
Fast Cryptography in Genus 2

Joppe W. Bos1, Craig Costello1,�, Huseyin Hisil2, and Kristin Lauter1

1 Microsoft Research, Redmond, USA
2 Yasar University, Izmir, Turkey

Abstract. In this paper we highlight the benefits of using genus 2
curves in public-key cryptography. Compared to the standardized genus 1
curves, or elliptic curves, arithmetic on genus 2 curves is typically more
involved but allows us to work with moduli of half the size. We give a
taxonomy of the best known techniques to realize genus 2 based cryp-
tography, which includes fast formulas on the Kummer surface and effi-
cient 4-dimensional GLV decompositions. By studying different modular
arithmetic approaches on these curves, we present a range of genus 2 im-
plementations. On a single core of an Intel Core i7-3520M (Ivy Bridge),
our implementation on the Kummer surface breaks the 120 thousand cy-
cle barrier which sets a new software speed record at the 128-bit security
level for constant-time scalar multiplications compared to all previous
genus 1 and genus 2 implementations.

1 Introduction

Since its invention in the 1980’s, elliptic curve cryptography [36,42] has become a
popular and standardized approach to instantiate public-key cryptography. The
use of elliptic curves, or genus 1 curves, has been well studied and consequently
all of the speed records for fast curve-based cryptography are for elliptic curves
(cf. the ECRYPT online benchmarking tool eBACS [8]). Jacobians of hyperel-
liptic curves of high genus have also been considered for cryptographic purposes,
but for large genus there are “faster-than-generic" attacks on the discrete log-
arithm problem [2,24,20,18]. Such attacks are not known, however, for genus 2
curves. In [26], Gaudry showed that scalar multiplication on the Kummer surface
associated with the Jacobian of a genus 2 curve can be more efficient than scalar
multiplication on the Jacobian itself. Thus, it was proposed (cf. [5]) that hyper-
elliptic curve cryptography in genus 2 has the potential to be competitive with
its genus 1 elliptic curve cryptography counterpart. One significant hurdle for
genus 2 cryptography to overcome is the difficulty of generating secure genus 2
curves: that is, such that the Jacobian has a large prime or almost prime group
order. In particular, for fast cryptographic implementations it is advantageous
to work over special prime fields, where the underlying field arithmetic is fast,
and to generate curves over those fields with suitable group orders. A major
� Part of this work was done while the second author was working in the Department

of Mathematics and Computer Science at the Technische Universiteit Eindhoven,
Netherlands.

T. Johansson and P. Nguyen (Eds.): EUROCRYPT 2013, LNCS 7881, pp. 194–210, 2013.
c© International Association for Cryptologic Research 2013

Fast Cryptography in Genus 2 195

catalyst for this work is that genus 2 point counting methods and complex mul-
tiplication (CM) methods for constructing genus 2 curves with a known group
order have become more practical. Hence, the time is ripe to give a taxonomy
and a cross-comparison of all of the best known techniques for genus 2 curves
over prime fields. The focus on prime fields is motivated by the recommendations
made by the United States’ National Security Agency Suite B of Cryptographic
Protocols [46].

In this paper we set new performance speed records at the 128-bit security
level using genus 2 hyperelliptic curves. For instance, using the Kummer surface
given by Gaudry and Schost [29], we present the fastest curve based scalar mul-
tiplication over prime fields to date — this improves on the recent prime field
record for elliptic curves from Longa and Sica which was presented at Asiacrypt
2012 [40]. As an additional bonus, our implementations on the Kummer surface
inherently run in constant-time, which is one of the major steps towards achiev-
ing a side-channel resistant implementation [37]. Thus, we present the fastest
constant-time software for curve based cryptography compared to all prior im-
plementations.

Another advantage for genus 2 curves is that the endomorphism ring is larger
than for genus 1 curves, so higher dimensional scalar decomposition is possi-
ble without passing to an extension field [23,22]. For prime fields we implement
4-dimensional GLV decompositions on Buhler-Koblitz (BK) curves [14] and on
Furukawa-Kawazoe-Takahashi (FKT) curves [21], both of which are faster than
all prior eBACS-documented implementations. To optimize overall performance,
we present implementations based on two different methods that allow fast mod-
ular arithmetic: one based on the special form of the prime using “NIST-like”
reduction [52] and another based on the special form of the prime when using
Montgomery multiplication [43].

In addition, we put forward a multi-faceted case for (a special class of) Buhler-
Koblitz curves of the form y2 = x5 + b. The curves we propose are particularly
flexible in applications because they facilitate both a Kummer surface imple-
mentation and a GLV decomposition. Thus, a simple Diffie-Hellman style key
exchange can be instantiated using the fast formulas on the Kummer surface,
but if a more complicated protocol requires further group operations, one has the
option to instead exploit a 4-dimensional GLV implementation using the same
curve.

We refer to the full-version of this paper [10] for the specifications of all curves
used and more detailed information.

2 Preliminaries

In this section we recall some basic facts and notation concerning genus 2 curves
and briefly review the main techniques used to compute scalar multiplications.

Genus-2 Curves. A hyperelliptic genus 2 curve over a field of odd characteristic
K can be defined by an affine model C : y2 = f(x), where f(x) has degree 5 or
6 and has no double roots. We call C a real hyperelliptic curve if the degree of

196 J.W. Bos et al.

f is 6, and if such an f(x) has a rational root in K, then we can birationally
transform the curve so that f has degree 5 instead, in which case we say C is
an imaginary hyperelliptic curve. Arithmetic is currently slightly faster in the
imaginary case.

Unlike genus 1 elliptic curves, in genus 2, the points on the curve do not form
a group. Roughly speaking, unordered pairs of points on the curve form a group,
where the group operation adds two pairs of points by passing a cubic through the
four points, finding the other two points of intersection with the curve, and then
reflecting them over the x-axis. More formally, we denote this group by Jac(C),
the Jacobian of C, which consists of degree zero divisors on the curve modulo
principal divisors. Throughout this paper we use the Mumford representation
of general divisors D = (x2 + u1x + u0, y − (v1x + v0)) ∈ Jac(C), and instead
write D = (u1, u0, v1, v0). This avoids confusion when x and y are used as two of
the Kummer coordinates in Section 5. When working in homogeneous projective
space, we write such divisors as D = (U1 : U0 : V1 : V0 : Z), where ui = Ui/Z
and vi = Vi/Z for i ∈ {0, 1} and Z �= 0.

