovered during recovery, but the coordinator
simply ignores the newer one since its segment must be empty.

If the active log digest and a replica for each segment cannot
be found, then RAMCloud cannot recover the crashed master. In
this unlikely case, RAMCloud notifies the operator and waits for
backups to return to the cluster with replicas for each of the missing
segments. Alternatively, at the operator’s discretion, RAMCloud
can continue recovery with loss of data.

3.5.3 Starting Partition Recoveries
Next, the coordinator must divide up the work of recovering the

crashed master. The choice of partitions for a crashed master is
made by the master itself: during normal operation each master
analyzes its own data and computes a set of partitions that would
evenly divide the work of recovery. This information is called a
will (it describes how a master’s assets should be divided in the
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Figure 4: During recovery, segment data flows from disk or flash on a
backup over the network to a recovery master, then back to new backups as
part of the recovery master’s log.

event of its demise). Masters periodically upload their wills to the
coordinator. Section 3.9 describes how masters compute their wills
efficiently.

During recovery setup, the coordinator assigns each of the par-
titions in the crashed master’s will to an existing master within the
cluster. Each of these recovery masters receives two things from
the coordinator: a list of the locations of all the crashed master’s
log segments and a list of tablets that the recovery master must re-
cover and incorporate into the data it manages.

3.6 Replay
The vast majority of recovery time is spent replaying segments

to reconstruct partitions on the recovery masters. During replay the
contents of each segment are processed in six stages (see Figure 4):

1. The segment is read from disk into the memory of a backup.

2. The backup divides the records in the segment into separate
groups for each partition based on table and object identifiers
in the log records.

3. The records for each partition are transferred over the net-
work to the recovery master for that partition.

4. The recovery master incorporates the data into its in-memory
log and hash table.

5. As the recovery master fills segments in memory, it replicates
those segments over the network to backups with the same
scattering mechanism used in normal operation.

6. The backups write the new segment replicas to disk or flash.

RAMCloud harnesses concurrency in two dimensions during re-
covery. The first dimension is data parallelism: different backups
read different segments from disk in parallel, different recovery
masters reconstruct different partitions in parallel, and so on. The
second dimension is pipelining: all of the six stages listed above
proceed in parallel, with a segment as the basic unit of work. While
one segment is being read from disk on a backup, another segment
is being partitioned by that backup’s CPU, and records from an-
other segment are being transferred to a recovery master; similar
pipelining occurs on recovery masters. For fastest recovery all of
the resources of the cluster should be kept fully utilized, including
disks, CPUs, and the network.

3.7 Segment Replay Order
In order to maximize concurrency, recovery masters and backups

operate independently. As soon as the coordinator contacts each
backup to obtain its list of segments, the backup begins prefetching
segments from disk and dividing them by partition. At the same
time, masters fetch segment data from backups and replay it. Ide-
ally backups will constantly run ahead of masters, so that segment
data is ready and waiting whenever a recovery master requests it.
However, this only works if the recovery masters and backups pro-
cess segments in the same order. If a recovery master accidentally
requests the last segment in the backup’s order then the master will
stall: it will not receive any data to process until the backup has
read all of its segments.

In order to avoid pipeline stalls, each backup decides in advance
the order in which it will read its segments. It returns this informa-
tion to the coordinator during the setup phase, and the coordinator
includes the order information when it communicates with recovery
masters to initiate recovery. Each recovery master uses its knowl-
edge of backup disk speeds to estimate when each segment’s data
is likely to be loaded. It then requests segment data in order of
expected availability. (This approach causes all masters to request
segments in the same order; we could introduce randomization to
avoid contention caused by lock-step behavior.)

Unfortunately, there will still be variations in the speed at which
backups read and process segments. In order to avoid stalls because
of slow backups, each master keeps several concurrent requests for
segment data outstanding at any given time during recovery; it re-
plays segment data in the order that the requests return.

Because of the optimizations described above, recovery masters
will end up replaying segments in a different order than the one in
which the segments were originally written. Fortunately, the ver-
sion numbers in log records allow the log to be replayed in any or-
der without affecting the result. During replay each master simply
retains the version of each object with the highest version number,
discarding any older versions that it encounters.

Although each segment has multiple replicas stored on differ-
ent backups, only the primary replicas are read during recovery;
reading more than one would waste valuable disk bandwidth. Mas-
ters identify primary replicas when scattering their segments as
described in Section 3.2. During recovery each backup reports
all of its segments, but it identifies the primary replicas and only
prefetches the primary replicas from disk. Recovery masters re-
quest non-primary replicas only if there is a failure reading the pri-
mary replica.

