Akihiro Shimizu \& Shoji•Miyaguchi

Electrical Communication Laboratories, NTT
1-2356, Take, Yokosuka-shi, Kanagawa-ken, 238-03, Japan

BACKGROUND

Abstract

In data communications and information processing systems, cryptography is the most effective way to secure communications and store data. The most commonly used cryptogryphic algorithm is DES (1). However, it is generally implemented with hardware, and the cost is prohibitive for small scale systems such as personal computer communications. Accordingly, an encipherment algorithm that has safety equal to DES and is suitable for software as well as hardware implementation is needed. The FEAL (Fast data Encipherment ALgorihtm) fills this need.

EVALUATION INDICES FOR ALGORITHM STRENGTH

In FEAL design, two evaluation indices, M and Ms, are adopted to evaluate objectively the data randomization ability of the algorithm. These indices express the approximation degree of ciphertext variation to the binomial distribution $B(n, 1 / 2)$, in which Ω is the ciphertext bit length.
M is the average approximation degree of the distribution of
D. Chaum and W.L. Price (Eds.): Advances in Cryptology - EUROCRYPT '87, LNCS 304, pp. 267-278, 1988. © Springer-Verlag Berlin Heidelberg 1988
ciphertext variations according to the plaintext or key variations from one-bit to n-bit. Ms is the standard deviation of the approximation degree. When M approaches one (100 percent) and Ms approaches zero, the algorithm does not leave clues which could be used to count backward to the input plaintext or key in the ciphertext. M and Ms are definded separately so that $M p$ and Mps are for plaintext variations and $M k$ and Mks are for key variations.

To get the indices, many plaintexts or keys have to be used.
Nevertheless, the amount of data which can be treated is generally small compared to the population. Thus, it is important to determine the theoretical index values according to the amount of data by means of statistical calculation. For example, the theoretical values for $16 \cdot 16 \cdot 16 \cdot 63$ pieces of data, which are a combination of 16 plaintexts, 16 keys and 16.63 plaintext or key variations, are $M=96.5$ percent and Ms $=2.6$ percent (Table 1). When the measured values of the indices are close to the theoretical values, the randomness of algorithm ciphertexts is considered saturated.

Table 1 Indices for FEAL and DES

Items	FEAL	DES	Theoretical values	
	Mk	96.5	93.4	96.5
	Mks	2.6	4.9	2.6
Plaintext	Mp	96.5	95.5	96.5
indices		2.6	3.4	2.6

Note: Data amount $=16 \times 16 \cdot 16 \cdot 63$

DESIGN

FEAL consists of two processing parts. One is the key schedule which generates the 256 -bit extended key from the 64-bit secret key. It is designed to generate different extended keys for different secret keys (Fig. 1). The other is the data randomizer (Fig. 2), which generates 64-bit ciphertext from 64-bit plaintext under control of the extended key. The data randomizer uses combinations of involutions (3). One program can perform two functions, enciphering and deciphering, except for the extended key entry. Moreover, the setting of 64-bit extended keys by means of an exclusive-OR operation at the entrance and exit makes attack on the algorithm difficult.

The construction of $f(F i g, ~ 3)$ is such that input bit variations influence all output data. Experiments confirmed that FEAL's function randomization efficiency is two to three times that of DES.

The S function in the f function, a one-byte data substitution, is as effective as DES's S-box.

The S fucntion is defined as:
$S(x, y, d e l t a)=\operatorname{ROT} 2(T) ; T=x+y+$ delta $\bmod 256 ;$
x, y : one-byte data; delta:constant (0 or 1);
ROT2 (T) : 2-bit left rotation operation on T.

Example 1: Where $x=00010011, y=11110010$, delta=1, $T=00000110$.
Example 2: ROT2 (11011100) $=01110011$.

The fk function (Fig. 4) used in the key schedule is the same as the f fucntion except for the entry positon of parameter beta.

FEAL VERSIONS

There is an earlier cryptoanalysis report(4) for FEAL(5). For this reason, the iterative number of data randomizer in FEAL is increased from 4 stages to 8 stages. FEAL described in (5) and (6) is called FEAL version 1.00 , and the modified FEAL referred to in this paper is called FEAL Version 2. 00. Details for FEAL versions are reported in (7).

STRENGTH AND PERFORMANCE of FEAL (Version 2.00)

FEAL working with no parity in a key block is safe from the allkey attack because it is controlled by a 64-bit key, which is more secure than the 56-bit DES key. Regarding ciphertext randomization, FEAL is considered safe because the randomization indices are closer to the theoretical values than those of DES.

When FEAL is implemented in assembly language on an i-8086 16-bit microprocessor with 8 MHz frequency, it is confirmed that the program size is 400 bytes and the excution time speed reaches 120 kbps.

CONCLUSION

FEAL is an encipherment algorithm suitable for software implementation. It can be applied widely to small scale or other existing systems unable to use DES hardware because of cost. Moreover, FEAL is suitable for hardware implementation, too. Implementated as an LSI, it can be used as the cryptographic method in all data communication fields.

