
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3108238, IEEE Access

VOLUME XX, 2017 1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

Fast CU decision-making algorithm based on
DenseNet network for VVC

Qiuwen Zhang, Ruixiao Guo, Bin Jiang, and Rijian Su
College of Computer and Communication Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China

Corresponding author: Qiuwen Zhang (e-mail: zhangqwen@126.com).

This work was supported in part by the National Natural Science Foundation of China No.61771432, 61302118, and 61773018, the Basic Research Projects

of Education Department of Henan No. 21zx003, and 20A880004.

ABSTRACT The joint video expert team (JVET) is currently developing a new video coding standard called

H.266/Versatile Video Coding (VVC). Compared with High Efficiency Video Coding (HEVC), VVC has

added a variety of coding tools. These tools have greatly improved video compression efficiency and

maintained a high level video quality. However, due to the increase in computational complexity, the

encoding time is much longer than HEVC. We propose a prediction tool based on DenseNet (a convolutional

neural network) to decrease the VVC coding complexity. We predict the probability that the edge of 4×4

blocks in each 64×64 block is the division boundary by Convolutional Neural Networks (CNN). Then, we

skip the unnecessary rate distortion optimization (RDO) and speed up the coding by probability vectors in

advance. The proposed method can reduce the coding complexity of 46.10% in VTM10.0 intra coding, while

Bjøntegaard delta bit rate (BDBR) only increases by 1.86%. In the sequence with a resolution greater than

1080P, the acceleration efficiency can be at 64.81%, the BDBR loss only increased by 1.92%.

INDEX TERMS Versatile video Coding, Convolutional neural network, Coding unit partition

I. INTRODUCTION

Due to the increase in IP video traffic in recent years [1] and

the emergence of new video formats such as 4K, 8K, High

Frame Rate (HFR), Wide Color Gamut (WCG) and VR video,

the demand for video transmission bandwidth and storage has

exploded. At present, how to more effectively encode new

generation videos, such as ultra-high resolution and high

dynamic range, has become one of the research hotspots in the

world academia.

Some video coding standards have emerged, such as

H.264/Advanced Video Coding (AVC) and HEVC. However,

the compression ratios that these standards can achieve cannot

keep up with the rapid growth in demand for video data. The

International Telecommunication Union (ITU) and the

ISO/IEC Moving Picture Experts Group (MPEG) formed the

JVET to develop new video coding standards. In April 2018,

the JVET officially named VVC [2].

Compared with HEVC, the compression ratio of VVC has

been greatly improved, but its encoding time is also many

times that of HEVC. VVC uses a hybrid coding technology

framework. Its image division has evolved from a single, fixed

division to a diverse and flexible division structure, which can

more efficiently adapt to the encoding and decoding of high-

resolution images. Among them, the QTMT division scheme

[3] [4] is used in VVC to obtain better compression efficiency.

The scheme has five division modes: Quad-Tree (QT),

Binary-Tree-Vertical (BTV), Binary-Tree-Horizontal (BTH),

Ternary-Tree-Vertical (TTV) and Ternary-Tree-Horizontal

(TTH), which are more than HEVC in two ways, TTV and

TTH, as shown in Fig.1. All five modes can be used, but QT

splitting cannot be used for sub-blocks in other split modes.

This segmentation scheme makes the segmented sub-blocks

more suitable for the texture distribution of the image, which

greatly improves the accuracy of the internal prediction and

reduces the prediction residuals. Compared with HEVC [5],

this change increases the coding efficiency by 8.5%. However,

due to the two additional partition types, the computational

complexity of RDO is much greater than that of HEVC,

resulting in its encoding time several times that of HEVC.

An important direction of the current VVC video coding

research is how to reduce the coding complexity and increase

the coding speed without reducing the VVC coding efficiency

or with little loss.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3108238, IEEE Access

VOLUME XX, 2017 3

QT BT_V BT_H TT_V TT_H
FIGURE 1. Schematic diagram of QTMT split structure.

Recently, the development of artificial neural networks has

provided a new direction for the development of fast video

coding.

In this paper, we design a DenseNet-based VTM10.0

internal encoder complexity reduction technique. We provide

CNN with a 64×64 pixel luminance Coding Unit (CU) to

predict a vector to represent the probability of an edge on the

4×4 boundary of the block. The encoder further uses this

probability vector to skip the low-probability segmentation.

II. RELATED WORKS

The VVC video coding standard has five different CU

partitioning methods. The attempts of different CU

partitioning methods during encoding occupy most of the

encoding time. Therefore, reducing the number of CU

partitioning can significantly reduce the encoding time.

In 2019, A. Tissier et al. studied the CU partition

complexity of video coding in [6]. They proposed that the

computational complexity of block partitioning in VVC can

be reduced to 3% of the original at most by predicting the

correct CU splitting method. So a lot of coding time can be

saved.

At present, most block segmentation acceleration

algorithms reduce the computational complexity and save

coding time by terminating unnecessary RDO in advance [7].

