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ABSTRACT The joint video expert team (JVET) is currently developing a new video coding standard called 

H.266/Versatile Video Coding (VVC). Compared with High Efficiency Video Coding (HEVC), VVC has 

added a variety of coding tools. These tools have greatly improved video compression efficiency and 

maintained a high level video quality. However, due to the increase in computational complexity, the 

encoding time is much longer than HEVC. We propose a prediction tool based on DenseNet (a convolutional 

neural network) to decrease the VVC coding complexity. We predict the probability that the edge of 4×4 

blocks in each 64×64 block is the division boundary by Convolutional Neural Networks (CNN). Then, we 

skip the unnecessary rate distortion optimization (RDO) and speed up the coding by probability vectors in 

advance. The proposed method can reduce the coding complexity of 46.10% in VTM10.0 intra coding, while 

Bjøntegaard delta bit rate (BDBR) only increases by 1.86%. In the sequence with a resolution greater than 

1080P, the acceleration efficiency can be at 64.81%, the BDBR loss only increased by 1.92%. 

INDEX TERMS Versatile video Coding, Convolutional neural network, Coding unit partition 

I. INTRODUCTION 

Due to the increase in IP video traffic in recent years [1] and 

the emergence of new video formats such as 4K, 8K, High 

Frame Rate (HFR), Wide Color Gamut (WCG) and VR video, 

the demand for video transmission bandwidth and storage has 

exploded. At present, how to more effectively encode new 

generation videos, such as ultra-high resolution and high 

dynamic range, has become one of the research hotspots in the 

world academia. 

Some video coding standards have emerged, such as 

H.264/Advanced Video Coding (AVC) and HEVC. However, 

the compression ratios that these standards can achieve cannot 

keep up with the rapid growth in demand for video data. The 

International Telecommunication Union (ITU) and the 

ISO/IEC Moving Picture Experts Group (MPEG) formed the 

JVET to develop new video coding standards. In April 2018, 

the JVET officially named VVC [2]. 

Compared with HEVC, the compression ratio of VVC has 

been greatly improved, but its encoding time is also many 

times that of HEVC. VVC uses a hybrid coding technology 

framework. Its image division has evolved from a single, fixed 

division to a diverse and flexible division structure, which can 

more efficiently adapt to the encoding and decoding of high-

resolution images. Among them, the QTMT division scheme 

[3] [4] is used in VVC to obtain better compression efficiency. 

The scheme has five division modes: Quad-Tree (QT), 

Binary-Tree-Vertical (BTV), Binary-Tree-Horizontal (BTH), 

Ternary-Tree-Vertical (TTV) and Ternary-Tree-Horizontal 

(TTH), which are more than HEVC in two ways, TTV and 

TTH, as shown in Fig.1. All five modes can be used, but QT 

splitting cannot be used for sub-blocks in other split modes. 

This segmentation scheme makes the segmented sub-blocks 

more suitable for the texture distribution of the image, which 

greatly improves the accuracy of the internal prediction and 

reduces the prediction residuals. Compared with HEVC [5], 

this change increases the coding efficiency by 8.5%. However, 

due to the two additional partition types, the computational 

complexity of RDO is much greater than that of HEVC, 

resulting in its encoding time several times that of HEVC. 

An important direction of the current VVC video coding 

research is how to reduce the coding complexity and increase 

the coding speed without reducing the VVC coding efficiency 

or with little loss. 
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FIGURE 1.  Schematic diagram of QTMT split structure. 

 

Recently, the development of artificial neural networks has 

provided a new direction for the development of fast video 

coding. 

In this paper, we design a DenseNet-based VTM10.0 

internal encoder complexity reduction technique. We provide 

CNN with a 64×64 pixel luminance Coding Unit (CU) to 

predict a vector to represent the probability of an edge on the 

4×4 boundary of the block. The encoder further uses this 

probability vector to skip the low-probability segmentation. 