3.8 Cleanup
After a recovery master completes the recovery of its assigned

partition, it notifies the coordinator that it is ready to service re-
quests. The coordinator updates its configuration information to
indicate that the master now owns the tablets in the recovered par-
tition, at which point the partition is available for client requests.
Clients with failed RPCs to the crashed master have been waiting
for new configuration information to appear; they discover it and
retry their RPCs with the new master. Recovery masters can begin
service independently without waiting for other recovery masters
to finish.

Once all recovery masters have completed recovery, the coordi-
nator contacts each of the backups again. At this point the backups
free the storage for the crashed master’s segments, since it is no
longer needed. Recovery is complete once all of the backups have
been notified.
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Figure 5: A tablet profile consists of a hierarchical collection of bucket
arrays; buckets are subdivided dynamically when their counts become large.
The tree structure creates (bounded) uncertainty when assigning partition
boundaries, since counts in ancestor buckets may represent objects either
before or after the boundary.

3.9 Tablet Profiling
Each master is responsible for creating a will, which describes

how its objects should be partitioned during recovery. A partition
consists of one or more tablets. The master should balance its par-
titions so that they require roughly equal time to recover, and the
partitions should be sized based on the desired recovery time. The
master’s storage is not actually partitioned during normal operation
as this would create unnecessary overheads; partitioning only oc-
curs during recovery. The master uploads its will to the coordinator
and updates the will as its data evolves.

RAMCloud computes wills using tablet profiles. Each tablet pro-
file tracks the distribution of resource usage within a single table or
tablet in a master. It consists of a collection of buckets, each of
which counts the number of log records corresponding to a range
of object identifiers, along with the total log space consumed by
those records. Tablet profiles are updated as new log records are
created and old segments are cleaned, and the master periodically
scans its tablet profiles to compute a new will.

Unfortunately, it isn’t possible to choose the buckets for a tablet
profile statically because the space of object identifiers is large (264)
and clients can allocate object identifiers however they wish. With
any static choice of buckets, it is possible that all of the objects in a
table could end up in a single bucket, which would provide no in-
formation for partitioning. Buckets must be chosen dynamically so
that the contents of each bucket are small compared to the contents
of a partition.

RAMCloud represents a tablet profile as a dynamic tree of bucket
arrays, as shown in Figure 5. Initially the tree consists of a sin-
gle bucket array that divides the entire 64-bit identifier space into
buckets of equal width (in the current implementation there are 256
buckets in each array). Whenever a master creates a new log record
it updates the appropriate bucket. If a bucket becomes too large (the
number of records or space usage exceeds a threshold) then a child
bucket array is created to subdivide the bucket’s range into smaller
buckets. Future log records are profiled in the child bucket array
instead of the parent. However, the counts in the parent bucket re-
main (RAMCloud does not attempt to redistribute them in the child
bucket array since this could require rescanning a large portion of
the log). The master decrements bucket counts when it cleans log
segments. Each bucket array records the position of the log head
when that array was created, and the master uses this information
during cleaning to decrement the same bucket that was incremented

when the record was created (thus, over time the counts in non-leaf
buckets are likely to become small). Bucket arrays are collapsed
back into their parents when usage drops.

To calculate partitions, a master scans its tablet profiles in a
depth-first search, accumulating counts of records and space usage
and establishing partition boundaries whenever the counts reach
threshold values. For example, one policy might be to assign par-
titions based on log space usage so that no partition has more than
600 MB of log data or more than three million objects.

The tablet profile structure creates uncertainty in the actual us-
age of a partition, as illustrated in Figure 5. If a partition boundary
is placed at the beginning of a leaf bucket, it isn’t possible to tell
whether counts in ancestor buckets belong to the new partition or
the previous one. Fortunately, the uncertainty is bounded. For ex-
ample, in the current RAMCloud implementation, there could be
up to 7 ancestor buckets, each of which could account for 8 MB of
data (the threshold for subdividing a bucket), for a worst-case un-
certainty of 56 MB for each partition boundary. In order to bound
recovery times, RAMCloud pessimistically assumes that unknown
counts fall within the current partition.