Algorithms are mainly divided into two categories, traditional

algorithms and applied machine learning methods. Traditional

algorithms analyze the complexity of the texture by extracting

features, such as the variance and mean square error of the

image, and set a threshold to determine whether to terminate

the RDO calculation early.

[8] proposed a fast intra algorithm based on variance and

Sobel operator, where the variance and gradient information

of the CU is calculated to determine whether the current CU

should be split. [9] used the Canny operator to extract the edge

information of the image, and analyzed the edge information

to determine the most likely dividing direction of the current

CU. A threshold is set when the horizontal and vertical edge

information. When the ratio of the features is higher than the

threshold, the horizontal division is tried. When the reciprocal

of the ratio is higher than the threshold, try the vertical division.

If the two conditions are not met, try QT division. In [10], an

algorithm proposed to calculate the rate distortion (RD) cost

of the horizontal and vertical binary tree partitions. In the

binary tree splitting, the cost is smaller, and the cost is usually

higher in the MTT splitting. [11] also uses the two features of

image variance and gradient to accelerate segmentation. The

method [12] uses Bayesian probabilities as features to skip

unnecessary splitting modes. Most traditional algorithms only

use one or two features, which can only filter out a small

amount of redundancy. Therefore, the acceleration effect of

block segmentation is limited.

Due to the rapid development of machine learning and deep

learning in the past two years, the combination of block

segmentation acceleration algorithms and machine learning

has gradually increased. The trained Support Vector Machine

(SVM) in [13]-[16] is used to filter possible segmentation

strategies. In [13], 6 different SVM classifiers are trained for

blocks from 32×32 to 16×8 and 8×16 to adapt for the situation

of CU division of different sizes. In [14], two SVM classifiers

are trained to divide the results into three categories. These two

types of data are segmented and non segmented, and the error

is small. The third type of data is at the boundary of the two

types, so it needs to be calculated in the next step to determine

whether to divide. In [15], 11 features of the SVM training

image are used to determine whether the current CU needs to

be segmented. [16] trained multiple support vector machines

to predict the probabilities of different partitioning methods

respectively, and skip the partitioning methods with lower

probability. [17] used a decision tree to predict the

segmentation mode. [18] used Bayesian classifiers to speed up

segmentation. Random forest classifiers are also used for fast

CU partitioning [19]-[21], which use its characteristics to

reduce the risk of division errors.

In addition to neural networks, other machine learning

methods need to manually design the way to extract features.

Neural networks can learn the required features through

gradient descent without manual intervention. Under the

appropriate training set, their learning speed and accuracy are

generally high in the way of manual design. Recently, deep

learning methods using neural networks have developed

rapidly in the field of video coding [22]. In deep learning, the

most suitable for processing image information is CNN that

can learn image spatial information. Due to the irregular shape

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3108238, IEEE Access

VOLUME XX, 2017 3

and size of CUs, some methods based on CNN are used on

these CUs. [23], [24] use an adaptive pooling layer to solve

this problem. The adaptive pooling layer can compress feature

maps of any size into a fixed size. [25]-[27] Directly input

fixed-size blocks into the network to predict the range of

division depth, and terminate the RD calculation early through

the depth range. [28] converted the block structure into a

hierarchical representation and directly predict the division of

the entire Coding Tree Unit (CTU). [29] trained three CNN

classifiers to handle CUs of different depths and sizes. [30]

divide the CU into sub-blocks of the same size, and use CNN

to predict the probability of each sub-block boundary as the

division boundary to terminate the partial division mode early.

In [31], the explicit VVC features (EVF) and the derived VVC

features (DVF) that can be obtained during intra prediction are

input into a lightweight neural network to determine which

split modes to skip.

Because the VVC division method is more complicated, many

methods that originally worked well on HEVC cannot be

applied to VVC. We have designed a new fast partitioning

method for coding blocks based on CNNs. This article divides

the method into two steps. First, we train a CNN network to

predict the probability that the edge of the 4×4 brightness

block is the segmentation boundary. Then, it is divided

according to the predicted probability.

III. PROPOSED METHOD

A. STRUCTURE OF CNN

Most existing algorithms combine the CNN network to only

calculate the probability of a single CU for the next

segmentation. The common problem of these algorithms is

that the network model needs to be called multiple times to

make predictions during the same CTU division process,

which will bring a large time overhead. Moreover, the shapes

of the CUs that need to be predicted vary greatly, which will

bring difficulties to the training of the network.

Because the 128×128 size CTU only allows QT division,

the proposed algorithm divides a CTU into four 64×64 blocks,

which are used as a 4 batch input network. We use this batch

to predict the probability that the boundaries of all 4×4 blocks

within each 64×64 CU are divided boundaries. Then, we

determine the division situation based on these probabilities,

and make full use of vectorization to save the time that the

network needs to run. Each CTU only needs to call the model

once. The proposed network refers to DenseNet [32], and the

main part of the network is made up of sub-blocks of

DenseNet structure. The size of the feature map output by each

convolutional layer is the same.

concatenation Skip Connections

H×W×C H×W×N H×W×N H×W×N H×W×N H×W×N H×W×N H×W×(6×N+C）

Feature Map

Input Output

FIGURE 2. DenseNet architecture demonstration.

