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Abstract. Recent advances in computational electrophysiology (EP)
models make them attractive for clinical use. We propose a novel data-
driven approach to calibrate an EP model from standard 12-lead elec-
trocardiograms (ECG), which are in contrast to invasive or dense body
surface measurements widely available in clinical routine. With focus
on cardiac depolarization, we first propose an efficient forward model
of ECG by coupling a mono-domain, Lattice-Boltzmann model of car-
diac EP to a boundary element formulation of body surface potentials.
We then estimate a polynomial regression to predict myocardium, left
ventricle and right ventricle endocardium electrical diffusion from QRS
duration and ECG electrical axis. Training was performed on 4,200 ECG
simulations, calculated in ≈ 3 s each, using different diffusion parameters
on 13 patient geometries. This allowed quantifying diffusion uncertainty
for given ECG parameters due to the ill-posed nature of the ECG prob-
lem. We show that our method is able to predict myocardium diffusion
within the uncertainty range, yielding a prediction error of less than 5ms
for QRS duration and 2◦ for electrical axis. Prediction results compared
favorably with those obtained with a standard optimization procedure,
while being 60 times faster. Our data-driven model can thus constitute
an efficient preliminary step prior to more refined EP personalization.

1 Introduction

With the improvement in patient care after myocardium infarction or cardiomy-
opathies, the prevalence of cardiac rhythmdisorders has increased significantly [1].
Electrocardiography (ECG) is the preferred tool to assess arrhythmias, conduc-
tion abnormalities and the effects of treatments on the electrical activity of the
heart. However, with the development of non-invasive treatments, more detailed
and predictive electrophysiology (EP) assessment is necessary [1].

The last decade has seen tremendous progress in computational modeling
of cardiac EP [2]. Recent numerical methods are enabling near real-time EP
computation [3,4]. To be applied in clinical practice, these models need to be
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adjusted to capture patient physiology. Current approaches use inverse problem
methods to estimate electrical diffusivity or action potential duration from in-
vasive endocardial mapping [5] or body surface mapping (BSM) [6,7]. However,
these methods are computationally demanding as they require hundreds of for-
ward model runs. Another limitation is the lack of availability of these diagnostic
modalities: invasive measurements are often avoided, whereas BSM is still not
widely available. Methods based on standard ECG would therefore constitute
good alternatives when comprehensive EP information is not available.

At the same time, efficient machine learning algorithms have been developed
for medical applications. First applied for anatomy detection and segmenta-
tion [8], applications for model personalization are now being investigated. In [9],
the authors derived a surrogate EP model based on polynomial chaos theory to
personalize an Eikonal model and quantify parameter uncertainty. Statistical
learning has also been employed to back-project BSM potentials onto the epi-
cardium [10]. Provided the parameter space is sufficiently sampled, statistical
learning can constitute an efficient approach for model personalization.

In this context, we propose a novel method to calibrate a cardiac EP model
based on commonly available 12-lead ECG measurements. As a first step, we
focus on cardiac depolarization and aim at estimating ventricular electrical dif-
fusion only, the other EP parameters being fixed to their nominal values. To
be able to scan the parameter space, we introduce a novel ECG model based
on a mono-domain, Lattice-Boltzmann EP model. Then, we use a data-driven
approach to estimate a polynomial regression whose predictors are standard
ECG parameters (QRS duration, electrical axis) and responses are myocardium
diffusivity parameters (Sec. 2). Thanks to the computational efficiency of our
framework, we show in Sec. 3 that our approach is able to reach the intrin-
sic uncertainty of the problem, which could be quantitatively estimated from
4,200 forward simulations. The proposed method also compared favorably with
NEWUOA [5], a standard inverse problem algorithm, and yielded promising re-
sults on three patient data. As discussed in Sec. 4, our data-driven approach
may constitute a preliminary calibration step for patient-specific EP modeling.

2 Method

2.1 Fast Forward Model of Cardiac ECG

Patient-Specific Model of Cardiac Anatomy. The first step of our approach
consists in segmenting the heart geometry from clinical images (Fig. 1). A robust,
data-guided machine learning algorithm is employed to automatically segment
cardiac chambers and epicardium from cine MRI images [8]. Next, the biventric-
ular myocardium domain at end-diastasis is mapped onto a Cartesian grid and
represented as a level-set. Finally, fiber architecture is calculated by following a
rule-based approach [3]: Below the basal plane, fiber elevation angles vary lin-
early from epi- (−70◦) to endocardium (+70◦), which are then extrapolated up
to the valves based on geodesic distance (Fig. 2b). The heart is registered to a
torso atlas using Procrustes analysis. The entire pipeline is fully automatic but
under expert guidance to allow manual corrections.
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Fig. 1. Steps of proposed forward model of ECG. See text for details.