In the configuration used for RAMCloud, the memory overhead
for tablet profiles is 0.6% in the worst case (8 levels of bucket ar-
ray for 8 MB of data). The parameters of the tablet profile can be
changed to make trade-offs between the storage overhead for pro-
files and the accuracy of partition boundaries.

3.10 Consistency
We designed RAMCloud to provide a strong form of consistency

(linearizability [13], which requires exactly-once semantics), even
across host failures and network partitions. A full discussion of
RAMCloud’s consistency architecture is beyond the scope of this
paper, and the implementation is not yet complete; however, it af-
fects crash recovery in two ways. First, a master that is suspected
of failure (a sick master) must stop servicing requests before it can
be recovered, to ensure that applications always read and write the
latest version of each object. Second, when recovering from sus-
pected coordinator failures, RAMCloud must ensure that only one
coordinator can manipulate and serve the cluster’s configuration at
a time.

RAMCloud will disable a sick master’s backup operations when
it starts recovery, so the sick master will be forced to contact the
coordinator to continue servicing writes. The coordinator contacts
backups at the start of recovery to locate a replica of every seg-
ment in the sick master’s log, including the active segment to which
the master may still be writing. Once a backup with a replica of
the active segment has been contacted, it will reject backup opera-
tions from the sick master with an indication that the master must
stop servicing requests until it has contacted the coordinator. Mas-
ters will periodically check in with their backups, so disabling a
master’s backup operations will also stop it from servicing read re-
quests by the time recovery completes.

Coordinator failures will be handled safely using the ZooKeeper
service [14]. The coordinator will use ZooKeeper to store its con-
figuration information, which consists of a list of active storage
servers along with the tablets they manage. ZooKeeper uses its own
replication mechanisms to provide a high level of durability and
availability for this information. To handle coordinator failures, the
active coordinator and additional standby coordinators will com-
pete for a single coordinator lease in ZooKeeper, which ensures
that at most one coordinator runs at a time. If the active coordinator
fails or becomes disconnected, its lease will expire and it will stop
servicing requests. An arbitrary standby coordinator will acquire
the lease, read the configuration information from ZooKeeper, and
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resume service. The configuration information is small, so we ex-
pect to recover from coordinator failures just as quickly as other
server failures.

3.11 Additional Failure Modes
Our work on RAMCloud so far has focused on recovering the

data stored in the DRAM of a single failed master. The sections
below describe several other ways in which failures can occur in
a RAMCloud cluster and some preliminary ideas for dealing with
them; we defer a full treatment of these topics to future work.

3.11.1 Backup Failures
RAMCloud handles the failure of a backup server by creating

new replicas to replace the ones on the failed backup. Every master
is likely to have at least one segment replica on the failed backup,
so the coordinator notifies all of the masters in the cluster when it
detects a backup failure. Each master checks its segment table to
identify segments stored on the failed backup, then it creates new
replicas using the approach described in Section 3.2. All of the
masters perform their rereplication concurrently and the new repli-
cas are scattered across all of the disks in the cluster, so recovery
from backup failures is fast. If each master has 64 GB of mem-
ory then each backup will have about 192 GB of data that must be
rewritten (assuming 3 replicas for each segment). For comparison,
256 GB of data must be transferred to recover a dead master: 64 GB
must be read, then 192 GB must be written during rereplication.

3.11.2 Multiple Failures
Given the large number of servers in a RAMCloud cluster, there

will be times when multiple servers fail simultaneously. When
this happens, RAMCloud recovers from each failure independently.
The only difference in recovery is that some of the primary repli-
cas for each failed server may have been stored on the other failed
servers. In this case the recovery masters will use secondary repli-
cas; recovery will complete as long as there is at least one replica
available for each segment. It should be possible to recover multi-
ple failures concurrently; for example, if a RAMCloud cluster con-
tains 5,000 servers with flash drives for backup, the measurements
in Section 4 indicate that a rack failure that disables 40 masters,
each with 64 GB storage, could be recovered in about 2 seconds.

If many servers fail simultaneously, such as in a power failure
that disables many racks, RAMCloud may not be able to recover
immediately. This problem arises if no replicas are available for a
lost segment or if the remaining masters do not have enough spare
capacity to take over for all the lost masters. In this case RAM-
Cloud must wait until enough machines have rebooted to provide
the necessary data and capacity (alternatively, an operator can re-
quest that the system continue with some loss of data). RAMCloud
clusters should be configured with enough redundancy and spare
capacity to make situations like this rare.