The structure of the DenseNet block is shown in Fig.2.

DenseNet brings the idea of skip connection in ResNet [33]

into the mechanism. A large number of jump connections

make the propagation of features and gradients more effective,

and alleviate the problem of gradient disappearance that often

occurs when the neural network is too deep. The input of each

convolutional layer in the DenseNet block comes from the

output of all convolutional layers before that layer. These

outputs are subjected to concatenation operation to form a

feature map with more channels, and then use 1×1 convolution

to adjust the number of channels to 4 times the number of

output channels, and then pass through a 3×3 convolution

layer, and use the rule function to activate later as the output

of this layer. Considering one 1×1 convolution and one 3×3

convolution as one layer, and we use 6 layers for each

DenseNet Block. Concatenation the feature map output by

each layer as the output of the block. Due to the good

performance of the attention mechanism in various computer

vision tasks, we try to add an ECA attention module after each

DenseNet Block. ECA is a lightweight channel attention

mechanism, and its structure is shown in Fig.3. ECA attention

module can play a good effect in most computer vision tasks.

However, in the experiment of this task, it does not seem to

significantly improve the network performance. So in the end

we didn't use it in the model.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3108238, IEEE Access

VOLUME XX, 2017 3

FIGURE 3. Efficient Channel Attention, Indicates that the corresponding channel is multiplied.

It can be seen from Fig.4 that the blue block is a two-

dimensional convolution and Relu activation function with a

3×3 convolution kernel. The orange block represents

DenseNet Block, which contains 6 convolutional layers using

1×1 and 3×3 size convolution kernels. The layers represented

by red and green are collectively called the transition layer,

which is used to compress the amount of data. Red represents

the average pooling layer. Green represents the convolution

kernel with 1×1 convolutional layer and Relu activation

function. Gray represents the global pooling layer, which is

used to transform the feature map into a vector. Purple

represents the fully connected layer, which is used to output

the final result. The hyperparameters of the network are shown

in Table I.

3×3
conv+
relu

DenseNet
Block

Max
pool

1×1
conv+
relu

fully
connected
layers

Golbal
Average
Pooling

FIGURE 4. Structure of the proposed model.

TABEL I

NUMBER OF PARAMETERS IN EACH LAYER OF CNN

Layers
output

size(w×H×N)
operation

Channel

of conv in

dense

block(N)

convolution 64×64×16 3×3 conv

Densenet

block(1)
64×64×208 1 1conv

6
3 3 conv

32

transition

layer(1)

21×21×208
3×3 Maxpool

stride3

21×21×104 1×1 conv

Densenet

block(2)
21×21×392 1 1conv

6
3 3 conv

48

transition

layer(2)

7×7×392
3×3 Maxpool

stride3

7×7×196 1×1 conv

Densenet

block(3)
7×7×484 1 1conv

6
3 3 conv

48

transition

layer(3)

3×3×484
2×2 Maxpool

Stride2

3×3×242 1×1 conv

Densenet

block(4)
3×3×530 1 1conv

6
3 3 conv

48

FC layer
1×1×530

3×3 global

avgpool

480 linear

Four 64×64 luma blocks are the input of CNN, and one

CTU is QT divided into fours CUs of 64×64 size. In order to

use vectorization, we input these four brightness blocks into

the network as a batch to speed up the prediction. The output

is a probability vector corresponding to 4×4 block boundaries

of four 64×64 CU partitions. The input sizes of CNN

correspond to the maximum luminance conversion block

(64×64) in the “All Intra” configuration. Fig.5 shows the

matching of the CU partition and the probability vector. For

example, the first value of the vector corresponds to the right

boundary of the 4×4 block in the upper left corner, and the

second value corresponds to the right boundary of the next 4×4

block. The 241st value represents the lower boundary of the

first 4×4 block in the upper left corner.

Global
avgpool

conv1d

sigmod

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3108238, IEEE Access

VOLUME XX, 2017 3

...

...

0.1

0.7

0.9

0.5

0.2

FIGURE 5. Mapping of probability vectors to 4×4 block boundaries. The
first 240 elements of the probability vector correspond to the probability
of all vertical boundaries, and the last 240 elements correspond to the
probability of the horizontal boundary.

B. DIVISIONAL JUDGMENT

According to the coordinates and shape of the upper left corner

of the current block, we can obtain the vector values

corresponding to the five dividing lines in the block. The

probability of BT division is determined by the average value

of the corresponding vector. The probability of QT division is

the average of BT divisions in two directions. The probability

of TT division is the larger of the corresponding two dividing

line probabilities.