Scalar Multiplication. There are many different ways to compute the scalar
multiplication. Most approaches, like the double-and-add algorithm, are based
on addition chains [50] and a typical optimization to lower the number of point
additions is using windows [12] of a certain width w > 1. Given the input point P ,
we compute a lookup table consisting of the multiples [c]P such that 0 ≤ c < 2w,
and perform a point addition once every w bits (instead of at most once per bit).
After adding a precomputed multiple, we can “slide” to the next set-bit in the
binary representation of the scalar; such sliding windows [55] lower the number
of point additions required and halve the size of the lookup table since only
the odd multiples of P are required. When computing the negation of a group
element is inexpensive, which is the case for both elliptic and genus 2 curves, we
can either add or subtract the precomputed point1, reducing the total number of
group operations even further; this is called the signed windows approach [45].
See [7] for a summary of these techniques.

Adding an affine point to a projective point to obtain another projective
point, often referred to as mixed addition, is usually faster than adding two
projective points. In order to use these faster formulas, a common approach is to
convert the precomputed projective points into their affine form. This requires an
inversion for each point in the table. Using Montgomery’s simultaneous inversion
method [44], I independent inversions can be replaced by 3(I−1) multiplications
and a single inversion, which is typically much faster.

3 Fast Modular Arithmetic Using Special Primes

When performing arithmetic modulo a prime p in practice, it is common to use
primes of a special form since this may allow fast reduction. For instance, in
1 The term ‘point’ becomes ‘divisor’ in the case of hyperelliptic curves, but remains

as ‘point’ for Kummer surface arithmetic in Section 5.

Fast Cryptography in Genus 2 197

the FIPS 186-3 standard [56], NIST recommends the use of five prime fields
when using the elliptic curve digital signature algorithm (but see also [4]). Such
special primes have been studied from both a theoretical and practical point of
view. A study of a software implementation of the NIST-recommended elliptic
curves over prime fields on the x86 architecture is given by Brown et al. [13], and
in [9] a comparison is made between the performance when using Montgomery
multiplication [43] and specialized multiplication using the NIST primes. In this
section we describe two different approaches to obtain fast modular arithmetic.
We use the prime p1271 = 2127 − 1 to illustrate both methods, since this prime
is used in some of our implementations (cf. Section 4 and Section 5).

Generalized Mersenne Primes. Primes that enable fast reduction techniques
are usually of the form 2s±δ, where s, δ ∈ Z

+, and δ � 2s. The constant δ is also
small compared to the word-size of the target architecture, which is typically 32
or 64 bits. Another popular choice is using a generalized Mersenne prime of the
form 2s +

∑
i∈S i, where S is a set of integers ±2j such that |2j | < 2s and the

cardinality of S is small. For example, fast reduction modulo p = 2s − δ can be
done as follows. For integers 0 ≤ a, b, ch, c�, δ < 2s, write c = a · b = ch ·2s+ c� ≡
c�+δch (mod 2s−δ) where 0 ≤ c�+δch < (δ+1)2s. At the cost of a multiplication
by δ (which might be a shift depending on the form of δ) and an addition,
compute c′ ≡ c (mod p) where c′ is (much) smaller than c, depending on the
size of δ. This is the basic idea behind Solinas’ reduction scheme [52], which is
used to implement fast arithmetic modulo the NIST primes [56]. We refer to
this type of reduction as NIST-like reduction. When computing a · b mod p1271
with 0 ≤ a, b < p1271, one can first compute the multiplication c = a · b =
c1 · 2128 + c0, where 0 ≤ c1, c0 < 2128. A first reduction step can be computed as
c′ = (c0 mod 2127) + 2 · c1 + �c0/2127� ≡ c (mod p1271) such that 0 ≤ c′ < 2128.
One can then reduce c′ further using conditional subtractions. Modular reduction
in the case of p1271 can therefore be computed without using any multiplications.

Montgomery-Friendly Primes. Montgomery multiplication [43] involves
transforming each of the operands into their Montgomery representations and
replacing the conventional modular multiplications by Montgomery multiplica-
tions. One of the advantages of this method is that the computational complexity
is usually better than the classical method by a constant factor.

Let r = 2b be the radix of the system and b > 2 be the bit-length of a word.
Let p be an n-word odd prime such that rn−1 ≤ p < rn, and suppose we have an
integer 0 ≤ X < p. The Montgomery radix R = rn is a fixed integer such that
gcd(R, p) = 1. The Montgomery residue of X is defined as X̃ = X ·R mod p. The
Montgomery product of two integers is defined as M(X̃, Ỹ) = X̃ · Ỹ ·R−1 mod p.
Practical instances of Montgomery multiplication use the precomputed value μ =
−p−1 mod r. The interleaved Montgomery multiplication algorithm, in which
multiplication and reduction are combined, computes C = M(A,B) for 0 ≤
A,B < p. Let A =

∑n−1
i=0 ai · ri, where 0 ≤ ai < r, and start with C = 0. For all

i ∈ Z such that 0 ≤ i < n, the result C is updated as

C ← C + ai ·B, C ←
(
C + ((μ · C) mod r) · p

)/
r.

198 J.W. Bos et al.

The division by r can be implemented by a shift since the precomputed value μ
ensures that the least significant digit (b bits) of (C+((μ·C) mod r)·p) is zero. It
can be shown that the final Montgomery product C is bounded as 0 ≤ C < 2 ·p,
and therefore a final conditional subtraction is needed when complete reduction
is required. In order to avoid handling additional carries in the Montgomery mul-
tiplication, which requires more instructions, our implementations prefer 127-bit
moduli over 128-bit moduli. In [39] it is noticed that fixing part of the modulus
can have advantages for Montgomery multiplication. For instance, the precom-
putation of μ can be avoided when −p−1 ≡ ±1 (mod r), which also avoids
computing a multiplication by μ for every iteration inside the Montgomery mul-
tiplication routine. This technique has been suggested in [35,1,31] as well. When
μ is small, e.g. μ = ±1, one could lower the cost of the multiplication of p with
(μ · c0) mod r by choosing the n − 1 most significant words of p in a similar
fashion as for the generalized Mersenne primes: �p/2b� = 2s +

∑
i∈S i.

Consider the prime p1271 on 64-bit architectures: r = 264 and we have μ =
−p−1

1271 mod 264 = 1, so that the multiplication by μ can be avoided. Write
C = c2 · 2128 + c1 · 264 + c0 with 0 ≤ c2, c1, c0 < 264. Due to the shape of
the most-significant word of p1271 = (263 − 1) · 264 + (264 − 1), the result of
C+((μ·C) mod r)·p

r can be obtained using only two shift and two 64-bit addition
instructions by computing c2 ·264+c0·263+c1. Similar to the NIST-like reduction,
Montgomery reduction in the setting of p1271 can be computed without using
any multiplications.