3.11.3 Cold Start
RAMCloud must guarantee the durability of its data even if the

entire cluster loses power at once. In this case the cluster will need
to perform a “cold start” when power returns. Normally, when a
backup restarts, it discards all of the segments stored on its disk or
flash, since they have already been rereplicated elsewhere. How-
ever, in a cold start this information must be preserved. Backups
will contact the coordinator as they reboot, and the coordinator will
instruct them to retain existing data; it will also retrieve a list of
their segments. Once a quorum of backups has become available,
the coordinator will begin reconstructing masters. RAMCloud can
use the same partitioned approach described above, but it may make

CPU Xeon X3470 (4x2.93 GHz cores, 3.6 GHz Turbo)
RAM 16 GB DDR3 at 1333 MHz
Disk 1 WD 2503ABYX (7200 RPM, 250 GB)

Effective read/write: 105/110 MB/s
Disk 2 Seagate ST3500418AS (7200 RPM, 500 GB)

Effective read/write: 108/87 MB/s
Flash Crucial M4 CT128M4SSD2 (128GB)
Disks Effective read/write: 269/182 MB/s
NIC Mellanox ConnectX-2 Infiniband HCA

Switches 5x 36-port Mellanox InfiniScale IV (4X QDR)

Table 1: Experimental cluster configuration. All 60 nodes have identical
hardware. Effective disk bandwidth is the average throughput from 1,000
8 MB sequential accesses to random locations in the first 72 GB of the
disk. Flash drives were used in place of disks for Figure 9 only. The cluster
has 5 network switches arranged in two layers. Each port’s maximum net-
work bandwidth is 32 Gbps, but nodes are limited to about 25 Gbps by PCI
Express. The switching fabric is oversubscribed, providing at best about
22 Gbps of bisection bandwidth per node when congested.
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Figure 6: Recovery time as a function of partition size with a single re-
covery master and 60 backups. Each curve uses objects of a single uniform
size.

more sense to use a different approach where masters are recon-
structed exactly as they existed before the cold start. This will be
faster than the partitioned approach because masters will not need
to write any backup data: the existing backups can continue to serve
after the masters are reconstructed.

The current RAMCloud implementation does not perform cold
starts.

4. EVALUATION
We implemented the RAMCloud architecture described in Sec-

tions 2 and 3, and we evaluated the performance and scalability of
crash recovery using a 60-node cluster. The cluster hardware con-
sists of standard off-the-shelf components (see Table 1) with the
exception of its networking equipment, which is based on Infini-
band; with it our end hosts achieve both high bandwidth (25 Gbps)
and low latency (user-level applications can communicate directly
with the NICs to send and receive packets, bypassing the kernel).

The default experimental configuration used one backup server
on each machine, with a single disk. A subset of these machines
also ran recovery masters. One additional machine ran the coor-
dinator, the crashed master, and the client application. In order to
increase the effective scale of the system, some experiments ran
two independent backup servers on each machine (each with one
disk).
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Figure 7: Recovery time as a function of the number of disks, with a single
recovery master, one 600 MB partition with 1,024 byte objects, and each
disk on a separate machine. “Avg. Disk Reading” measures the average
elapsed time (across all disks) to read backup data during recovery; “Max.
Disk Reading” graphs the longest time for any disk in the cluster. Once 6-8
disks are available recovery time is limited by the network of the recovery
master.

In each experiment a client application observed and measured a
crash of a single master and the subsequent recovery. The client ini-
tially filled the master with objects of a single size (1,024 bytes by
default). It then sent a magic RPC to the coordinator which caused
it to recover the master. The client waited until all partitions had
been successfully recovered, then read a value from one of those
partitions and reported the end-to-end recovery time. All experi-
ments used a disk replication factor of 3 (i.e., 3 replicas on disk in
addition to one copy in DRAM). The CPUs, disks, and networks
were idle and entirely dedicated to recovery (in practice, recovery
would have to compete for resources with application workloads,
though we would argue for giving priority to recovery).

Each of the subsections below addresses one question related to
the performance of recovery. The overall results are:

• A 60-node cluster can recover lost data at about 22 GB/sec
(a crashed server with 35 GB storage can be recovered in
1.6 seconds), and recovery performance scales with cluster
size. However, our scalability measurements are limited by
the small size of our test cluster.

• The speed of an individual recovery master is limited primar-
ily by network speed for writing new segment replicas.

• The segment scattering algorithm distributes segments effec-
tively and compensates for varying disk speeds.