The probability of BTV is calculated as:

1

= 1
4 8

16
4

4 h

j i

i

x w
n

y
j n

P p
h

+

=

+ −

= +

=

 (1)

The probability of BTH is calculated as:

1

1
4 8

16 240
4

4 w

j i

i

y h
n

x
j n

P p
w

+

=

= + −

= + +

=

 (2)

The probability of TTV is calculated as:

1

2

1

2

1 1

2 2

4

1

1

4

2

1

1 2

1
4 16

3
1

4 16

16
4

16
4

4
Max(,)

h

j i

i

h

j i

i

x w
n

x
n w

y
j n

y
j n

P p

P p

P P P
h

+

=

+

=

= + −

 = + −

 = +

 = +

=

 =

 =

 (3)

The probability of TTH is calculated as:

1

2

1

2

1 1

2 2

4

1

1

4

2

1

1 2

1
4 16

3
1

4 16

16 240
4

16 240
4

4
Max(,)

w

j i

i

w

j i

i

y h
n

y
n h

x
j n

x
j n

P p

P p

P P P
w

+

=

+

=

= + −

 = + −

 = + +

 = + +

=

 =

 =

 (4)

Where x and y are the coordinates of the upper left

corner of the current CU in the 64×64 block, and h and w

are the height and width of the current block. j iP + is the

value of the element with index j i+ in the processed

probability vector.

The threshold we use is dynamic. When the size of the CU

is larger, more vectors are involved in the calculation, and a

small amount of prediction error causes less impact, so a

higher threshold is used. When the size of the CU is small,

there are fewer vectors involved in the calculation, so there is

a greater risk, so a lower threshold is used. The size of a CU is

usually related to its depth. A deeper CU usually has a smaller

size. For the convenience of calculation, the threshold is set as

below:

 0.7 0.1T depth= − (5)

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3108238, IEEE Access

VOLUME XX, 2017 3

where depth represents the depth of the current CU, which

can be obtained from the currDepth property of the Partitioner

class in the VTM. It is numerically equal to the sum of

QtDepth and MtDepth.

The process of embedding in VTM software is shown in

Fig.6.

QT_Split

CTU

CNN

If width and
height<=64

Compute
Probability

Of split

END

yes

no

Can BTH split
and Pbth>T and
Pbth>Pbtv-0.2

(Can QT split and
Pqt>T) or (width
and height>=32)

Can BTV split
and Pbtv>T and
Pbtv>Pbth-0.2

Can TTV split
and Pttv>T and
Pttv>Ptth-0.2

Can TTH split
and Ptth>T and
Ptth>Pttv-0.2

QT Split BTH Split BTV Split TTV Split TTH Split

no no no no no

yes yes yes yes yes
Other modes

FIGURE 6. Process of skipping CU split, CNN means using a trained CNN model for prediction . Pqt, Pbth, etc. represent the probability of the
corresponding split mode. T is the preset threshold. Other modes indicate prediction modes other than CU split, such as intra prediction, inter
prediction, and so on. After executing the Split operation, it will enter the sub-CU and repeat all operations after CNN (not including CNN inference).

After the encoder divides each frame of image into CTU, it

performs CNN prediction on the CTU currently to be encoded.

After entering the CU encoding stage, try various encoding

methods including 5 partitioning modes for the current CU.

When trying the segmentation mode, the probabilities of

various segmentation methods are calculated according to the

area attributes of the current CU. If the probability of the

currently tried segmentation mode is greater than the threshold,

an attempt is made, otherwise the attempt of the segmentation

mode is skipped. In order to reduce more coding time, we also

skipped the case where the probability difference between the

horizontal split and the vertical split in the BT and TT splits is

large.

C. TRAINING

Because the value to be predicted is between [0, 1], we use the

cross-entropy loss function, which is defined as:

 , ,
1 1

() log(())
1 m n

i j i j
i j

p x q xLoss
m = =

= − (6)

where m is the number of samples in a batch, n is the

number of elements in each sample, (),p xi j is the true value

of the j th− vector of the i th− sample, (),q xi j is the

corresponding predicted value. Adam optimizer is used [35]

to perform gradient descent on CNN. The training process

uses the pytorch1.7.0 framework in the python3.7

environment, and the learning rate adjustment strategy selects

the cosine annealing strategy

(CosineAnnealingWarmRestarts). We trained 20 generations

on GTX1650 GPU. Batchsize is 16.

For the input data set of 64×64 luminance blocks and their

corresponding label vectors, 100 images are extracted at equal

intervals from the 800 HR samples of the Div2k [36] dataset

used to train the super-resolution network, and these images

are divided into 64×64 blocks as data set. The luminance

signal of the 64×64 luminance block is obtained from the

VTM when the picture in the data set is encoded. These data

sets consist of static images, because the proposed solutions

are mainly used for “AI” configuration. This has better

diversity than the video sequence dataset. In order to test the

generalization ability of the network and the effect of real

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3108238, IEEE Access

VOLUME XX, 2017 9

coding, we did not use the common test conditions (CTC) [37]

sequence for training. The input data set is coded by the VTM

10.0 software under the “All Intra” configuration to establish

the corresponding label. QTMT partition information is

collected for each 64×64 CU and convert it to the outpt format

of CNN. The label consists of a one-dimensional vector of 480

elements consisting of 1 (for splitting boundary) and 0 (not for

splitting boundary). The partition information comes from the

code stream analysis tool (DecoderAnalyserApp) in VTM.