ACKNOWLEGEMENT

We thank Dr. Bert den Boer for finding problems hidden in FEAL Version 1.00.

RERERENCES

(1) FIPS PUB 46, Data Encryption Standard (1977).
(2) S. Miyaguchi, M. Hirano:' Evaluation Criteria for Encipherment and Authentication Algorihtms', Trans. of IECE of Japan. Vol. J69-A, No. 10. pp. 1252-1259 (Oct. 1986) (in Japanese).
(3) A. G. Kohnheim: 'Cryptography: A Primer', A Wiley Interscience Publication, pp. 236-240 (Jan. 1986).
(4) Bert den Boer,' Cryptonalysis of FEAL', Crypto' 87-Rump Session , Aug. 1987.
(5) A. Shimizu, S. Miyaguchi, 'Fast Data Encipherment Algorihtm FEAI', ABSTRACTS of EUROCRYPT 87 AMSTERDAM, April 1987.
(6) A. Shimizu, S. Miyaguchi, 'Fast Data Enciphement Algorihtm FEAL', Trans. of IECE of Japan, Vol.J70-D No. $7 \mathrm{pp} .1413-1423, \mathrm{July} 1987$ (in Japanese).
(7) An Extension of Fast Data Encipherment Algorithm FEAL, SITA' 87, 1921, Nov. 1987 (in English).

Fig. 1 Rey processing part

Fig. 2 Data randonizer

$$
\begin{aligned}
& Y=S \delta(X 1, X 2)=R 0 T 2((X 1+X 2+\delta) \operatorname{lod} 256) \\
& Y: \text { output, X1/X2:inguts, } \delta: p a r a \operatorname{loter}(0 \text { or } 1) \\
& \text { ROT2:2 bit left rotation on } 8-b i t \text { data }
\end{aligned}
$$

Fig. 3 Function f

Fig. 4 Function fk

1 Notations
(1) Block: U, Ur.. are blocks of plural octets.
(2) Octet block: UJ, Urd are the j thoctets in theblocks U, Ur where $j=0,1, \cdots$.
(3) Concatenation: ($U, V, \cdots \cdots$) is a block concatenated ith U, V,
... ... in this order.
(4) Exclusive-or: $U \oplus V$ is bitwise exclusive-or of block U and V.
(5) Φ is a null block, four octets long.
(6) $\Delta s \operatorname{signaent}:$ The value of the left side of $=s i g n$ is assigned the value of the right side.

2 Functions
2. 1 Function S
$S(X 1, X 2, \delta)=\operatorname{ROT} 2(T)$
$\mathrm{T}=\mathrm{X} 1+\mathrm{X} 2+\delta \bmod 256$
Where $\mathrm{X} 1, \mathrm{X} 2$ and T are blocks of one-octet, $\delta=0$ or 1
(constant value), and ROT2 (T) is the result of a 2 bit left rotation operation on T.

Example 1: Where XI = 00010011, X2 = 11110010, $\delta=1, T=00000110$
Example2: Rot2 (11011100) $=01110011$

2. 2 Function $f k$

Inputs of function $f k$, α and β, are divided into four l-octet blocks as:

```
\(\alpha=\left(\alpha^{0}, \alpha^{1}, \alpha^{2}, \alpha^{3}\right)\)
\(\beta=\left(\beta^{8}, \beta^{1}, \beta^{2}, \beta^{3}\right)\)
\(f \mathrm{k}(\alpha, \beta)\) is shortened to \(\quad \mathrm{f}\).
\(f=\left(f^{0}, f^{1}, f^{2}, f^{3}\right)\) are calculated in order.
\(f k^{1}=\alpha^{1} \oplus \alpha^{0}\)
\(f k^{2}=\alpha^{2} \oplus \alpha^{3}\)
\(\mathrm{f}^{1}=\mathrm{S}\left(\mathrm{f} \mathrm{K}^{1}, f \mathrm{~K}^{2} \oplus \mathrm{~B}^{0}, \mathrm{l}\right)\)
\(f k^{2}=S\left(f k^{2}, f k^{1} \oplus \beta^{1}, 0\right)\)
\(\mathrm{f} \mathrm{K}^{0}=\mathrm{S}\left(\alpha^{0}, \quad \mathrm{f} \mathrm{K}^{1} \oplus \beta^{2}, 0\right)\)
\(f k^{3}=S\left(\alpha^{3}, f k^{2} \oplus \beta^{3}, 1\right)\)
```

2. 3 Function f
$f(\boldsymbol{\alpha}, \boldsymbol{\beta})$ is shortened to f.
$f=\left(f^{\mathbf{0}}, f^{1}, f^{2}, f^{3}\right)$ are calculated in order.
$\mathrm{f}^{1}=\alpha^{1} \boldsymbol{\omega} \beta^{\boldsymbol{1}} \boldsymbol{\omega} \alpha^{\text {® }}$
$\mathrm{f}^{2}=\alpha^{2} \Theta \beta^{\mathbf{1}} \Theta \alpha^{3}$
$\mathbf{f}^{1}=\mathbf{S}\left(\mathbf{f}^{1}, \mathbf{f}^{2}, 1\right)$
$f^{2}=S\left(f^{2}, f^{1}, 0\right)$
$f^{0}=S\left(\alpha^{0}, f^{1}, 0\right)$
$\mathbf{f}^{3}=S\left(\alpha^{3}, f^{2}, 1\right)$