• Fast recovery significantly reduces the risk of data loss.

4.1 How Large Should Partitions Be?
Our first measurements provide data for configuring RAMCloud

(partition size and number of disks needed per recovery master).
Figure 6 measures how quickly a single recovery master can pro-
cess backup data, assuming enough backups to keep the recovery
master fully occupied. Depending on the object size, a recovery
master can replay log data at a rate of 400-800 MB/s, including
the overhead for reading the data from backups and writing new
backup copies. With small objects the speed of recovery is lim-
ited by the cost of updating the hash table and tablet profiles. With
large objects recovery is limited by the network speed during writes
to new backups (for example, with 600 MB partitions and a disk
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Figure 8: Recovery performance under proportional scaling (one recovery
master and 6 backups for each 600 MB partition of data to recover). Each
recovery master shared a host with 2 backups, and each point is an aver-
age of 5 runs (Figure 11 shows the variance between runs). A horizontal
line would indicate perfect scalability. Recovery time is limited by disk
bandwidth.

replication factor of 3, the recovery master must write 1.8 GB of
data to backups).

For 1-second recovery Figure 6 suggests that partitions should
be limited to no more than 800 MB and no more than 3 million
log records (with 128-byte objects a recovery master can process
400 MB of data per second, which is roughly 3 million log records).
With 10 Gbps Ethernet, partitions must be limited to 300 MB due
to the bandwidth requirements for rereplication.

In our measurements we filled the log with live objects, but the
presence of deleted versions will, if anything, make recovery faster.
The master’s memory has the same log structure as the backup
replicas, so the amount of log data to read will always be equal
to the size of the master’s memory, regardless of deleted versions.
However, deleted versions may not need to be rereplicated (depend-
ing on the order of replay).

4.2 How Many Disks Are Needed for Each
Recovery Master?

Each of our disks provided an effective bandwidth of 100-110
MB/s when reading 8 MB segments; combined with Figure 6, this
suggests that RAMCloud will need about 6-8 disks for each recov-
ery master in order to keep the pipeline full. Figure 7 graphs recov-
ery performance with one recovery master and a varying number
of disks and reaches the same conclusion. With large numbers of
disks, the speed of recovery is limited by outbound network band-
width on the recovery master.

4.3 How Well Does Recovery Scale?
The most important issue in recovery for RAMCloud is scala-

bility: if one recovery master can recover 600 MB of data in one
second, can 10 recovery masters recover 6 GB in the same time, and
can 100 recovery masters recover 60 GB? Unfortunately, the disk
bandwidth available in our cluster limited us to 20 recovery mas-
ters (120 backups), which is only about 20% the number we would
expect in a full-size RAMCloud recovery. Nonetheless, within this
limited range RAMCloud demonstrates excellent scalability. Fig-
ure 8 graphs recovery time as the amount of lost data is increased
and the cluster size is increased to match. For each 600 MB par-
tition of lost data, the cluster includes one recovery master and 6
backups with one disk each. With 20 recovery masters and 120
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Figure 9: Recovery time under proportional scaling, using flash drives in-
stead of disks. Each partition contained 600 MB of data, and there were 2
backups for each recovery master. As with Figure 8, scaling is proportional:
the number of recovery masters and backups increases with the number of
partitions being recovered. Each point is an average of 5 runs. A hori-
zontal line would indicate perfect scalability. Recovery is slower than in
Figure 8 for a number of reasons: less disk bandwidth available per mas-
ter (540 MB/s vs. 600-660 MB/s), network saturation, and processor and
memory contention between the master and backups on each node.

disks, RAMCloud can recover 11.7 GB of data in under 1.1 sec-
onds, which is only 13% longer than it takes to recover 600 MB
with a single master and 6 disks.

In order to allow more recovery masters to participate in recov-
ery, we replaced all the disks in our cluster with flash drives, each of
which provided 270 MB/s read bandwidth (as opposed to 110 MB/s
for the disks). With this configuration we were able to run recover-
ies that used 60 recovery masters, as shown in Figure 9. The system
still scales well: with 60 recovery masters RAMCloud can recover
35 GB of data from a lost server in about 1.6 seconds, which is 26%
longer than it takes 2 recovery masters to recover 1.2 GB of data.