Modular Inversion. When using the regular representation of integers, one
can either use the (binary) extended GCD algorithm to compute the modular
inversion or use the special form of the modulus to compute the inverse by using
modular exponentiations. For instance, in the case of p1271, one can exploit the
congruence a2

127−2 ≡ a−1 (mod p1271). The situation when working in Mont-
gomery form is slightly different. Given the Montgomery form ã = a2bn mod p
of an integer a, we want to compute the Montgomery inverse ã−122bn ≡ a−12bn

(mod p). This would require a classical inversion and modular multiplication,
however we found that the approach presented in [11] (which uses the binary
version of the Euclidean algorithm from [33]) is faster in practice. The first
step of this approach computes a value ã−12k ≡ a−12k−bn (mod p), for some
0 ≤ k < 2bn. This value is then corrected via a Montgomery multiplication
with 23bn−k. This last multiplication typically requires a lookup table with the
different precomputed values 23rn−k mod p. In the case of p = 2127 − 1, one can
avoid this lookup table since 2t mod 2127 − 1 = 2t mod 127.

Modular Addition/Subtraction. Let 0 ≤ a, b < 2k − c. We compute (a +
b) mod (2k − c) as ((((a+c)+b) mod 2k)−c ·(1−carry((a+c)+b, 2k))) mod 2k.
The carry function carry(x, y) returns either zero or one if x < y or x ≥ y
respectively. The output is correct and bounded by 2k− c, since if a+ b+ c < 2k,
then a+b < 2k−c, while if a+b+c ≥ 2k, then (a+b+c) mod 2k = a+b−(2k−c) <
2k − c. Note that since a + c < 2k, the addition requires no carry propagation.
Furthermore, c is multiplied with either one or zero such that this multiplication
amounts to data movement.

Fast Cryptography in Genus 2 199

The modular subtraction (a − b) mod (2k − c) is performed by computing
(((a− b) mod 2k)− c · borrow(a− b)) mod 2k. Analogous to the carry function,
the borrow function borrow(x) returns zero or one if x ≥ 0 or x < 0 respectively.
If a < b, then 0 ≤ (a− b) mod 2k − c = a− b + (2k − c) < 2k − c, and if a ≥ b,
then 0 ≤ a − b < 2k − c. In some scenarios one can compute additions as
(((a + b) mod 2k) + c · carry((a + b), 2k)) mod 2k, but we note that here the
output may not be completely reduced and can be ≥ 2k − c.

4 “Generic” Genus-2 Curves and Their Arithmetic

To give a concrete idea of the advantage gained when working on the Kummer
surface or when exploiting GLV endomorphisms, we also consider the generic
scenario that employs neither technique. We make use of the fast formulas for
arithmetic on imaginary quadratic curves from [17], which employ homogeneous
projective coordinates, and focus on reducing the total number of multiplications
in projective point doublings, point additions and mixed additions.2

We assume that our curves are of the form C : y2 = x5 + f3x
3 + f2x

2 + f1x+
f0, and count multiplications by the fi as full multiplications, unless they are
zero.3 Letting m, s and a be the cost of Fp-multiplications, Fp-squarings and
Fp-additions or subtractions respectively, we summarize the modified counts as
follows. For D = (U1 : U0 : V1 : V0 : Z), one can compute [2]D in 34m+6s+34a.
For the special GLV curves in Section 6, which have f2 = f3 = 0, the projective
doubling can be computed using 32m+ 6s+ 32a. For D = (U1 : U0 : V1 : V0 : Z)
and D′ = (U ′

1 : U
′
0 : V

′
1 : V

′
0 : Z

′), one can compute the projective addition D+D′

in 44m + 4s + 29a. For the mixed addition between the projective point D =
(U1 : U0 : V1 : V0 : Z) and the affine point D′ = (u′

1 : u
′
0 : v

′
1 : v

′
0), one can compute

the projective result D +D′ in 37m+ 5s + 29a. Full and mixed additions cost
the same on the special GLV curves. Given these operation counts, our “generic”
implementations performed fastest when using 4-bit signed sliding windows (see
Section 2).

5 The Kummer Surface

Gaudry [26] built on earlier observations by Chudnovsky and Chudnovsky [15] to
show that scalar multiplication in genus 2 can be greatly accelerated by working
on the Kummer surface associated to a Jacobian, rather than on the Jacobian
itself. Although the Kummer surface is not technically a group, it is close enough
to a group to be able to define scalar multiplications on it, and is therefore an
attractive setting for Diffie-Hellman like protocols that do not require any further
group operations [51].

2 Note that the formulas to compute the projective doubling from [17] can be sped up
since the first multiplication to compute UU is redundant.

3 Over prime fields it is standard to zero the coefficient of the x4 term via an appro-
priate substitution.

200 J.W. Bos et al.

The Squares-only Kummer Routine. The Kummer surface that was origi-
nally proposed for cryptography in [26] is a surface whose constants are parame-
terized by the four fundamental Theta constants (ϑ1(0), ϑ2(0), ϑ3(0), ϑ4(0)), and
whose coordinates come from the four fundamental Theta functions (ϑ1(z), ϑ2(z),
ϑ3(z), ϑ4(z)), all of which are values of the classical genus 2 Riemann Theta func-
tion. Bernstein [5] pointed out that one can work entirely with the squares of the
fundamental Theta constants without any loss of efficiency. This provides more
flexibility when transforming a given genus 2 curve into an associated Kummer
surface, and makes it easier to control the size of squared fundamental Theta
constants, for which small values can give worthwhile speedups.

Cosset [16] formally presented the “squares-only” setting, in which the Kum-
mer surfaceK is completely defined by the squared fundamentals (a2, b2, c2, d2) =
(ϑ1(0)

2, ϑ2(0)
2, ϑ3(0)

2, ϑ4(0)
2) as

K : E′xyzt = ((x2 + y2 + z2 + t2)− F (xt+ yz)−G(xz + yt)−H(xy + zt))2,

where E′ = 4E2a2b2c2d2, E =
ABCD

(a2d2 − b2c2)(a2c2 − b2d2)(a2b2 − c2d2)
,

F =
a4 − b4 − c4 + d4

a2d2 − b2c2
, G =

a4 − b4 + c4 − d4

a2c2 − b2d2
, H =

a4 + b4 − c4 − d4

a2b2 − c2d2
,

⎡

⎢
⎣

A
B
C
D

⎤

⎥
⎦ =

⎡

⎢
⎣

1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎤

⎥
⎦

⎡

⎢
⎣

a2

b2

c2

d2

⎤

⎥
⎦ . (1)

We write (x : y : z : t) = (ϑ1(z)
2 : ϑ2(z)

2 : ϑ3(z)
2 : ϑ4(z)

2) for the coordinates of
a projective point on K.