 
II.  RELATED WORKS 

The VVC video coding standard has five different CU 

partitioning methods. The attempts of different CU 

partitioning methods during encoding occupy most of the 

encoding time. Therefore, reducing the number of CU 

partitioning can significantly reduce the encoding time. 

In 2019, A. Tissier et al. studied the CU partition 

complexity of video coding in [6]. They proposed that the 

computational complexity of block partitioning in VVC can 

be reduced to 3% of the original at most by predicting the 

correct CU splitting method. So a lot of coding time can be 

saved. 

At present, most block segmentation acceleration 

algorithms reduce the computational complexity and save 

coding time by terminating unnecessary RDO in advance [7]. 

Algorithms are mainly divided into two categories, traditional 

algorithms and applied machine learning methods. Traditional 

algorithms analyze the complexity of the texture by extracting 

features, such as the variance and mean square error of the 

image, and set a threshold to determine whether to terminate 

the RDO calculation early. 

[8] proposed a fast intra algorithm based on variance and 

Sobel operator, where the variance and gradient information 

of the CU is calculated to determine whether the current CU 

should be split. [9] used the Canny operator to extract the edge 

information of the image, and analyzed the edge information 

to determine the most likely dividing direction of the current 

CU. A threshold is set when the horizontal and vertical edge 

information. When the ratio of the features is higher than the 

threshold, the horizontal division is tried. When the reciprocal 

of the ratio is higher than the threshold, try the vertical division. 

If the two conditions are not met, try QT division. In [10], an 

algorithm proposed to calculate the rate distortion (RD) cost 

of the horizontal and vertical binary tree partitions. In the 

binary tree splitting, the cost is smaller, and the cost is usually 

higher in the MTT splitting. [11] also uses the two features of 

image variance and gradient to accelerate segmentation. The 

method [12] uses Bayesian probabilities as features to skip 

unnecessary splitting modes. Most traditional algorithms only 

use one or two features, which can only filter out a small 

amount of redundancy. Therefore, the acceleration effect of 

block segmentation is limited. 

Due to the rapid development of machine learning and deep 

learning in the past two years, the combination of block 

segmentation acceleration algorithms and machine learning 

has gradually increased. The trained Support Vector Machine 

(SVM) in [13]-[16] is used to filter possible segmentation 

strategies. In [13], 6 different SVM classifiers are trained for 

blocks from 32×32 to 16×8 and 8×16 to adapt for the situation 

of CU division of different sizes. In [14], two SVM classifiers 

are trained to divide the results into three categories. These two 

types of data are segmented and non segmented, and the error 

is small. The third type of data is at the boundary of the two 

types, so it needs to be calculated in the next step to determine 

whether to divide. In [15], 11 features of the SVM training 

image are used to determine whether the current CU needs to 

be segmented. [16] trained multiple support vector machines 

to predict the probabilities of different partitioning methods 

respectively, and skip the partitioning methods with lower 

probability. [17] used a decision tree to predict the 

segmentation mode. [18] used Bayesian classifiers to speed up 

segmentation. Random forest classifiers are also used for fast 

CU partitioning [19]-[21], which use its characteristics to 

reduce the risk of division errors. 

In addition to neural networks, other machine learning 

methods need to manually design the way to extract features. 

Neural networks can learn the required features through 

gradient descent without manual intervention. Under the 

appropriate training set, their learning speed and accuracy are 

generally high in the way of manual design. Recently, deep 

learning methods using neural networks have developed 

rapidly in the field of video coding [22]. In deep learning, the 

most suitable for processing image information is CNN that 

can learn image spatial information. Due to the irregular shape 
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and size of CUs, some methods based on CNN are  used on 

these CUs. [23], [24] use an adaptive pooling layer to solve 

this problem. The adaptive pooling layer can compress feature 

maps of any size into a fixed size. [25]-[27] Directly input 

fixed-size blocks into the network to predict the range of 

division depth, and terminate the RD calculation early through 

the depth range. [28] converted the block structure into a 

hierarchical representation and directly predict the division of 

the entire Coding Tree Unit (CTU). [29] trained three CNN 

classifiers to handle CUs of different depths and sizes. [30] 

divide the CU into sub-blocks of the same size, and use CNN 

to predict the probability of each sub-block boundary as the 

division boundary to terminate the partial division mode early. 