It is important to keep the overhead for additional masters and
backups small, so that recovery can span hundreds of hosts in large
clusters. In order to isolate these overheads, we ran additional ex-
periments with artificially small segments (16 KB) and kept all seg-
ment replicas in DRAM to eliminate disk overheads. Figure 10
(bottom curve) shows the recovery time using trivial partitions con-
taining just a single 1 KB object; this measures the cost for the co-
ordinator to contact all the backups and masters during the setup
phase. Our cluster scales to 60 recovery masters with only about a
10 ms increase in recovery time (thanks in large part to fast RPCs).

Figure 10 also shows recovery time using 1.2 MB partitions and
16 KB segments (upper curve). In this configuration the cluster
performs roughly the same number of RPCs as it does in Figure 8,
but it has very little data to process. This exposes the fixed over-
heads for recovery masters to communicate with backups: as the
system scale increases, each master must contact more backups,
retrieving less data from each individual backup. Each additional
recovery master adds only about 1.5 ms of overhead, so work can
be split across 100 recovery masters without substantially increas-
ing recovery time.

4.4 How Well Does Segment Scattering Work?
Figure 11 shows that the segment placement algorithm described

in Section 3.2 works well. We measured three different variations
of the placement algorithm: the full algorithm, which considers
both disk speed and number of segments already present on each
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Figure 10: Management overhead as a function of system scale. Partition
size is reduced to 16 KB and segment replicas are stored in DRAM in order
to eliminate overheads related to data size or disk. For “1 KB partitions”
each partition only contains a single object; this measures the coordina-
tor’s overheads for contacting masters and backups. “1.2 MB partitions”
maintains the same number of segments (and roughly the same number of
RPCs) as in Figure 8; it measures the overhead for masters to contact more
and more backups as cluster size increases. Each data point is the average
over 5 runs, and there were 2 backups for each recovery master.

backup; a version that uses purely random placement; and an in-
between version that attempts to even out the number of segments
on each backup but does not consider disk speed. The top graph in
Figure 11 shows that the full algorithm improves recovery time by
about 33% over a purely random placement mechanism. Much of
the improvement came from evening out the number of segments
on each backup; considering disk speed improves recovery time by
only 12% over the even-segment approach because the disks did
not vary much in speed.

To further test how the algorithm handles variations in disk speed,
we also took measurements using the configuration of our clus-
ter when it first arrived. The fans were shipped in a “max speed”
debugging setting, and the resulting vibration caused large varia-
tions in speed among the disks (as much as a factor of 4x). In
this environment the full algorithm provided an even larger benefit
over purely random placement, but there was relatively little bene-
fit from considering segment counts without also considering disk
speed (Figure 11, bottom graph). RAMCloud’s placement algo-
rithm compensates effectively for variations in the speed of disks,
allowing recovery times almost as fast with highly variable disks
as with uniform disks. Disk speed variations may not be signifi-
cant in our current cluster, but we think they will be important in
large datacenters where there are likely to be different generations
of hardware.

4.5 Will Scattering Result in Data Loss?
RAMCloud’s approach of scattering segment replicas allows faster

recovery, but it increases the system’s vulnerability in the event of
simultaneous node failures. For example, consider a cluster with
1,000 nodes and 2x disk replication. With RAMCloud’s scattering
approach to segment placement, there is a 5% chance that data will
be lost if any 3 nodes fail simultaneously (the three nodes will ac-
count for the master and both backups for at least one segment). In
contrast, if each master concentrates all its segment replicas on two
backups, as in Figure 3a, the probability of data loss drops to less
than 10-5 with 3 simultaneous failures.

Fortunately, the fast recovery enabled by scattering makes it
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Figure 11: Impact of segment placement on recovery time. Each line is
a cumulative distribution of 120 recoveries of twenty 600 MB partitions,
showing the percent of recoveries that completed within a given time. “Even
Read Time” uses the placement algorithm described in Section 3.2; “Uni-
form Random” uses a purely random approach; and “Even Segments” at-
tempts to spread segments evenly across backups without considering disk
speed. The top graph measured the cluster in its normal configuration, with
relatively uniform disk performance; the bottom graph measured the sys-
tem as it was shipped (unnecessarily high fan speed caused vibrations that
degraded performance significantly for some disks). With fans at normal
speed, “Even Read Time” and “Even Segments” perform nearly the same
since there is little variation in disk speed.

unlikely that a second or third failure will occur before a first failure
has been recovered, and this more than makes up for the additional
vulnerability, as shown in Figure 12. With one-second recovery the
probability of data loss is very low (about 10-5 in one year even with
a 100,000-node cluster). The risk of data loss rises rapidly with re-
covery time: if recovery takes 1,000 seconds, then RAMCloud is
likely to lose data in any one-year period. The line labeled “100s”
corresponds roughly to the recovery mechanisms in other systems
such as GFS and HDFS (these systems keep 3 replicas on disk, vs.
1 replica in DRAM and 2 replicas on disk for the corresponding
RAMCloud); with large cluster sizes these other systems may be
vulnerable to data loss. Using a concentrated approach rather than
scattering improves reliability, but the benefit from faster recovery
is much larger: a 10x improvement in recovery time improves reli-
ability more than a 1,000x reduction in scattering.