Extracting the Squared Kummer Surface Parameters. In [26] Gaudry
showed the relationship between the Kummer surface and the isomorphic Rosen-
hain model of the genus 2 curve C, given as

CRos : y
2 = x(x− 1)(x− λ)(x − μ)(x − ν), (2)

where the Rosenhain invariants λ, μ and ν are linked to the squared fundamen-
tals by

λ =
a2c2

b2d2
, μ =

c2(AB + CD)

d2(AB − CD)
, ν =

a2(AB + CD)

b2(AB − CD)
,

with A,B,C,D as in (1). Since the three Rosenhain invariants are functions of
the four squared fundamentals, there is a degree of freedom when inverting the
equations to compute (a2, b2, c2, d2) from (λ, μ, ν). Thus, we can set d2 = 1 [27]
and compute the other squared fundamentals as

c2 =

√
λμ

ν
, b2 =

√
μ(μ− 1)(λ− ν)

ν(ν − 1)(λ− μ)
, a2 = b2c2

ν

μ
.

Given a hyperelliptic curve C of genus 2, there are up to 120 unique Rosenhain
triples λ, μ, ν that give an isomorphic representation CRos

∼= C over the algebraic

Fast Cryptography in Genus 2 201

closure [25, §2.2]. So for a given curve with rational 2-torsion, we can expect that
there may be at least one Rosenhain triple for which the square roots above lie
in the same field as λ, μ and ν, such that the Kummer surface is also defined
over the same field (but see Section 8). If the 2-torsion is rational, then 16 must
divide the cardinality of Jac(C) [26].

Twist Security. There is an additional security consideration when working on
the Kummer surface because a random point on K can map to either the curve
CRos

∼= C or its twist C′
Ros
∼= C′ [26, §5.2]. As long as the public generator P ∈ K

is chosen so that it maps back to Jac(CRos), then any honest party participating
in a Diffie-Hellman style protocol computes with multiples of P that also map
back to Jac(CRos). However, an attacker could feed a party another point P ′ ∈ K
that (unbeknownst to the party) maps back to C′

Ros, and on return of [s]P ′,
attack the discrete logarithm problem on the twist instead. It is undesirable to
include a check of which curve the Kummer points map to, because the maps
are overly involved (see [10, §5]). The best solution is to compute curves where
both Jac(C) and Jac(C′) have large prime order subgroups. Such curves and
their associated Kummer surfaces are called twist-secure [29,28].

Implementation Details and Side-channel Resistance. When computing
the scalar multiplication on a Kummer surface, the combined double and pseudo-
addition routine is called for every bit in the scalar, except the first one. The main
branch, i.e. checking if the bit is set (or not), can be converted into straight-line
code by masking (pointers to) the in- and output. Since no lookup tables are used,
and all modern cache sizes are large enough to hold the intermediate values when
using 128-bit arithmetic, the algorithm (and runtime) becomes independent of
input almost for free. The only input-dependent value is the scalar n whose bit-
size can differ, meaning that the total runtime could potentially leak the value of
the most significant bits. In order to make the implementation run in constant
time, we can either increase the scalar via addition of the subgroup order, or we
can artificially increase the running time by computing on dummy values such
that we compute the combined doubling and pseudo-addition a fixed number of
times.

6 GLV in Genus-2

The Gallant-Lambert-Vanstone (GLV) method [23] significantly speeds up scalar
multiplication on algebraic curves that admit an efficiently computable endomor-
phism φ of degree d > 1, by decomposing the scalar k into d “mini-scalars”, all of
which have bit-lengths that are approximately 1/d that of k. The d scalar multi-
plications corresponding to each of these mini-scalars can then be computed as
one multi-scalar multiplication of length ≈ log2 (k)/d, which effectively reduces
the number of required doublings by a factor of d.

Endomorphisms. In general, algebraic curves over prime fields do not come
equipped with a useful endomorphism φ, which means we have to use special
curves to take advantage of the GLV method. For genus 1 elliptic curves, Gallant

202 J.W. Bos et al.

et al. suggested the curves y2 = x3 + b and y2 = x3 + ax, which both allow a
2-dimensional decompositions over prime fields. On the other hand, the genus 2
analogues of these curves, Buhler-Koblitz (BK) curves of the form y2 = x5+b [14]
and Furukawa-Kawazoe-Takahashi (FKT) curves of the form y2 = x5 + ax [21],
have φ’s whose minimal polynomials are of degree 4, which means that we can
achieve 4-dimensional scalar decompositions on genus 2 curves over prime fields.
Besides the two families above that offer 4-dimensional GLV decompositions,
families of genus 2 curves with real multiplication (RM) facilitate 2-dimensional
scalar decompositions [38,28]. To give an idea of the expected performance in
such scenarios, we also present timings for a 2-dimensional GLV decomposition
on FKT curves.

Scalar Decomposition Via Division. At Eurocrypt 2002, Park, Jeong and
Lim [48] gave an algorithm for performing GLV decomposition via division in
the ring Z[φ] generated by φ. This algorithm is very simple and effective in de-
composing the scalar k quickly: in 4-dimensional cases (BK and FKT) it takes
20 multiplications to fully decompose k, and in the 2-dimensional case the de-
composition totals just 6 multiplications. For the curves we used, this algorithm
performed slightly better on average than the (conservative) numbers quoted
in [48, Table 4].

Computing the Scalar Multiplication. We describe two approaches to im-
plement the scalar multiplication. The d-dimensional decomposition of the scalar
k results in d smaller scalars k�, for 0 ≤ � < d. The first approach precomputes
the 2d different points Li =

∑d−1
�=0

(⌊
i
2�

⌋
mod 2

) · P� for 0 ≤ i < 2d and stores
them in a lookup table. When processing the jth bit of the scalar, the precom-
puted multiple Li is added, for i =

∑d−1
�=0 2

�
(⌊

k�

2j

⌋
mod 2

)
. Hence, besides the

minor bit-fiddling overhead to construct the lookup table index, this requires
computing at most a single curve addition and a single curve doubling per bit
of the maximum of the k�’s. The second approach [22] is very similar to using
signed windows for a single scalar (see Section 2). We start by precomputing the
multiples L�(c) = [c]P� for d different tables: one corresponding to each scalar
k�. When computing the scalar multiplication, the jth part (of width w bits) in
the scalar k� determines which point needs to be added (or subtracted), namely
∑d−1

�=0 ±L�

(⌊
k�

2wj

⌋
mod 2w

)
, where the addition or subtraction depends on the

addition-subtraction chain used. Thus, an addition to the running value has to
be made only once every w bits and combining the lookup table values takes at
most d− 1 additions, so one needs at most d additions per w bits. The optimal
value for w depends on the dimension d, the bit-size of k� and the cost of (mixed)
additions and doublings. There are multiple ways to save computations in this
latter approach. After computing the multiples in the first lookup table L0, the
values for the d− 1 other tables can be computed by applying the map φ to the
individual point in the lookup table [22]. Since the computation of the map φ
only takes three or four multiplications (depending on the curve used), this is a
significant saving compared to computing the group operation which is an order
of magnitude slower. Furthermore, since the endomorphism costs the same in
affine or projective space, one can convert the points in L0 to affine coordinates

Fast Cryptography in Genus 2 203

Table 1. Performance timings in 103 cycles of various programs calculating a �log2(r)�-
bit scalar multiplication, using genus g arithmetic. The curve characteristics, such as the
prime p, the cardinality r, the size of the automorphism group #Aut, and the security
level s = log2(

√
πr

2#Aut), are stated as well. Here p1 = 2256 − 2224 + 2192 + 296 + 1

and p2 = 264 · (263 − 27443) + 1. If an implementation runs in constant-time (CT), we
indicate this with ‘�’, if not with ‘✕’, and if unknown with ‘?’.