In [31], the explicit VVC features (EVF) and the derived VVC 

features (DVF) that can be obtained during intra prediction are 

input into a lightweight neural network to determine which 

split modes to skip. 

Because the VVC division method is more complicated, many 

methods that originally worked well on HEVC cannot be 

applied to VVC. We have designed a new fast partitioning 

method for coding blocks based on CNNs. This article divides 

the method into two steps. First, we train a CNN network to 

predict the probability that the edge of the 4×4 brightness 

block is the segmentation boundary. Then, it is divided 

according to the predicted probability. 

III. PROPOSED METHOD 

A. STRUCTURE OF CNN 

Most existing algorithms combine the CNN network to only 

calculate the probability of a single CU for the next 

segmentation. The common problem of these algorithms is 

that the network model needs to be called multiple times to 

make predictions during the same CTU division process, 

which will bring a large time overhead. Moreover, the shapes 

of the CUs that need to be predicted vary greatly, which will 

bring difficulties to the training of the network. 

Because the 128×128 size CTU only allows QT division, 

the proposed algorithm divides a CTU into four 64×64 blocks, 

which are used as a 4 batch input network. We use this batch 

to predict the probability that the boundaries of all 4×4 blocks 

within each 64×64 CU are divided boundaries. Then, we 

determine the division situation based on these probabilities, 

and make full use of vectorization to save the time that the 

network needs to run. Each CTU only needs to call the model 

once. The proposed network refers to DenseNet [32], and the 

main part of the network is made up of sub-blocks of 

DenseNet structure. The size of the feature map output by each 

convolutional layer is the same. 

 

concatenation Skip Connections

H×W×C H×W×N H×W×N H×W×N H×W×N H×W×N H×W×N H×W×(6×N+C）

Feature Map

Input Output

 
FIGURE 2.  DenseNet architecture demonstration. 

 

The structure of the DenseNet block is shown in Fig.2. 

DenseNet brings the idea of skip connection in ResNet [33] 

into the mechanism. A large number of jump connections 

make the propagation of features and gradients more effective, 

and alleviate the problem of gradient disappearance that often 

occurs when the neural network is too deep. The input of each 

convolutional layer in the DenseNet block comes from the 

output of all convolutional layers before that layer. These 

outputs are subjected to concatenation operation to form a 

feature map with more channels, and then use 1×1 convolution 

to adjust the number of channels to 4 times the number of 

output channels, and then pass through a 3×3 convolution 

layer, and use the rule function to activate later as the output 

of this layer. Considering one 1×1 convolution and one 3×3 

convolution as one layer, and we use 6 layers for each 

DenseNet Block. Concatenation the feature map output by 

each layer as the output of the block. Due to the good 

performance of the attention mechanism in various computer 

vision tasks, we try to add an ECA attention module after each 

DenseNet Block. ECA is a lightweight channel attention 

mechanism, and its structure is shown in Fig.3. ECA attention 

module can play a good effect in most computer vision tasks. 

However, in the experiment of this task, it does not seem to 

significantly improve the network performance. So in the end 

we didn't use it in the model. 
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FIGURE 3.  Efficient Channel Attention, Indicates that the corresponding channel is multiplied.

It can be seen from Fig.4 that the blue block is a two-

dimensional convolution and Relu activation function with a 

3×3 convolution kernel. The orange block represents 

DenseNet Block, which contains 6 convolutional layers using 

1×1 and 3×3 size convolution kernels. The layers represented 

by red and green are collectively called the transition layer, 

which is used to compress the amount of data. Red represents 

the average pooling layer. Green represents the convolution 

kernel with 1×1 convolutional layer and Relu activation 

function. Gray represents the global pooling layer, which is 

used to transform the feature map into a vector. Purple 

represents the fully connected layer, which is used to output 

the final result. The hyperparameters of the network are shown 

in Table I. 