IV. EXPERIMENTAL RESUTS

This section introduces the experimental setup in detail and

compares our results with several advanced technologies.

A. EXPERIMENTAL SETUP

All experiments are carried out under the “All Intra”

configuration, and the VTM 10.0. Each encoding and CNN

prediction is performed individually on an Intel i5-8500

processor running at 3.00GHz on the windows operating

system. The test set consists of 25 sequences with different

resolutions. It contains a wide range of resolutions, textures,

bit depths and motion. The test sequence is divided into seven

categories: A1 (3840×2160),A2 (3840×2160), B (1920×1080),

C (832×480), D (416×240), E (1280×720) and F (832×480 to

1920 ×1080). They are encoded according to four quantization

parameter (QP) values: 22, 27, 32, and 37.

The coding quality is measured by BDBR and complexity

reduction, and the coding time saving rate (ΔT) is determined

as:

22,27,32,37

1
100%

4

OC SC

QP OC

T T
T

T=

−
 = (7)

Among them, OCT is the reference coding time of the

VTM10.0 anchor point, and SCT is the coding time of our

algorithm. We counted the inference time during the test phase

of training the network. When the network runs on the CPU

and the input size is 4×64×64, the inference time of the

network is about 0.18 seconds. Due to the different

performance of different platforms, this time does not count

the time spent by the neural network.

B. RESULTS AND ANALYSIS

Because VTM 4.0, VTM 5.0 and VTM 10.0 use the same CU

splitting scheme, our comparison with [12] and [20] is

reasonable. We conducted experiments on the role of the ECA

module in the proposed algorithm, as shown in Table II. ΔT in

Table 2 does not include CNN inference time.

TABLE II
EXPERIMENTAL DATA WITH OR WITHOUT ECA MODULE

Class Sequence
Our process(add ECA) Our process(No ECA)

BDBR(%) ΔT(%) BDBR(%) ΔT(%)

A1

Campfire 2.21 71.34 1.94 70.72

FoodMarket4 2.10 77.05 1.88 76.26

Tango2 2.41 76.53 2.23 76.34

A2

CatRobot 2.85 75.11 2.71 75.08

DaylightRoad2 1.93 77.78 2.00 77.83

ParkRunning3 0.85 69.85 0.79 69.45

B

BasketballDrive 2.07 62.73 2.03 63.74

MarketPlace 1.49 81.10 1.39 80.86

RitualDance 2.30 76.06 2.12 75.69

BQTerrace 1.52 51.61 1.55 52.37

Cactus 1.93 58.98 1.88 58.39

C

BasketballDrill 2.28 34.40 2.32 35.49

BQMall 1.58 36.82 1.64 37.61

PartyScene 0.76 27.34 0.76 27.73

RaceHorses 1.02 39.39 1.03 39.43

D

BasketballPass 0.98 23.50 1.03 25.54

BlowingBubbles 0.419 16.60 0.56 18.61

BQSquare 0.41 17.94 0.58 17.85

RaceHorses 0.66 23.21 0.80 23.13

E

FourPeople 2.69 54.98 2.67 55.10

Johnny 3.32 55.54 3.25 55.13

KristenAndSara 2.42 50.79 2.43 50.87

F

BasketballDrillText 1.93 33.03 2.06 32.92

SlideShow 2.31 33.10 2.74 56.22

SlideEditing 1.86 37.13 2.50 42.42

 Mean 1.77 51.34 1.79 51.79

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3108238, IEEE Access

VOLUME XX, 2017 9

According to the data in Table II, it can be seen that whether

the ECA module is used has no obvious impact on the final

performance. On BDBR, the scheme using ECA module only

reduces the average loss by 0.02%. In most high-resolution

sequence tests, the BDBR loss of the scheme using the ECA

module is higher than that of the scheme not using this module.

In the coding time comparison that does not consider the

network model inference time, the scheme using the ECA

module does not show obvious advantages. Even if the ECA

module is a lightweight attention module, the global average

pooling operation will still take a lot of time. After

experiments, the ECA module will increase the inference time

of CNN by about 10% when performing calculations on the

CPU. In summary, the ECA module is not suitable for this

solution.

Our algorithm is only applied to a 128×128 CTU. Our

algorithm saves less time on low-resolution sequences,

because the proportion of the image area occupied by the CTU

with a size of less than 128×128 at the boundary of the low-

resolution image is larger than that of the high-resolution

image and our training set only images with 2K resolution are

included. But on the high-resolution A1 and A2 sequences, the

proposed algorithm saves 74.28% of the coding on average,

and only brings a 1.925% BDBR loss. For the low-resolution

C-D, the proposed method can reduce the complexity by 27.39%

and increase the BDBR by 1.01%. The training database

consists of 2K images, so the proposed CNN performs better

on high-resolution sequences.At the same time, since the

training set does not contain pictures with text content, there is

a higher BDBR loss in the sequence where the main content is

text in the E class.