Primitive g CT field char p �log2(r)� #Aut s 103 cycles

curve25519 [4,6] 1 � 2255 − 19 253 2 125.8 182
ecfp256e [32] 1 ✕ 2256 − 587 255 2 126.8 227
Longa-Sica 2-GLV [40] 1 ✕ 2256 − 11733 256 6 127.0 145
surf127eps [30] 2 � 2127 − 735 251 2 124.8 236
NISTp-224 [56,34] 1 � 2224 − 296 + 1 224 2 111.8 302
NISTp-256 [56] 1 ? p1 256 2 127.8 658

(a) generic127 2 ✕ 2127 − 1 254 2 126.8 295
(b) generic127 2 ✕ 2127 − 1 254 2 126.8 248
(b) generic128 2 ✕ 2128 − 173 257 2 127.8 364
(a) Kummer 2 � 2127 − 1 251 2 124.8 139
(b) Kummer 2 � 2127 − 1 251 2 124.8 117
(b) Kummer 2 � 2128 − 237 253 2 125.8 166
(a) GLV-4-BK 2 ✕ p2 254 10 125.7 156
(a) GLV-4-FKT 2 ✕ p2 253 8 125.3 156
(a) GLV-2-FKT 2 ✕ p2 253 8 125.3 220
(b) GLV-4-BK 2 ✕ 2128 − 24935 256 10 126.7 164
(b) GLV-4-FKT 2 ✕ 2128 − 24935 255 8 126.3 167
(b) GLV-2-FKT 2 ✕ 2128 − 24935 255 8 126.3 261

using Montgomery’s simultaneous inversion method (see Section 2), and obtain
all of the affine points in the other lookup tables very efficiently through the
application of φ. This means the faster mixed addition formulas can be applied
when adding any element in a lookup table. In our implementations, the first
approach is faster in the 4-dimensional case and the second approach is faster in
the 2-dimensional case.

7 Results and Discussion

In this section we present our performance results and compare them with the
current state-of-the-art.

Benchmark Setting and Code. All of the implementations in Table 1 were
run on an Intel Core i7-3520M (Ivy Bridge) processor at 2893.484 MHz with
hyperthreading turned off and over-clocking (“turbo boost”) disabled. The im-
plementations labeled (a) use the Montgomery-friendly primes. They have been
compiled using Microsoft Visual Studio 2012 and run on 64-bit Windows, where
the timings are obtained using the time stamp counter instruction rdtsc over
several thousand scalar multiplications. The implementations labeled (b) use
the NIST-like approach and have been compiled with gcc 4.6.3 to run on 64-bit

204 J.W. Bos et al.

Linux, where the timings are obtained using the SUPERCOP toolkit for mea-
suring the performance of cryptographic software (see [8]). The implementations
labeled (b) are made publicly available through [8]. Both (a) and (b) perform a
final modular inversion to ensure that the output point is in affine form: this is
the standard setting when computing a Diffie-Hellman key-exchange.
Results. Table 1 summarizes the performance and characteristics of various
genus g curve implementations. For the security estimate we assume that the
fastest attacks possible are the “generic algorithms”, where we specifically use
the complexity of the Pollard rho [49] algorithm that exploits additional auto-
morphisms [19,58]. If r is the largest prime factor of a group with #Aut au-
tomorphisms, we compute the security level s as s = log2(

√
πr

2#Aut). We also
indicate if the implementation runs in constant time, an important step towards
achieving side channel resistance [37].

The implementations in the top part of the table are obtained from eBACS,
except for [56] and [40]. The standardized NIST curves [56], one of which is at
a lower security level, are both obtained from the benchmark program included
in OpenSSL 1.0.1.4 The implementation from [40] is not publicly available, but
the authors gave us a precompiled binary which reported its own cycle count
so that we could report numbers obtained in our test-environment. All of these
implementations were run on our hardware.
Discussion. The first thing to observe from Table 1 is that the standard NISTp-
256 curve and the genus 2 curve “generic128” (see Section 4) offer the highest level
of security. This “generic” genus 2 implementation is our slowest performing im-
plementation, yet is it still 1.80 times faster than the NIST curve at the same
security level. Interestingly, all our Kummer and 4-dimensional GLV implemen-
tations manage to outperform the previous fastest genus 2 implementation [30].
Prior to this work, the fastest curve arithmetic reported on eBACS was due to
Bernstein [4], whilst Longa and Sica [40] held the overall software speed record
over prime fields. We note that the former implementation runs in constant time,
while the latter does not. Even though our GLV implementations do not currently
run in constant time, we note that they can be transformed into constant time im-
plementations following, for instance, the techniques from [40]. Our approach (b)
on the Kummer surface sets a new software speed record by breaking the 120k
cycle barrier for constant time implementations at the 128-bit security level.

We note that Table 1 reports implementations over prime fields only. For el-
liptic curves defined over quadratic extensions of large prime fields, Longa and
Sica [40] report a non-constant time scalar multiplication in 91,000 cycles on the
Sandy Bridge architecture, while their constant time version runs in 137,000 cycles.
Over binary fields, Aranha et al. [3] perform a scalar multiplication on the Koblitz
curve K-283 in 99,000 cycles on Sandy Bridge, while Oliveira et al. [47] recently
announced a new speed record of 75,000 cycles on the same architecture. We note
that both of these binary field implementations do not run in constant time.

4 Note, to enable this implementation, using the techniques described in [34], OpenSSL
needs to be configured using “./Configure enable-ec_nistp_64_gcc_128”.

Fast Cryptography in Genus 2 205

With respect to the different arithmetic approaches from Section 3, we con-
clude that when using the prime 2127 − 1, the NIST-like approach is the way
to go. In the more general comparison of 2128 − c1 versus 264 · (263 − c2) ± 1
for NIST-like and Montgomery-friendly primes respectively, we found that the
Montgomery-friendly primes outperform the former in practice. This was a sur-
prising outcome and we hope that implementers of cryptographic schemes will
consider this family of primes as well. The implementations (b) of “generic” and
Kummer highlight the practical advantage of the prime 2127 − 1 over the prime
2128− c1: in both instances the former is around 1.4 times faster than the latter.