 

3×3 
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FIGURE 4.  Structure of the proposed model. 

 

 

 
TABEL I 

NUMBER OF PARAMETERS IN EACH LAYER OF CNN 

Layers 
output 

size(w×H×N) 
operation 

Channel 

of conv in 

dense 

block(N) 

convolution 64×64×16 3×3 conv  

Densenet 

block(1) 
64×64×208 1 1conv

6
3 3 conv





  

32 

transition 

layer(1) 

21×21×208 
3×3 Maxpool 

stride3  

21×21×104 1×1 conv 

Densenet 

block(2) 
21×21×392 1 1conv

6
3 3 conv





 

48 

transition 

layer(2) 

7×7×392 
3×3 Maxpool 

stride3  

7×7×196 1×1 conv 

Densenet 

block(3) 
7×7×484 1 1conv

6
3 3 conv





 

48 

transition 

layer(3) 

3×3×484 
2×2 Maxpool 

Stride2  

3×3×242 1×1 conv 

Densenet 

block(4) 
3×3×530 1 1conv

6
3 3 conv





 

48 

FC layer 
1×1×530 

3×3 global 

avgpool  

480 linear 

 

Four 64×64 luma blocks are the input of CNN, and one 

CTU is QT divided into fours CUs of 64×64 size. In order to 

use vectorization, we input these four brightness blocks into 

the network as a batch to speed up the prediction. The output 

is a probability vector corresponding to 4×4 block boundaries 

of four 64×64 CU partitions. The input sizes of CNN 

correspond to the maximum luminance conversion block 

(64×64) in the “All Intra” configuration. Fig.5 shows the 

matching of the CU partition and the probability vector. For 

example, the first value of the vector corresponds to the right 

boundary of the 4×4 block in the upper left corner, and the 

second value corresponds to the right boundary of the next 4×4 

block. The 241st value represents the lower boundary of the 

first 4×4 block in the upper left corner. 

 

Global 
avgpool

conv1d

sigmod
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FIGURE 5.  Mapping of probability vectors to 4×4 block boundaries. The 
first 240 elements of the probability vector correspond to the probability 
of all vertical boundaries, and the last 240 elements correspond to the 
probability of the horizontal boundary. 

B. DIVISIONAL JUDGMENT 

According to the coordinates and shape of the upper left corner 

of the current block, we can obtain the vector values 

corresponding to the five dividing lines in the block. The 

probability of BT division is determined by the average value 

of the corresponding vector. The probability of QT division is 

the average of BT divisions in two directions. The probability 

of TT division is the larger of the corresponding two dividing 

line probabilities. 

The probability of BTV is calculated as: 
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The probability of BTH is calculated as: 
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The probability of TTV is calculated as: 
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The probability of TTH is calculated as: 
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Where x  and y  are the coordinates of the upper left 

corner of the current CU in the 64×64 block, and h  and w  

are the height and width of the current block.  j iP +  is the 

value of the element with index  j i+  in the processed 

probability vector. 

The threshold we use is dynamic. When the size of the CU 

is larger, more vectors are involved in the calculation, and a 

small amount of prediction error causes less impact, so a 

higher threshold is used. When the size of the CU is small, 

there are fewer vectors involved in the calculation, so there is 

a greater risk, so a lower threshold is used. The size of a CU is 

usually related to its depth. A deeper CU usually has a smaller 

size. For the convenience of calculation, the threshold is set as 

below: 

                             0.7 0.1T depth= −    (5) 
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where depth  represents the depth of the current CU, which 

can be obtained from the currDepth property of the Partitioner 

class in the VTM. It is numerically equal to the sum of 

QtDepth and MtDepth. 

The process of embedding in VTM software is shown in 

Fig.6. 