Table III shows how our method compares with other

methods. The data of other algorithms are calculated from the

data given in their papers. Because the sequences adopted in

different papers are different, we only make comparisons

between classes. Compared with [12], our method can save

more coding time in most cases. In the higher resolution

sequences of A1 and A2, even if the reasoning time of the

network is added, the time saved by our scheme is still much

higher than [12], and the BDBR loss gap is within an

acceptable range. When ignoring the network inference time,

our method outperforms [20] on high-resolution sequences.

When the reasoning time is added, our method is better than

[20] on the A2 class, and the time saving is very close to [20],

while the BDBR loss is significantly better than [20] on the

A1 class. Our algorithm saves less time when the resolution is

lower because we only predict blocks that meet the size of

128×128. In most of the sequences, we obtained a time saving

rate much higher than [31] under an acceptable BDBR loss.

The method is divided into two parts: prediction and

decision-making. The running time of the decision-making

part is extremely short and can be ignored. The time for the

prediction part using the neural network is shown in Fig.7. The

running time of the prediction part occupies an average of 6.5%

of the original VTM encoding time. And this ratio can be

further shortened by means of model quantification or

graphics card acceleration.

TABLE III
COMPARISON WITH OTHER ALGORITHMS

Class

S. Park et al.

[12],VTM4.0(TABLE 5.)

T. Amestoy et al.[20],VTM5.0(TABLE

VIII,MT2)

S Park et al.[31],VTM4.0(TABLE

IV，α = 1/2)
Our process,VTM10.0

BDBR(%) ΔT(%)
BDBR

(%)
ΔT(%)

BDBR

(%)
ΔT(%)

BDBR

(%)
ΔT(%)

ΔT(%)(Inclu
ding CNN

inference

time)

A1 0.67 32.00 3.06 65.10 0.34- 32.33 2.02 74.44 61.59

A2 1.07 33.00 1.91 62.90 0.45 29.33 1.83 74.12 68.03

B 0.98 33.75 2.60 62.48 0.53 26.00 1.79 66.21 60.18

C 1.17 35.25 2.59 61.97 0.48 24.75 1.44 35.06 31.84

D 0.81 35.00 1.84 54.63 0.32 23.75 0.74 21.28 19.22

E 1.34 33.67 1.82 54.95 0.61 25 2.78 53.70 44.54

FIGURE 7. Running time of the proposed MSE-CNN model and the VTM
encoder.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3108238, IEEE Access

VOLUME XX, 2017 9

VI. CONCLUSION

This paper proposes a CU split acceleration scheme based on

DenseNet network. CNN is used to analyze the texture in

every 4 64×64 coded blocks, and predict the probability that

each 4×4 block in these blocks is a partition boundary. Starting

from the probability of the boundary, the segmentation

probability is derived and compared with the preset threshold.

Compared with the original encoding time of VTM, the

execution time of CNN is shorter. In the “All Intra”

configuration under VTM 10.0, the proposed solution reduces

the complexity by 46.10%, and BDBR slightly increases by

1.86%. When using high-resolution sequences, the

acceleration effect is higher, up to 64.81%, but requires 1.92%

of the BDBR overhead. These results prove the effectiveness

of the proposed method and motivate us to conduct further

research and analysis. Since the training set is small and the

network is not optimized to the optimum, the proposed

solution still has a lot of room for improvement. We will try to

use a larger data set for training and further optimize the

structure of the network. At the same time, we will also try to

improve the performance of our method on low-resolution

sequences.

REFERENCES
[1] Cisco, “Cisco Visual Networking Index : Forecast and Trends,2017-

2022,” Tech. Rep., 2019.
[2] J. Chen, M. Karczewicz, Y. Huang, K. Choi, J. Ohm and G. J.

Sullivan, “ The Joint Exploration Model (JEM) for Video

Compression With Capability Beyond HEVC,” in IEEE Transactions
on Circuits and Systems for Video Technology, vol. 30, no. 5, pp.

1208-1225, May 2020 , doi: 10.1109/TCSVT.2019.2945830.

[3] Y. W. Huang, C. W. Hsu, C. Y. Chen, T. D. Chuang, S. T. Hsiang, C.
C. Chen, and S. M. Lei, “A VVC Proposal With Quaternary Tree Plus

Binary-Ternary Tree Coding Block Structure and Advanced Coding

Techniques,” in IEEE Transactions on Circuits and Systems for
Video Technology, vol. 30, no. 5, pp. 1311-1325, May. 2020 , doi:

10.1109/TCSVT.2019.2945048.

[4] B. Bross et al., “General Video Coding Technology in Responses to
the Joint Call for Proposals on Video Compression With Capability

Beyond HEVC,” in IEEE Transactions on Circuits and Systems for

Video Technology, vol. 30, no. 5, pp. 1226-1240, May 2020, doi:
10.1109/TCSVT.2019.2949619.