Lattice-Boltzmann Model of Myocardium Transmembrane Potentials.
As the proposed data-driven model relies on global ECG information, simplified
mono-domain EP methods can be employed, since they have been shown to pre-
serve the essential ECG features well [11,12]. In this work, the trans-membrane
potential (TMP) v(t) ∈ [−70mV, 30mV ] is calculated according to the Mitchell-
Schaeffer model (see [3,13] and references therein):

∂v

∂t
=

h(t)v2(1− v)

τin
− v

τout
+ c∇ ·D∇v (1)

h(t) is a gating variable that models the state of the ion channels (dh/dt =
(1−h)/τopen if v < vgate, dh/dt = −h/τclose otherwise). c is the tissue diffusivity
whose anisotropy is captured by the tensor D. The τ ’s and vgate are parameters
that control the dynamics of the action potential. This complex PDE is solved
using the LBM-EP method [3], an efficient Lattice-Boltzmann algorithm. Five
domains are considered: left and right ventricular septum, used to pace the heart
to mimic the His bundle; left and right endocardia with fast electrical diffusivity,
cLV and cRV , to mimic the Purkinje network; and the myocardium, with slower
diffusivity cMyo (Fig. 2b).

Boundary Element Model of Torso Potentials. Torso potentials are calcu-
lated in three steps. First, extra-cellular potentials are estimated from the TMP
by using the elliptic formulation proposed in [12], where the diffusion anisotropy
ratio ci(x)/ce(x) = λ is assumed constant (x is the spatial position, ci and ce
are the intra-cellular and extra-cellular diffusion coefficients respectively). With
that hypothesis, the extra-cellular potential φe writes:

φe(x, t) =
λ

1 + λ

1

|Ω|
∫
Ω

(v(y, t) − v(x, t))dy (2)

Ω is the entire myocardium domain. Second, φe is mapped back to the epi-
cardium surface mesh SH using tri-linear interpolation. Finally, the extra-cellular
potentials are projected onto the torso surface SB using a boundary element
method (BEM) [14]. The potential φ(x) at any point x of the thoracic domain
writes, in virtue of Green’s second identity,

φ(x) =
1

4π

∫
SB

φB
r · n
||r||3 dSB − 1

4π

∫
SH

[
φe

r · n
||r||3 +

∇φe · n
||r||

]
dSH (3)
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Fig. 2. a) Schematic diagram of the data-driven backward ECGmodel. b)Myocardium
fiber model in one patient and EP configuration. See text for details.

where r is the vector defined by x and the integration point. By discretizing SB

and SH into triangulations, the linear systems PBB φB +PBH φe+GBH ΓH = 0
and PHB φB +PHH φe +GHH ΓH = 0 can be constructed. The matrices P and
G contain coefficients depending entirely on the geometry, and can therefore be
precomputed, while the matrix ΓH collects the gradients ∇φH . Finally, φ on the

body is given by φB =
(
PBB −GBHG−1

HHPHB

)−1 (
GBHG−1

HHPHH − PBH

)
φe.

ECG Calculation. We finally compute the standard Einthoven, Goldberger
and Wilson leads, and derive the QRS duration ΔQRS and mean electrical axis
angle α automatically. The QRS complex is detected as in [15] by convolving

the squared derivative of each limb lead yf (t) = [d/dt y(t)]
2
with a sliding av-

erage kernel (window size 24ms) for increased robustness. A threshold value of
0.8mV 2ms−2 has proven to be sufficient for detecting ΔQRS . The electrical axis
is computed based on the leads I and II: α = arctan((2hII −hI)/(

√
3hI)), where

the hi’s are the sum of R and S peak amplitudes in the respective leads.

2.2 Data-Driven Estimation of Myocardium EP Diffusion

The forward ECGmodel can be seen as a dynamic system y = f(θ). In this work,
the free parameters θ are the diffusivity values, θ = (cMyo, cLV , cRV ), whereas
the outputs y are the ECG parameters, y = (ΔQRS , α), which are often available
from ECG traces (Fig. 2). Calibrating the EP model thus consists in evaluating
a function g(y) that approximates the inverse problem θ = g(y) ≈ f−1(y).