 

QT_Split

CTU

CNN

If width and 
height<=64

Compute 
Probability 

Of split

END

yes

no

Can BTH split 
and Pbth>T and 
Pbth>Pbtv-0.2

(Can QT split and 
Pqt>T) or (width 
and height>=32)

Can BTV split 
and Pbtv>T and 
Pbtv>Pbth-0.2

Can TTV split 
and Pttv>T and 
Pttv>Ptth-0.2

Can TTH split 
and Ptth>T and 
Ptth>Pttv-0.2

QT Split BTH Split BTV Split TTV Split TTH Split

no no no no no

yes yes yes yes yes
Other modes

 
FIGURE 6.  Process of skipping CU split, CNN means using a trained CNN model for prediction . Pqt, Pbth, etc. represent the probability of the 
corresponding split mode. T is the preset threshold. Other modes indicate prediction modes other than CU split, such as intra prediction, inter 
prediction, and so on. After executing the Split operation, it will enter the sub-CU and repeat all operations after CNN (not including CNN inference). 

 

After the encoder divides each frame of image into CTU, it 

performs CNN prediction on the CTU currently to be encoded. 

After entering the CU encoding stage, try various encoding 

methods including 5 partitioning modes for the current CU. 

When trying the segmentation mode, the probabilities of 

various segmentation methods are calculated according to the 

area attributes of the current CU. If the probability of the 

currently tried segmentation mode is greater than the threshold, 

an attempt is made, otherwise the attempt of the segmentation 

mode is skipped. In order to reduce more coding time, we also 

skipped the case where the probability difference between the 

horizontal split and the vertical split in the BT and TT splits is 

large. 

C. TRAINING 

Because the value to be predicted is between [0, 1], we use the 

cross-entropy loss function, which is defined as: 

                   , ,
1 1

( ) log( ( ))
1 m n

i j i j
i j

p x q xLoss
m = =

= −   (6) 

where m  is the number of samples in a batch, n is the 

number of elements in each sample,  ( ),p xi j  is the true value 

of the j th−  vector of the i th−  sample,  ( ),q xi j  is the 

corresponding predicted value. Adam optimizer is used [35] 

to perform gradient descent on CNN. The training process 

uses the pytorch1.7.0 framework in the python3.7 

environment, and the learning rate adjustment strategy selects 

the cosine annealing strategy 

(CosineAnnealingWarmRestarts). We trained 20 generations 

on GTX1650 GPU. Batchsize is 16. 

For the input data set of 64×64 luminance blocks and their 

corresponding label vectors, 100 images are extracted at equal 

intervals from the 800 HR samples of the Div2k [36] dataset 

used to train the super-resolution network, and these images 

are divided into 64×64 blocks as data set. The luminance 

signal of the 64×64 luminance block is obtained from the 

VTM when the picture in the data set is encoded. These data 

sets consist of static images, because the proposed solutions 

are mainly used for “AI” configuration. This has better 

diversity than the video sequence dataset. In order to test the 

generalization ability of the network and the effect of real 
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coding, we did not use the common test conditions (CTC) [37] 

sequence for training. The input data set is coded by the VTM 

10.0 software under the “All Intra” configuration to establish 

the corresponding label. QTMT partition information is 

collected for each 64×64 CU and convert it to the outpt format 

of CNN. The label consists of a one-dimensional vector of 480 

elements consisting of 1 (for splitting boundary) and 0 (not for 

splitting boundary). The partition information comes from the 

code stream analysis tool (DecoderAnalyserApp) in VTM. 

IV. EXPERIMENTAL RESUTS 

This section introduces the experimental setup in detail and 

compares our results with several advanced technologies. 

A. EXPERIMENTAL SETUP 

All experiments are carried out under the “All Intra” 

configuration, and the VTM 10.0. Each encoding and CNN 

prediction is performed individually on an Intel i5-8500 

processor running at 3.00GHz on the windows operating 

system. The test set consists of 25 sequences with different 

resolutions. It contains a wide range of resolutions, textures, 

bit depths and motion. The test sequence is divided into seven 

categories: A1 (3840×2160),A2 (3840×2160), B (1920×1080), 

C (832×480), D (416×240), E (1280×720) and F (832×480 to 

1920 ×1080). They are encoded according to four quantization 

parameter (QP) values: 22, 27, 32, and 37.  