[5] A. Wieckowski, J. Ma, H. Schwarz, D. Marpe, and T. Wiegand,“Fast

Partitioning Decision Strategies for The Upcoming Versatile Video
Coding (VVC) Standard,” in 2019 IEEE Interna-tional Conference

on Image Processing (ICIP), Taipei, Taiwan , pp.4130-4134 , Sept.

2019.
[6] A. Tissier, A. Mercat, T. Amestoy, W. Hamidouche, J. Vanne and D.

Menard, “Complexity Reduction Opportunities in the Future VVC

Intra Encoder,” in 2019 IEEE 21st International Workshop on
Multimedia Signal Processing (MMSP), Kuala Lumpur, Malaysia, pp.

1-6, 2019.

[7] A. Wieckowski, J. Ma, H. Schwarz, D. Marpe and T. Wiegand, “Fast
Partitioning Decision Strategies for The Upcoming Versatile Video

Coding (VVC) Standard,” in 2019 IEEE International Conference on

Image Processing (ICIP), Taipei, Taiwan, 2019, pp. 4130-4134.

[8] Y. Fan, J. Chen, H. Sun, J. Katto and M. Jing, "A Fast QTMT

Partition Decision Strategy for VVC Intra Prediction," in IEEE

Access, vol. 8, pp. 107900-107911, 2020, doi:
10.1109/ACCESS.2020.3000565.

[9] N. Tang et al., “Fast CTU Partition Decision Algorithm for VVC Intra

and Inter Coding,” in 2019 IEEE Asia Pacific Conference on Circuits
and Systems (APCCAS), Bangkok, Thailand, 2019, pp. 361-364.

[10] M. Lei, F. Luo, X. Zhang, S. Wang and S. Ma, “Look-Ahead

Prediction Based Coding Unit Size Pruning for VVC Intra Coding,”

in 2019 IEEE International Conference on Image Processing (ICIP),
Taipei, Taiwan, 2019, pp. 4120-4124.

[11] J. Chen, H. Sun, J. Katto, X. Zeng and Y. Fan, “Fast QTMT Partition

Decision Algorithm in VVC Intra Coding based on Variance and
Gradient,” in 2019 IEEE Visual Communications and Image

Processing (VCIP), Sydney, Australia, 2019, pp. 1-4.

[12] S. Park and J. Kang, "Context-Based Ternary Tree Decision Method
in Versatile Video Coding for Fast Intra Coding," in IEEE Access,

vol. 7, pp. 172597-172605, 2019, doi:

10.1109/ACCESS.2019.2956196.

[13] Fen Chen, Yan Ren, Zongju Peng, Gangyi Jiang，Xin Cui, “A fast

CU size decision algorithm for VVC intra prediction based on support
vector machine,” in Multimedia Tools and Applications, vol.79, pp.

27923–27939 ,Jul, 2020.

[14] X. Liu, Y. Li, D. Liu, P. Wang and L. T. Yang, “An Adaptive CU
Size Decision Algorithm for HEVC Intra Prediction Based on

Complexity Classification Using Machine Learning,” in IEEE

Transactions on Circuits and Systems for Video Technology, vol. 29,
no. 1, pp. 144-155, Jan. 2019, doi: 10.1109/TCSVT.2017.2777903.

[15] L. Zhu, Y. Zhang, Z. Pan, R. Wang, S. Kwong and Z. Peng, “Binary
and Multi-Class Learning Based Low Complexity Optimization for

HEVC Encoding,” in IEEE Transactions on Broadcasting, vol. 63,

no. 3, pp. 547-561, Sept. 2017, doi: 10.1109/TBC.2017.2711142.
[16] Y. Zhang, Z. Pan, N. Li, X. Wang, G. Jiang and S. Kwong, “Effective

Data Driven Coding Unit Size Decision Approaches for HEVC

INTRA Coding,” in IEEE Transactions on Circuits and Systems for
Video Technology, vol. 28, no. 11, pp. 3208-3222, Nov. 2018, doi:

10.1109/TCSVT.2017.2747659.

[17] Z. Wang, S. Wang, J. Zhang, S. Wang, and S. Ma, “Effective
Quadtree Plus Binary Tree Block Partition Decision for Future Video

Coding,” in 2017 Data Compression Conference, A. Bilgin, M. W.

Marcellin, J. SerraSagrista, and J. A. Storer, Eds. (IEEE Data
Compression Conference, 2017, pp. 23-32.

[18] T. Fu, H. Zhang, F. Mu and H. Chen, “Fast CU Partitioning

Algorithm for H.266/VVC Intra-Frame Coding,” in 2019 IEEE
International Conference on Multimedia and Expo (ICME), Shanghai,

China, 2019, pp. 55-60.

[19] Q. Zhang, Y. Wang, L. Huang and B. Jiang, "Fast CU Partition and
Intra Mode Decision Method for H.266/VVC," in IEEE Access, vol.

8, pp. 117539-117550, 2020, doi: 10.1109/ACCESS.2020.3004580.