ΔQRS and α can vary significantly within the population, even in normal
subjects, due to heart morphology, position, and other factors not directly re-
lated to myocardium diffusivity. To cope with these variabilities, we normalize
ΔQRS and α by scouting the space of possible values by means of three for-
ward simulations: one with normal diffusivity parameters (F1: cLV = cRV =
16, 000mm2/s, cMyo = 6, 000mm2/s), one with low LV diffusivity (LBBB-like
scenario, F2: cLV = 1, 200mm2/s, cRV = 16, 000mm2/s, cMyo = 1, 000mm2/s)
and one with low RV diffusivity (RBBB-like scenario, F3, the other way round).
The normalized parameters are then defined by ΔQRS = ΔQRS/ΔQRSF1

and
α = (α − αF2)/(αF3 − αF2). By doing so, the ECG parameters are relative
to a nominal, patient-specific simulation, which intrinsically considers patient
geometry features. Finally, we learn the model θ = g(ΔQRS , α) by using multi-
variate polynomial regression method of degree seven [16], which offered a good
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Fig. 3. a) QRS complex in simulated limb ECG leads VI and VII in normal and left
bundle branch block physiology (LBBB). Our model was able to capture longer QRS
due to delayed depolarization in LBBB. b) Estimated diffusion standard deviation (SD)
in % of total SD for known electrical axis and QRS duration. The highest uncertainty
is found in the healthy range of parameters (center of plots).

compromise between prediction accuracy and generalization (no significant dif-
ferences in performance could be distinguished with orders varying from 4 to 9).
In this work, one regression function is learned for each diffusivity parameter in-
dependently, g = (gMyo, gLV , gRV ). We also investigated multivariate regression
splines (MARS) and gradient boosting, which yielded very similar results. After
having trained g, the diffusivity parameters are estimated from the measured
and normalized ECG features: ( ˆcMyo, ˆcLV , ˆcRV ) = g(ΔQRS , α).

3 Experiments and Results

3.1 Forward ECG Model Evaluation and Uncertainty Analysis

Experimental Protocol. Thirteen dilated cardiomyopathy (DCM) patients
were used, for which an anatomical model was automatically created based on
cine MRI images. Then, a total of 4,200 EP simulations were generated on a
1.5mm isotropic Cartesian grid with diffusivity coefficients uniformly sampled
between 1, 000mm2/s and 16, 000mm2/s under the constraints cMyo ≤ cLV and
cMyo ≤ cRV . Electrode positions were chosen to coincide with appropriate vertex
positions. Implemented on GPU (NVIDIA GeForce GTX 580), the model could
compute the ECG of one cardiac cycle in ≈ 3 s.

Forward Model Evaluation. Normal EP was modeled in one dataset with
cLV = cRV = 16, 000mm2/s, cMyo = 1, 000mm2/s (Fig. 1, second panel).
A left bundle branch block (LBBB) scenario was mimicked by setting cLV =
5, 000mm2/s. As one can see from Fig. 3a, R and S wave trends were quali-
tatively realistic. In particular, the model was able to capture prolonged QRS
due to the slow conduction in the LBBB case. As our model concentrates on the
ventricular EP only, calculated ECG did not incorporate P waves. Missing Q
waves could also be explained by the absence of His bundle excitation in our EP
model, as the whole septum area is triggered (Sec. 2.1). Experiments with dif-
ferent fiber angles (−50/50◦, −70/70◦, −90/90◦) showed that the QRS duration
remains constant and the electrical axis stays in the diagnostically same range
for pathological configurations F2 and F3 with a standard deviation of 15.8◦.
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Uncertainty Analysis. Based on the 4,200 simulations, we analyzed the
intrinsic uncertainty of the ECG inverse problem, i.e. the uncertainty in car-
diac diffusion parameters given ΔQRS and α. For that study, normalized val-
ues (Sec. 2.2) were used to minimize the effects of geometry. Each (ΔQRS , α)
pairs were grouped in 20 × 20 bins. For each bin, the standard deviation (SD)
of cMyo, cLV and cRV was calculated. Total SD over the entire dataset was
2, 146mm2/s, 4, 142mm2/s and 4, 123mm2/s respectively. Fig. 3b reports the
local SD per bin in % of the total SD. The local SD is on average 20%, 52%
and 40% of the total SD for cMyo, cLV and cRV respectively, with up to 150%
of variation. Interestingly, similar variations were obtained patient-wise. These
results clearly reflect the ill-posed nature of the ECG inverse problem under our
forward model and constitute first estimates of the optimal bound in accuracy
for any inverse problem to estimate myocardium diffusion that rely on ΔQRS and
α only. The uncertainty may decrease if more ECG parameters are considered.