8 Kummer Chameleons

In this section we explore curves that facilitate both efficient scalar multiplica-
tions on the Kummer surface and efficient scalar multiplications on the Jacobian
using a GLV decomposition. Such curves give cryptographers the option of tak-
ing either route depending on the protocol at hand: for Diffie-Hellman protocols,
working on the associated Kummer surface is the most efficient option, but if
the pseudo-addition law on the Kummer surface is insufficient, the GLV method
can be used on an associated curve. Since these curves can morph depending on
the scenario, we call them Kummer chameleons.

We primarily focus on the two families that facilitate 4-dimensional GLV
decompositions. We start with the FKT family of curves to show an unfortunate
drawback which prohibits us from using this Kummer/GLV duality over prime
fields. We then move to the BK family of curves which does allow this duality
in practice. For these special families, we also show the benefits of computing
the Kummer surface parameters analytically (i.e. over C). This approach tells us
when we can (or cannot) expect to find practical Kummer parameters using the
technique of extracting K from CRos in Section 5. It can additionally reveal when
we are likely to find small surface constants, which guarantees solid speedups in
practice. For an overview of computations involving the analytic Jacobian of a
hyperelliptic curve, we refer to [57].

Recognising Kummer Parameters Over C. We use an analytic approach to
assist us in generating Kummer surfaces which are associated to a particular CM
field. For each CM field, there is a collection of period matrices which correspond
to the isomorphism classes of Jacobians of genus 2 curves with CM by that field,
and thus with known possible group orders (see [57]). The theta functions can be
evaluated at these period matrices, and approximations of the complex values of
quotients of the associated theta constants can be used to recognize the minimal
polynomials that they satisfy.

Although it can be difficult to analytically recognize the theta constants them-
selves, for special families it is often possible to recognize quotients of certain
theta constants. In Tables 2 and 3, we give the minimal polynomials satisfied
by all of the parameters required for the Kummer surface implementation for
the FKT and BK families: the values E′, F , G, H which define the surface (see
Section 5), and the constants y0, z0, t0, y′0, z′0 and t′0 which are needed in the

206 J.W. Bos et al.

Table 2. Kummer parameters (and their minimal polynomials) over C for the FKT
family

K param. E F , G, H y0, t0 z0 y′
0, t′0 z′0

Value ∈ C 17 + 31i (3 + i)/2 1 1− i 3 + 4i −3− 4i

Min. poly. x2 − 34x+ 1250 2x2 − 6x+ 5 x− 1 x2 − 2x+ 2 x2 − 6x+ 25 x2 + 6x+ 25

doubling and pseudo-addition operations (see [10, §5]). The coefficients of these
minimal polynomials can be reduced modulo any prime p, so for any p for which
the polynomials have a consistent choice of roots modulo p, they can be used to
define a Kummer surface over Fp such that the associated group order of Jac(C)
is known (from the CM field).

The Kummer Surface of FKT Curves. For curves of the form y2 = x5+ax,
the complex values (and corresponding minimal polynomials) of the required
Kummer parameters are given in Table 2. We note that once we choose i =

√−1
by sufficiently extending Fp (if necessary), all of the required constants are de-
termined. Observe that two of the six surface constants are 1, which immediately
results in two fewer multiplications (see [10, §5]).

Mapping points from the Kummer surface to the associated Jacobian(s) ac-
tually takes points on K to divisors on Jac(CRos) or Jac(C′

Ros), where CRos :
y2 = x(x − 1)(x − λ)(x − μ)(x − ν), and for which we can also recognize the
Rosenhain invariants in C as λ = (i + 1)/2, μ = i and ν = i + 1. Now, if
p ≡ 1 (mod 4), then i =

√−1 ∈ Fp and the Rosenhain model defined by those
values is defined over Fp. The curve C : y2 = x5 + ax can be rewritten as
y2 = x(x−α)(x+α)(x−αi)(x+αi), where α is a non-trivial fourth root of −a.
Clearly C and CRos can only be isomorphic over Fp if α ∈ Fp, which implies that
Jac(C) is isogenous over Fp to the product of two elliptic curves [21, Lemma
4]. Thus C is not suitable for cryptographic applications in this case, since the
group order of Jac(C) is a product of factors of at most half the size of the total.
If instead p ≡ 3 (mod 4), then i ∈ Fp2\Fp, and from Table 2 it follows that the
Kummer surface is defined over Fp2 , which destroys the arithmetic efficiency of
the group law algorithms. Therefore, we conclude that the FKT family does not
yield a secure and efficient Kummer surface over prime fields.

The Kummer Surface of BK Curves. For curves of the form y2 = x5 +
b, the minimal polynomials for the required Kummer parameters are given in
Table 3. Since these polynomials have degree larger than two, writing down the
correct root corresponding to each Kummer parameter becomes more involved.
Furthermore, these polynomials tell us that we can not expect any Kummer
constants to automatically be small. Nevertheless, they do help us deduce when
it is possible to find practical Kummer parameters. For example, t0 is a root
of Φ5(−x2), which does not have any roots in Fp when p ≡ 11 (mod 20), yet
splits into linear factors when p ≡ 1 (mod 20). In fact, all of the polynomials in
Table 3 split into linear factors in Fp for p ≡ 1 (mod 20); this agrees with our
experiments which always extracted working Kummer parameters for BK curves
when p ≡ 1 (mod 20), and always failed to do so when p ≡ 11 (mod 20).

Fast Cryptography in Genus 2 207

Table 3. Kummer parameters (and their minimal polynomials) over C for the Buhler-
Koblitz family

Kummer parameter Minimal polynomial
E, F x2 − 20x− 400, x8 − 11x6 + 46x4 − 96x2 + 121

G, H x8 − 11x6 + 46x4 − 96x2 + 121, x2 + x− 1

y0, z0 x4 − x3 + x2 − x+ 1, x8 − 4x6 + 6x4 + x2 + 1

t0, y′
0 x8 − x6 + x4 − x2 + 1, x4 − 16x3 + 46x2 − 16x+ 1

z′0, t′0 25x8 − 100x7 + 460x6 + 580x5 + 286x4 + 36x3 − 4x2 − 4x+ 1

The only minor drawback for the Kummer surface associated to the BK family
is that, for primes congruent to 1 modulo 5, if the 2-torsion of Jac(C) or Jac(C′)
is defined over Fp, then 5 divides at least one of the two group orders. Hence,
even in the best case the two group orders have cofactors of 16 and 80, which
means either the curve or its twist will be around 1 bit less secure than the
other. In this case, generators on the Kummer surface should be chosen which
map back to the curve with cofactor 16.