[20] T. Amestoy, A. Mercat, W. Hamidouche, D. Menard and C. Bergeron,
“Tunable VVC Frame Partitioning Based on Lightweight Machine

Learning,” in IEEE Transactions on Image Processing, vol. 29, pp.

1313-1328, 2020, doi: 10.1109/TIP.2019.2938670.
[21] T. Amestoy, A. Mercat, W. Hamidouche, C. Bergeron and D. Menard,

“Random Forest Oriented Fast QTBT Frame Partitioning,” in 2019

IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), Brighton, United Kingdom, 2019, pp. 1837-

1841.

[22] D. Liu, Z. Chen, S. Liu and F. Wu, “Deep Learning-Based
Technology in Responses to the Joint Call for Proposals on Video

Compression With Capability Beyond HEVC,” in IEEE Transactions

on Circuits and Systems for Video Technology, vol. 30, no. 5, pp.
1267-1280, May 2020, doi: 10.1109/TCSVT.2019.2945057.

[23] J. Zhao, Y. Wang, and Q. Zhang, “Adaptive CU Split Decision Based

on Deep Learning and Multifeature Fusion for H.266/VVC,”
Scientific Programming, vol. 2020, Aug 1 2020, Art. no. 8883214.

[24] G. Tang, M. Jing, X. Zeng and Y. Fan, “Adaptive CU Split Decision

with Pooling-variable CNN for VVC Intra Encoding,” in 2019 IEEE
Visual Communications and Image Processing (VCIP), Sydney,

Australia, 2019, pp. 1-4.

[25] Z. Jin, P. An, C. Yang and L. Shen, “Fast QTBT Partition Algorithm

for Intra Frame Coding through Convolutional Neural Network,” in

IEEE Access, vol. 6, pp. 54660-54673, 2018, doi:

10.1109/ACCESS.2018.2872492.
[26] Z. Jin, P. An, L. Shen and C. Yang, “CNN oriented fast QTBT

partition algorithm for JVET intra coding,” in 2017 IEEE Visual

Communications and Image Processing (VCIP) , pp. 1-4, 2017.
[27] Z. Wang, S. Wang, X. Zhang, S. Wang and S. Ma, “Fast QTBT

Partitioning Decision for Interframe Coding with Convolution Neural

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3108238, IEEE Access

VOLUME XX, 2017 9

Network,” in 2018 25th IEEE International Conference on Image

Processing (ICIP), Athens, 2018, pp. 2550-2554.

[28] M. Xu, T. Li, Z. Wang, X. Deng, R. Yang and Z. Guan, “Reducing
Complexity of HEVC: A Deep Learning Approach,” in IEEE

Transactions on Image Processing, vol. 27, no. 10, pp. 5044-5059,

Oct. 2018, doi: 10.1109/TIP.2018.2847035.
[29] Y. Zhang, G. Wang, R. Tian, M. Xu and C. C. J. Kuo, “Texture-

Classification Accelerated CNN Scheme for Fast Intra CU Partition

in HEVC,” in 2019 Data Compression Conference (DCC), Snowbird,
UT, USA, 2019, pp. 241-249.

[30] A. Tissier, W. Hamidouche, J. Vanne, F. Galpin and D. Menard,

“CNN Oriented Complexity Reduction Of VVC Intra Encoder,” 2020
IEEE International Conference on Image Processing (ICIP), Abu

Dhabi, United Arab Emirates, 2020, pp. 3139-3143.

[31] S. Park and J. Kang, “Fast Multi-type Tree Partitioning for Versatile
Video Coding Using a Lightweight Neural Network,” in IEEE

Transactions on Multimedia, doi: 10.1109/TMM.2020.3042062

[32] G. Huang, Z. Liu, L. Van Der Maaten and K. Q. Weinberger,
“Densely connected convolutional networks,” in IEEE Conference on

Computer Vision and Pattern Recognition (CVPR) , vol. 1, no. 2, pp.

3, 2017.
[33] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, “Deep

Residual Learning for Image Recognition,” in IEEE Conference on

Computer Vision and Pattern Recognition (CVPR),pp. 770-778, 2016.
[34] Qilong Wang, Banggu Wu, Pengfei Zhu, Peihua Li, Wangmeng Zuo,

Qinghua Hu, “ECA-Net: Efficient Channel Attention for Deep
Convolutional Neural Networks,” IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pp. 11534-11542, 2019.

[35] Kingma D, Ba J. “Adam: A Method for Stochastic Optimization,” 3rd
International Conference for Learning Representations San Diego,

2015.

[36] E. Agustsson and R. Timofte, “NTIRE 2017 Challenge on Single

Image Super-Resolution: Dataset and Study,” 2017 IEEE Conference

on Computer Vision and Pattern Recognition Workshops (CVPRW),

Honolulu, HI, USA, 2017, pp. 1122-1131.
[37] F. Bossen, J. Boyce, K. Suehring, X. Li, and V. Seregin, “JVET

common test conditions and software reference confifigurations for

SDR video,” JVET-M1010, Jan. 2019.