3. Key processing

Let Ag be to the left of the key K and B to the right, i.e.,
$K=(A 』, B a)$ and $D 0=\Phi$.
Then calculate K; $(i=0$ to 15) for $r=1$ to 8 ,
$\mathrm{Dr}_{\mathrm{r}}=\mathrm{Ar}_{\mathrm{r}} 1$
$A_{r}=B r-1$
$B_{r}=f \times\left(A_{r-1}, B r-1^{f} \oplus D_{r-1}\right)$
$\mathrm{K} \mathrm{K}_{(r-1)} \quad=\left(\mathrm{Br}, \mathrm{B} r^{1}\right)$
$\mathrm{K} 2(r-1)+1=\left(\mathrm{B} r^{2}, \mathrm{~B} r^{3}\right)$
4. Enciphering and decipheriag
4. 1 Enciphering procedure
P is separated into $L a, R$ a of equal leagths, i.e., $P=(L a, R a)$. Thus,

$(\mathrm{L} 日, \mathrm{Ra})=(\mathrm{La}, \mathrm{Ra}) \oplus(\Phi, \mathrm{La})$
Then calculate $r=1$ to 8 in that order,
$\mathrm{R}_{\mathrm{r}}=\mathrm{Lr-1} \oplus \mathrm{f}\left(\mathrm{Rr}_{\mathrm{r}-1} \mathrm{~K}_{\mathrm{f}} \mathrm{K}_{\mathrm{r}-1}\right.$)
$L_{r}=R_{r-1}$
Lastly, calculate:
$\left(\mathrm{R}_{8}, \mathrm{~L}_{8}\right)=\left(\mathrm{R}_{8}, \mathrm{~L}_{8}\right) \oplus\left(\Phi, \mathrm{R}_{8}\right)$
$\left(\mathrm{R}_{8}, \mathrm{~L} 8\right)=\left(\mathrm{R}_{8}, \mathrm{~L} 8\right) \boldsymbol{(\mathrm { K } _ { 1 2 } , \mathrm { K } _ { 1 } , \mathrm { K } _ { 1 4 } , \mathrm { K } _ { 1 5 })}$
Ciphertert is ($\mathrm{R}_{8}, \mathrm{~L} 8$) .
4.2 Decipehring procedure

Ciphertext is separated into Rs, Ls of equal lengths. Then,
$\left(\mathrm{R}_{\mathrm{g}}, \mathrm{L} \mathrm{g}\right)=(\mathrm{Rg}, \mathrm{L} 8) \oplus\left(\mathrm{K}_{12}, \mathrm{~K}_{13}, \mathrm{~K}_{14}, \mathrm{~K}_{15}\right)$
$\left(\mathrm{R}_{8}, \mathrm{~L} 8\right)=(\mathrm{R} \boldsymbol{\mathrm { R }}, \mathrm{L} 8) \oplus(\Phi, \mathrm{R})$
Then calculater $\quad 8$ to 1 in that order,
$L_{r-1}=R_{r} \oplus \mathbf{f}\left(L_{r}, K_{r-1}\right)$
$R_{r-1}=\mathrm{L} r$
Lastly, calculate:
$(\mathrm{La}, \mathrm{Ra})=(\mathrm{La}, \mathrm{Ra}) \boldsymbol{\mathrm { L }} \boldsymbol{\mathrm { L }} \mathrm{m}(\Phi, \mathrm{La})$

Plaintext is (Lg, Re).

5 Parity bits

If parity bits are requested in a key block, the following rule is applied.

```
Rule: At the begining of key processing, bit positions 8 x i of key
    block are set to zero where l\leqq i \leqq 16.
```


6. Working data

is shown in hexadecimal notation.
6. 1 When no parity bits exist in a key block
(1) Rey $=0123456789 \triangle B C D E F$
(2) Extended value of the key
(K0, K1, K2, K 3, K 4, K 5, K 6, K7) =

(K 8, K 9, K10, K11, K12, K13, K 14, K 15) =

(3) Plaintext $=0000000000000000$
(4) Ciphertext $=$ CE EF 2C 86 F2 490752
6. 2 When parity bits exist in a key block
(1) Key $=0123456789 \mathrm{ABCDEF}$
(2) Extended value of the key
(K 0 , K 1 , K 2 , $\mathrm{K} 3, \mathrm{~K} 4$, K 5 , K 6 , K 7) $=$

(K8, K 9, K10, K11, K12, K13, K14, K15) =

(3) Plaintext $=0000000000000000$
(4) Ciphertext $=\begin{array}{lllllll}6 \Delta & 72 & 2 D & 1 C & 46 & B 3 & 96\end{array}$