3.2 Evaluation of the Data-Driven Calibration Model

Evaluation on Synthetic Data. Our model was evaluated using leave-one-
patient-out cross-validation. On average, cMyo could be estimated within 23%
of the total SD, while cLV and cRV were predicted within 56% and 55% respec-
tively, i.e. up to the intrinsic uncertainty of the problem. Without normalization,
errors were betwen 114% and 440% of the total SD. The proposed model-based
normalization procedure was thus able to compensate for inter-patient geometry
variability. To evaluate the accuracy of the regression model in the observable
space of ECG parameters, ΔQRS and α computed by the calibrated forward
model were compared with the known ground truth. As illustrated in Fig. 4a-b,
an average error of 4.9± 5.5ms for ΔQRS (mean ± SD) and 1.6± 1.7◦ for α was
obtained. These errors were in the range of clinical variability. Moreover, cali-
brated simulations were significantly (t-test p-value < 0.001) more precise than
those obtained with nominal diffusivity values (ΔQRS error: 19.8±14.3ms, α er-
ror: 4.3±3.4◦). Additionally, while our prediction was on average centered around
the ground truth QRS duration (average bias: +0.5ms), the ΔQRS calculated
with default parameters was 19.0ms too short. This result was expected since
the default parameters correspond to healthy physiology whereas conduction
abnormalities cause prolonged QRS durations. Using our calibration technique
may thus be preferable to using nominal parameters when only ECG is available.

ComparisonwithNEWUOA.We compared the performance of the regression
model with those obtained with NEWUOA [5], a gradient-free inverse problem
method. The cost function was defined as f(Δi

QRS , α
i) = (Δknown

QRS − Δi
QRS)

2 +

λ(αknown − αi)2 with λ = 0.1 to account for the different orders of magnitude
between ECG parameters. Similarly to our regression model, tissue diffusivities
cMyo, cLV and cRV could be estimated within 23%, 64% and 54% of the total SD,
respectively, which was also close to the limit of data uncertainty. Errors inΔQRS

and α calculated using the NEWUOA-personalized forward model were on aver-
age 8.7±11.1ms (significantly biased compared to our approach) and−0.2±7.6◦

respectively. From a computational point of view, NEWUOA took about 10min
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Fig. 4. a, b) QRS duration and electrical axis error distributions for ECG simulations
with nominal (top), NEWUOA-predicted (center) and regression-predicted (bottom)
diffusivity parameters. Our approach yielded more accurate predictions. c) Measured
(black) and simulated (blue) VI and VII leads after model calibration for one patient.

to converge, while our approach required only 10 s to calculate the three forward
simulations for the normalization. Hence, our approach not only yielded more pre-
dictive calibrations but was also 60× more efficient.

Evaluation on Real Cases. The method was finally evaluated on four DCM
patients for which clinical ECG was available. Diffusivity parameters were es-
timated based on measured QRS duration and electrical axis angle using the
trained regression model. For one patient, myocardium diffusivity could not be
calibrated as the measured electrical axis (α = −63◦) was outside the range of the
training set. However, for the three other patients, plausible diffusion coefficients
could be estimated (2426− 7584mm2/s for cMyo, and 6691− 12532mm2/s for
cLV and cRV ). We then calculated the ECG using the calibrated forward model,
yielding a promising average error of 0.35± 0.28ms for ΔQRS and 15.6◦ ± 9.6◦

for α respectively. Fig. 4c illustrates the calculated ECG overlaid on top of the
real ECG for one patient, showing promising agreement.

4 Conclusion and Future Work

In this paper, we have shown that the calibration of patient-specific cardiac elec-
trophysiology models is possible from standard 12-lead ECG measurements. By
learning a data-driven regression model from simulated ECG signals, we were
able to predict diffusivity parameters for various regions of the myocardium, up
to the limit of the underlying uncertainty due to the intrinsic ill-posedness of
the inverse ECG problem. We could also, for the first time to the best of our
knowledge, quantify the uncertainty in estimated myocardium diffusion when
only ECG data is employed, under the assumptions of our forward model. Ex-
periments with synthetic ECG data and four patients showed promising results,
with significant improvement with respect to nominal diffusivity values and bet-
ter predictive power compared to NEWUOA calibration. Thus, our method can
provide good preliminary personalization, prior to more refined estimation if in-
vasive or BSM measurements are available. Future extensions of our framework
include the analysis of the entire ECG trace, improved capture of geometrical fea-
tures, refinement of the forward model to include more sophisticated activation
patterns and other parameters of the EP model, and non-linear manifold learning
to improve the performances on unseen data. In addition, an electromechanical
model of the heart currently under development will help us in quantifying the
error introduced by assuming a static myocardium.
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