The coding quality is measured by BDBR and complexity 

reduction, and the coding time saving rate (ΔT) is determined 

as: 

22,27,32,37

1
100%

4

OC SC

QP OC

T T
T

T=

−
 =   (7) 

Among them, OCT  is the reference coding time of the 

VTM10.0 anchor point, and SCT  is the coding time of our 

algorithm. We counted the inference time during the test phase 

of training the network. When the network runs on the CPU 

and the input size is 4×64×64, the inference time of the 

network is about 0.18 seconds. Due to the different 

performance of different platforms, this time does not count 

the time spent by the neural network. 

B. RESULTS AND ANALYSIS 

Because VTM 4.0, VTM 5.0 and VTM 10.0 use the same CU 

splitting scheme, our comparison with [12] and [20] is 

reasonable. We conducted experiments on the role of the ECA 

module in the proposed algorithm, as shown in Table II. ΔT in 

Table 2 does not include CNN inference time. 

TABLE II 
EXPERIMENTAL DATA WITH OR WITHOUT ECA MODULE 

Class Sequence 
Our process(add ECA) Our process(No ECA) 

BDBR(%) ΔT(%) BDBR(%) ΔT(%) 

A1 

Campfire 2.21 71.34 1.94 70.72 

FoodMarket4 2.10 77.05 1.88 76.26 

Tango2 2.41 76.53 2.23 76.34 

A2 

CatRobot 2.85 75.11 2.71 75.08 

DaylightRoad2 1.93 77.78 2.00 77.83 

ParkRunning3 0.85 69.85 0.79 69.45 

B 

BasketballDrive 2.07 62.73 2.03 63.74 

MarketPlace 1.49 81.10 1.39 80.86 

RitualDance 2.30 76.06 2.12 75.69 

BQTerrace 1.52 51.61 1.55 52.37 

Cactus 1.93 58.98 1.88 58.39 

C 

BasketballDrill 2.28 34.40 2.32 35.49 

BQMall 1.58 36.82 1.64 37.61 

PartyScene 0.76 27.34 0.76 27.73 

RaceHorses 1.02 39.39 1.03 39.43 

D 

BasketballPass 0.98 23.50 1.03 25.54 

BlowingBubbles 0.419 16.60 0.56 18.61 

BQSquare 0.41 17.94 0.58 17.85 

RaceHorses 0.66 23.21 0.80 23.13 

E 

FourPeople 2.69 54.98 2.67 55.10 

Johnny 3.32 55.54 3.25 55.13 

KristenAndSara 2.42 50.79 2.43 50.87 

F 

BasketballDrillText 1.93 33.03 2.06 32.92 

SlideShow 2.31 33.10 2.74 56.22 

SlideEditing 1.86 37.13 2.50 42.42 

 Mean 1.77 51.34 1.79 51.79 
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According to the data in Table II, it can be seen that whether 

the ECA module is used has no obvious impact on the final 

performance. On BDBR, the scheme using ECA module only 

reduces the average loss by 0.02%. In most high-resolution 

sequence tests, the BDBR loss of the scheme using the ECA 

module is higher than that of the scheme not using this module. 

In the coding time comparison that does not consider the 

network model inference time, the scheme using the ECA 

module does not show obvious advantages. Even if the ECA 

module is a lightweight attention module, the global average 

pooling operation will still take a lot of time. After 

experiments, the ECA module will increase the inference time 

of CNN by about 10% when performing calculations on the 

CPU. In summary, the ECA module is not suitable for this 

solution. 

Our algorithm is only applied to a 128×128 CTU. Our 

algorithm saves less time on low-resolution sequences, 

because the proportion of the image area occupied by the CTU 

with a size of less than 128×128 at the boundary of the low-

resolution image is larger than that of the high-resolution 

image and our training set only images with 2K resolution are 

included. But on the high-resolution A1 and A2 sequences, the 

proposed algorithm saves 74.28% of the coding on average, 

and only brings a 1.925% BDBR loss. For the low-resolution 

C-D, the proposed method can reduce the complexity by 27.39% 

and increase the BDBR by 1.01%. The training database 

consists of 2K images, so the proposed CNN performs better 

on high-resolution sequences.At the same time, since the 

training set does not contain pictures with text content, there is 

a higher BDBR loss in the sequence where the main content is 

text in the E class. 