One risk with Figure 12 is that it assumes server failures are in-
dependent. There is considerable evidence that this is not the case
in datacenters [23, 8]; for example, it is not unusual for entire racks
to become inaccessible at once. Thus it is important for the seg-
ment scattering algorithm to consider sources of correlated failure,
such as rack boundaries. If there are unpredictable sources of cor-
related failure, they will result in longer periods of unavailability
while RAMCloud waits for one or more of the backups to reboot
(RAMCloud is no better or worse than other systems in this re-
spect).

Although we made all of the performance measurements in this
section with 3x disk replication to be conservative, Figure 12 sug-
gests that the combination of two copies on disk and one copy in
DRAM should be quite safe. The main argument for 3x disk repli-
cation is to ensure 3-way redundancy even in the event of a dat-
acenter power outage, which would eliminate the DRAM copies.
With 3x disk replication in addition to the DRAM copy, the likeli-
hood of data loss is extremely small: less than 1% in a year even
with 100,000 servers and 1,000-second recovery times.

4.6 What Is the Fastest Possible Recovery?
Assuming that recovery is scalable, it should be possible to re-

cover even faster than 1-2 seconds by using more backups and more
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Figure 12: Probability of data loss in one year as a function of cluster size,
assuming 8,000 segments per master, two disk replicas for each DRAM
copy, and two crashes per year per server with a Poisson arrival distribu-
tion. Different lines represent different recovery times. Lines labeled “Con-
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recovery masters, with smaller partitions. However, we think that
it will be difficult to recover faster than a few hundred milliseconds
without significant changes to the recovery mechanism. For exam-
ple, RAMCloud currently requires 150 milliseconds just to detect
failure, and the time for the coordinator to contact every backup
may approach 100 ms in a large cluster. In addition, it takes nearly
100 ms to read a single segment from disk (but this could be re-
duced if flash memory replaces disk for backup storage).

5. RISKS
There are three risks associated with RAMCloud’s recovery mech-

anism that we have not been able to fully evaluate yet. We hope to
learn more about these risks (and devise solutions, if necessary) as
we gain more experience with the system.

Scalability. The measurements of scalability in Section 4.3 are
encouraging, but they are based on a cluster size about one-fifth
of what we would expect in production. It seems likely that larger
clusters will expose problems that we have not yet seen.

Over-hasty recovery. In order to recover quickly, RAMCloud
must also detect failures quickly. Whereas traditional systems may
take 30 seconds or more to decide that a server has failed, RAM-
Cloud makes that decision in 150 ms. This introduces a risk that
RAMCloud will treat performance glitches as failures, resulting in
unnecessary recoveries that could threaten both the performance
and the integrity of the system. Furthermore, fast failure detection
precludes some network protocols. For example, most TCP imple-
mentations wait 200 ms before retransmitting lost packets; if TCP
is to be used in RAMCloud, either its retransmit interval must be
shortened or RAMCloud’s failure detection interval must be length-
ened. The current implementation of RAMCloud supports several
transport protocols for its RPC system (including TCP), most of
which support fast failure detection.

Fragmented partitions. Our approach to recovery assumes that
a master’s objects can be divided into partitions during recovery.
However, this changes the locality of access to those objects, which
could degrade application performance after recovery. Our current
data model does not benefit much from locality, but as we experi-
ment with richer data models, this issue could become important.
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6. RELATED WORK
There are numerous examples where DRAM has been used to

improve the performance of storage systems. Early experiments in
the 1980s and 1990s included file caching [19] and main-memory
database systems [10, 11]. In recent years, large-scale Web applica-
tions have found DRAM indispensable to meet their performance
goals. For example, both Google and Yahoo! keep their entire Web
search indexes in DRAM; Facebook offloads its database servers by
caching tens of terabytes of data in DRAM with memcached [3];
and Bigtable allows entire column families to be loaded into mem-
ory [6]. RAMCloud differs from these systems because it keeps all
data permanently in DRAM (unlike Bigtable and Facebook, which
use memory as a cache on a much larger disk-based storage system)
and it is general-purpose (unlike the Web search indexes).