Kummer Chameleons with 2-dimensional GLV. Although we have focused
on two families of genus 2 curves that offer 4-dimensional GLV over prime fields,
there are many more families that offer 2-dimensional GLV [38,53,28]. We espe-
cially mention the family due to Mestre [41], which was studied further in [28,
§4.4]. This family might be particularly attractive since the techniques in [28]
make it practical to find twist-secure instances over Fp with p = 2127− 1. Work-
ing analytically, we observed that small Kummer constants are often obtained
if we take special instances of the families with efficiently computable RM. An
example from the family due to Tautz, Tops and Verberkmoes [54] (also see [38,
§5.1]) is the Kummer surface associated to the curve y2 = x(x4 − x2 +1), which
yields t0 = 1 over C, so the techniques in [28, §4.4] could be used (over many
primes) to find twist-secure curves that can take advantage of this.

9 Conclusions
We have given a taxonomy of the state-of-the-art in genus-2 arithmetic over
prime fields, with respect to its application in public-key cryptography. We
studied two different approaches to achieve fast modular arithmetic and imple-
mented these techniques in three settings: on “generic” genus-2 curves, on special
genus-2 curves facilitating 2-and 4-dimensional GLV decompositions, and on the
Kummer surface proposed by Gaudry [26]. Furthermore, we presented Kummer
chameleons ; curves which allow fast arithmetic on the Kummer surface as well
as efficient arithmetic on the Jacobian that results from a GLV decomposition.
Ultimately, we highlighted the practical benefits of genus-2 curves with our Kum-
mer surface implementation - this sets a new software speed record at the 128-bit
security level for computing constant time scalar multiplications compared to all
previous elliptic curve and genus-2 implementations.

Acknowledgements. We wish to thank Pierrick Gaudry for his Kummer help
when this project began, Dan Bernstein and Tanja Lange for several fruit-

208 J.W. Bos et al.

ful discussions during the preparation of this work, Patrick Longa for his ad-
vice on optimizing the GLV routines and extensive comments on this work,
Michael Naehrig for proofreading early versions of this paper, and the anonymous
Eurocrypt reviewers for their useful comments.

References
1. Acar, T., Shumow, D.: Modular reduction without pre-computation for special

moduli. Technical report, Microsoft Research (2010)
2. Adleman, L., DeMarrais, J., Huang, M.: A subexponential algorithm for discrete

logarithms over hyperelliptic curves of large genus over GF(q). Theoretical Com-
puter Science 226(1-2), 7–18 (1999)

3. Aranha, D.F., Faz-Hernández, A., López, J., Rodríguez-Henríquez, F.: Faster imple-
mentation of scalar multiplication on Koblitz curves. In: Hevia, A., Neven, G. (eds.)
LATINCRYPT 2012. LNCS, vol. 7533, pp. 177–193. Springer, Heidelberg (2012)

4. Bernstein, D.J.: Curve25519: New Diffie-Hellman speed records. In: Yung, M.,
Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 207–
228. Springer, Heidelberg (2006)

5. Bernstein, D.J.: Elliptic vs. Hyperelliptic, part I. Talk at ECC, slides at (September
2006), http://cr.yp.to/talks/2006.09.20/slides.pdf

6. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.-Y.: High-speed high-
security signatures. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917,
pp. 124–142. Springer, Heidelberg (2011)

7. Bernstein, D.J., Lange, T.: Analysis and optimization of elliptic-curve single-scalar
multiplication. In: Finite Fields and Applications. Contemporary Mathematics Se-
ries, vol. 461, pp. 1–19. American Mathematical Society (2008)

8. Bernstein, D.J., Lange, T. (eds). eBACS: ECRYPT Benchmarking of Crypto-
graphic Systems, http://bench.cr.yp.to (accessed October 4, 2012)

9. Bos, J.W.: High-performance modular multiplication on the Cell processor. In:
Hasan, M.A., Helleseth, T. (eds.) WAIFI 2010. LNCS, vol. 6087, pp. 7–24. Springer,
Heidelberg (2010)

10. Bos, J.W., Costello, C., Hisil, H., Lauter, K.: Two is greater than one. Cryptology
ePrint Archive, Report 2012/670 (2012), http://eprint.iacr.org/

11. Bos, J.W., Kaihara, M.E., Kleinjung, T., Lenstra, A.K., Montgomery, P.L.: Solving
a 112-bit prime elliptic curve discrete logarithm problem on game consoles using
sloppy reduction. Int. J. of Applied Cryptography 2(3), 212–228 (2012)

12. Brauer, A.: On addition chains. Bulletin of the American Mathematical Society 45,
736–739 (1939)

13. Brown, M., Hankerson, D., López, J., Menezes, A.: Software implementation of the
NIST elliptic curves over prime fields. In: Naccache, D. (ed.) CT-RSA 2001. LNCS,
vol. 2020, pp. 250–265. Springer, Heidelberg (2001)

14. Buhler, J., Koblitz, N.: Lattice basis reduction, Jacobi sums and hyperelliptic cryp-
tosystems. Bull. of the Australian Math. Soc. 58(1), 147–154 (1998)

15. Chudnovsky, D.V., Chudnovsky, G.V.: Sequences of numbers generated by addition
in formal groups and new primality and factorization tests. Advances in Applied
Mathematics 7, 385–434 (1986)

16. Cosset, R.: Factorization with genus 2 curves. Math. Comp. 79(270), 1191–1208
(2010)

17. Costello, C., Lauter, K.: Group law computations on Jacobians of hyperelliptic
curves. In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 92–117.
Springer, Heidelberg (2012)

http://cr.yp.to/talks/2006.09.20/slides.pdf
http://bench.cr.yp.to
http://eprint.iacr.org/

Fast Cryptography in Genus 2 209

18. Diem, C.: On the discrete logarithm problem in class groups of curves. Math.
Comp. 80, 443–475 (2011)

19. Duursma, I.M., Gaudry, P., Morain, F.: Speeding up the discrete log computa-
tion on curves with automorphisms. In: Lam, K.-Y., Okamoto, E., Xing, C. (eds.)
ASIACRYPT 1999. LNCS, vol. 1716, pp. 103–121. Springer, Heidelberg (1999)

20. Enge, A.: Computing discrete logarithms in high-genus hyperelliptic Jacobians in
provably subexponential time. Math. Comp. 71, 729–742 (2002)

21. Furukawa, E., Kawazoe, M., Takahashi, T.: Counting points for hyperelliptic curves
of type y2= x5 + ax over finite prime fields. In: SAC 2003. LNCS, vol. 3006, pp.
26–41. Springer, Heidelberg (2003)

22. Galbraith, S.D., Lin, X., Scott, M.: Endomorphisms for faster elliptic curve cryp-
tography on a large class of curves. J. Cryptology 24(3), 446–469 (2011)

23. Gallant, R.P., Lambert, R.J., Vanstone, S.A.: Faster point multiplication on elliptic
curves with efficient endomorphisms. In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, pp. 190–200. Springer, Heidelberg (2001)