Table III shows how our method compares with other 

methods.  The data of other algorithms are calculated from the 

data given in their papers. Because the sequences adopted in 

different papers are different, we only make comparisons 

between classes. Compared with [12], our method can save 

more coding time in most cases. In the higher resolution 

sequences of A1 and A2, even if the reasoning time of the 

network is added, the time saved by our scheme is still much 

higher than [12], and the BDBR loss gap is within an 

acceptable range. When ignoring the network inference time, 

our method outperforms [20] on high-resolution sequences. 

When the reasoning time is added, our method is better than 

[20] on the A2 class, and the time saving is very close to [20], 

while the BDBR loss is significantly better than [20] on the 

A1 class. Our algorithm saves less time when the resolution is 

lower because we only predict blocks that meet the size of 

128×128. In most of the sequences, we obtained a time saving 

rate much higher than [31] under an acceptable BDBR loss.  

The method is divided into two parts: prediction and 

decision-making. The running time of the decision-making 

part is extremely short and can be ignored. The time for the 

prediction part using the neural network is shown in Fig.7. The 

running time of the prediction part occupies an average of 6.5% 

of the original VTM encoding time. And this ratio can be 

further shortened by means of model quantification or 

graphics card acceleration. 

 

 

TABLE III 
COMPARISON WITH OTHER ALGORITHMS 

Class 

S. Park et al. 

[12],VTM4.0(TABLE 5.) 

T. Amestoy et al.[20],VTM5.0(TABLE 

VIII,MT2) 

S Park et al.[31],VTM4.0( TABLE 

IV，α = 1/2) 
Our process,VTM10.0 

BDBR(%) ΔT(%) 
BDBR 

(%) 
ΔT(%) 

BDBR 

(%) 
ΔT(%) 

BDBR 

(%) 
ΔT(%) 

ΔT(%)(Inclu
ding CNN 

inference 

time) 

A1 0.67 32.00 3.06 65.10 0.34- 32.33 2.02 74.44 61.59 

A2 1.07 33.00 1.91 62.90 0.45 29.33 1.83 74.12 68.03 

B 0.98 33.75 2.60 62.48 0.53 26.00 1.79 66.21 60.18 

C 1.17 35.25 2.59 61.97 0.48 24.75 1.44 35.06 31.84 

D 0.81 35.00 1.84 54.63 0.32 23.75 0.74 21.28 19.22 

E 1.34 33.67 1.82 54.95 0.61 25 2.78 53.70 44.54 

  

FIGURE 7. Running time of the proposed MSE-CNN model and the VTM 
encoder. 
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VI. CONCLUSION 

This paper proposes a CU split acceleration scheme based on 

DenseNet network. CNN is used to analyze the texture in 

every 4 64×64 coded blocks, and predict the probability that 

each 4×4 block in these blocks is a partition boundary. Starting 

from the probability of the boundary, the segmentation 

probability is derived and compared with the preset threshold. 

Compared with the original encoding time of VTM, the 

execution time of CNN is shorter. In the “All Intra” 

configuration under VTM 10.0, the proposed solution reduces 

the complexity by 46.10%, and BDBR slightly increases by 

1.86%. When using high-resolution sequences, the 

acceleration effect is higher, up to 64.81%, but requires 1.92% 

of the BDBR overhead. These results prove the effectiveness 

of the proposed method and motivate us to conduct further 

research and analysis. Since the training set is small and the 

network is not optimized to the optimum, the proposed 

solution still has a lot of room for improvement. We will try to 

use a larger data set for training and further optimize the 

structure of the network. At the same time, we will also try to 

improve the performance of our method on low-resolution 

sequences. 
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