There has recently been a resurgence of interest in main-memory
databases. One example is H-Store [16], which keeps all data in
DRAM, supports multiple servers, and is general-purpose. How-
ever, H-Store is focused more on achieving full RDBMS semantics
and less on achieving large scale or low latency to the same degree
as RAMCloud. H-Store keeps redundant data in DRAM and does
not attempt to survive coordinated power failures.

A variety of “NoSQL” storage systems have appeared recently,
driven by the demands of large-scale Web applications and the in-
ability of relational databases to meet their needs. Examples in-
clude Dynamo [9] and PNUTS [7]. Many of these systems use
DRAM in some form, but all are fundamentally disk-based and
none are attempting to provide latencies in the same range as RAM-
Cloud. These systems provide availability using symmetric repli-
cation instead of fast crash recovery.

RAMCloud is similar in many ways to Google’s Bigtable [6] and
GFS [12]. Bigtable, like RAMCloud, implements fast crash recov-
ery (during which data is unavailable) rather than online replica-
tion. Bigtable also uses a log-structured approach for its (meta)data,
and it buffers newly-written data in memory, so that write opera-
tions complete before data has been written to disk. GFS serves a
role for Bigtable somewhat like the backups in RAMCloud. Both
Bigtable and GFS use aggressive data partitioning to speed up re-
covery. However, Bigtable and GFS were designed primarily for
disk-based datasets; this allows them to store 10-100x more data
than RAMCloud, but their access latencies are 10-100x slower (even
for data cached in DRAM).

Caching mechanisms such as memcached [3] appear to offer a
particularly simple mechanism for crash recovery: if a caching
server crashes, its cache can simply be re-created as needed, ei-
ther on the crashed server (after it restarts) or elsewhere. However,
in large-scale systems, caching approaches can cause large gaps in
availability after crashes. Typically these systems depend on high
cache hit rates to meet their performance requirements; if caches
are flushed, the system may perform so poorly that it is essentially
unusable until the cache has refilled. This happened in an outage at
Facebook in September 2010 [1]: a software error caused 28 TB of
memcached data to be flushed, rendering the site unusable for 2.5
hours while the caches refilled from slower database servers.

Randomization has been used by several previous systems to al-
low system management decisions to be made in a distributed and
scalable fashion. For example, consistent hashing uses randomiza-
tion to distribute objects among a group of servers [24, 9]. Mitzen-
macher and others have studied the theoretical properties of ran-
domization with refinement and have shown that it produces near-
optimal results [17, 5].

RAMCloud’s log-structured approach to storage management is
similar in many ways to log-structured file systems (LFS) [21].
However, log management in RAMCloud is simpler and more effi-

cient than in LFS. RAMCloud is simpler because the log need not
contain metadata to enable random-access reads as in LFS: the hash
table enables fast access to data in DRAM, and the disk log is never
read except during recovery, at which time the entire log is read.
Thus the log consists primarily of object records and tombstones
that mark their deletion. RAMCloud does not require checkpoints
as in LFS, because it replays the entire log during recovery. RAM-
Cloud is more efficient than LFS because it need not read data from
disk during cleaning: all live data is always in memory. The only
I/O during cleaning is to rewrite live data at the head of the log;
as a result, RAMCloud consumes 3-10x less bandwidth for clean-
ing than LFS (cleaning cost has been a controversial topic for LFS;
see [22], for example).

7. CONCLUSION
In this paper we have demonstrated that the resources of a large-

scale storage system can be used to recover quickly from server
crashes. RAMCloud distributes backup data across a large number
of secondary storage devices and employs both data parallelism and
pipelining to achieve end-to-end recovery times of 1-2 seconds. Al-
though we have only been able to evaluate RAMCloud on a small
cluster, our measurements indicate that the techniques will scale to
larger clusters. Our implementation uses a simple log-structured
representation for data, both in memory and on secondary storage,
which provides high write throughput in addition to enabling fast
recovery.

Fast crash recovery is a key enabler for RAMCloud: it allows
a high-performance DRAM-based storage system to provide dura-
bility and availability at one-third the cost of a traditional approach
using online replicas.
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