24. Gaudry, P.: An algorithm for solving the discrete log problem on hyperelliptic
curves. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 19–34.
Springer, Heidelberg (2000)

25. Gaudry, P.: Algorithmique des courbes hyperelliptiques et applications à la cryp-
tologie. PhD thesis, École polytechnique (2000),
http://www.lix.polytechnique.fr/Labo/Pierrick.Gaudry/publis/

26. Gaudry, P.: Fast genus 2 arithmetic based on theta functions. Journal of Mathe-
matical Cryptology 1(3), 243–265 (2007)

27. Gaudry, P.: Personal communication (2011)
28. Gaudry, P., Kohel, D.R., Smith, B.A.: Counting points on genus 2 curves with real

multiplication. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073,
pp. 504–519. Springer, Heidelberg (2011)

29. Gaudry, P., Schost, É.: Genus 2 point counting over prime fields. J. Symb.
Comp. 47(4), 368–400 (2012)

30. Gaudry, P., Thomé, E.: The mpFq library and implementing curve-based key ex-
changes. In: SPEED 2007, pp. 49–64 (2007),
http://www.loria.fr/~gaudry/publis/mpfq.pdf

31. Hamburg, M.: Fast and compact elliptic-curve cryptography. Cryptology ePrint
Archive, Report 2012/309 (2012), http://eprint.iacr.org/

32. Hisil, H., Wong, K.K.-H., Carter, G., Dawson, E.: Twisted Edwards curves re-
visited. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 326–343.
Springer, Heidelberg (2008)

33. Kaliski Jr., B.S.: The Montgomery inverse and its applications. IEEE Transactions
on Computers 44(8), 1064–1065 (1995)

34. Käsper, E.: Fast elliptic curve cryptography in openSSL. In: Danezis, G., Dietrich,
S., Sako, K. (eds.) FC 2011 Workshops 2011. LNCS, vol. 7126, pp. 27–39. Springer,
Heidelberg (2012)

35. Knežević, M., Vercauteren, F., Verbauwhede, I.: Speeding up bipartite modular
multiplication. In: Hasan, M.A., Helleseth, T. (eds.) WAIFI 2010. LNCS, vol. 6087,
pp. 166–179. Springer, Heidelberg (2010)

36. Koblitz, N.: Elliptic curve cryptosystems. Math. Comp. 48(177), 203–209 (1987)
37. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,

and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

http://www.lix.polytechnique.fr/Labo/Pierrick.Gaudry/publis/
http://www.loria.fr/~gaudry/publis/mpfq.pdf
http://eprint.iacr.org/

210 J.W. Bos et al.

38. Kohel, D.R., Smith, B.A.: Efficiently computable endomorphisms for hyperelliptic
curves. In: Hess, F., Pauli, S., Pohst, M. (eds.) ANTS 2006. LNCS, vol. 4076, pp.
495–509. Springer, Heidelberg (2006)

39. Lenstra, A.K.: Generating RSA moduli with a predetermined portion. In: Ohta, K.,
Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 1–10. Springer, Heidelberg
(1998)

40. Longa, P., Sica, F.: Four-dimensional Gallant-Lambert-Vanstone scalar multipli-
cation. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp.
718–739. Springer, Heidelberg (2012)

41. Mestre, J.-F.: Couples de Jacobiennes isogenes de courbes hyperelliptiques.
Preprint, arXiv (2009), http://arxiv.org/abs/0902.3470

42. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)

43. Montgomery, P.L.: Modular multiplication without trial division. Math.
Comp. 44(170), 519–521 (1985)

44. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization.
Math. Comp. 48(177), 243–264 (1987)

45. Morain, F., Olivos, J.: Speeding up the computations on an elliptic curve using
addition-subtraction chains. Informatique Théorique et Applications/Theoretical
Informatics and Applications 24, 531–544 (1990)

46. National Security Agency. Fact sheet NSA Suite B Cryptography (2009),
http://www.nsa.gov/ia/programs/suiteb_cryptography/index.shtml

47. Oliveira, T., Rodríguez-Henríquez, F., López, J.: New timings for scalar multipli-
cation using a new set of coordinates. In: Rump Session Talk at ECC 2012 (2012)

48. Park, Y.-H., Jeong, S., Lim, J.: Speeding up point multiplication on hyperelliptic
curves with efficiently-computable endomorphisms. In: Knudsen, L.R. (ed.) EU-
ROCRYPT 2002. LNCS, vol. 2332, pp. 197–208. Springer, Heidelberg (2002)

49. Pollard, J.M.: Monte Carlo methods for index computation (mod p). Math.
Comp. 32(143), 918–924 (1978)

50. Scholz, A.: Aufgabe 253. Jahresbericht der deutschen Mathematiker-Vereingung 47,
41–42 (1937)

51. Smart, N.P., Siksek, S.: A fast Diffie-Hellman protocol in genus 2. J. Cryptol-
ogy 12(1), 67–73 (1999)

52. Solinas, J.A.: Generalized Mersenne numbers. Technical Report CORR 99–39, Cen-
tre for Applied Cryptographic Research, University of Waterloo (1999)

53. Takashima, K.: A new type of fast endomorphisms on Jacobians of hyperelliptic
curves and their cryptographic application. IEICE Trans. 89-A(1), 124–133 (2006)

54. Tautz, W., Top, J., Verberkmoes, A.: Explicit hyperelliptic curves with real multi-
plication and permutation polynomials. Canad. J. Math 43(5), 1055–1064 (1991)

55. Thurber, E.G.: On addition chains l(mn) ≤ l(n) − b and lower bounds for c(r).
Duke Mathematical Journal 40, 907–913 (1973)

56. U.S. Department of Commerce/National Institute of Standards and Technology.
Digital Signature Standard (DSS). FIPS-186-3 (2009),
http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf

57. van Wamelen, P.: Computing with the analytic Jacobian of a genus 2 curve. In: Dis-
covering Mathematics with Magma. Algorithms and Computation in Mathematics,
vol. 19, pp. 117–135. Springer, Heidelberg (2006)

58. Wiener, M.J., Zuccherato, R.J.: Faster attacks on elliptic curve cryptosystems. In:
Tavares, S., Meijer, H. (eds.) SAC 1998. LNCS, vol. 1556, pp. 190–200. Springer,
Heidelberg (1999)

http://arxiv.org/abs/0902.3470
http://www.nsa.gov/ia/programs/suiteb_cryptography/index.shtml
http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf

	Fast Cryptography in Genus 2
	1Introduction
	2Preliminaries
	3Fast Modular Arithmetic Using Special Primes
	4``Generic'' Genus-2 Curves and Their Arithmetic
	5The Kummer Surface
	6LV in Genus-2
	7Results and Discussion
	8Kummer Chameleons
	9Conclusions
	References

