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Abstract
Multicore in-memory databases for modern machines
can support extraordinarily high transaction rates for on-
line transaction processing workloads. A potential weak-
ness, however, is recovery from crash failures. Can clas-
sical techniques, such as checkpoints, be made both ef-
ficient enough to keep up with current systems’ mem-
ory sizes and transaction rates, and smart enough to
avoid additional contention? Starting from an efficient
multicore database system, we show that naive logging
and checkpoints make normal-case execution slower, but
that frequent disk synchronization allows us to keep
up with many workloads with only a modest reduction
in throughput. We design throughout for parallelism:
during logging, during checkpointing, and during re-
covery. The result is fast. Given appropriate hardware
(three SSDs and a RAID), a 32-core system can recover
a 43.2 GB key-value database in 106 seconds, and a
> 70 GB TPC-C database in 211 seconds.

1 Introduction
In-memory databases on modern multicore ma-
chines [10] can handle complex, large transactions at
millions to tens of millions of transactions per second,
depending on transaction size. A potential weakness
of such databases is robustness to crashes and power
failures. Replication can allow one site to step in for
another, but even replicated databases must write data
to persistent storage to survive correlated failures, and
performance matters for both persistence and recovery.

Crash resistance mechanisms, such as logging and
checkpointing, can enormously slow transaction execu-
tion if implemented naively. Modern fast in-memory
databases running tens of millions of small transactions
per second can generate more than 50 GB of log data
per minute when logging either values or operations. In
terms of both transaction rates and log sizes, this is up
to several orders of magnitude more than the values re-
ported in previous studies of in-memory-database dura-
bility [2, 14, 24]. Logging to disk or flash is at least theo-
retically fast, since log writes are sequential, but sequen-
tial log replay is not fast on a modern multicore machine.
Checkpoints are also required, since without them, logs
would grow without bound, but checkpoints require a
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walk over the entire database, which can cause data
movement and cache pollution that reduce concurrent
transaction performance. Recovery of a multi-gigabyte
database using a single core could take more than 90
minutes on today’s machines, which is a long time even
in a replicated system.

Our goal in this work was to develop an in-memory
database with full persistence at relatively low cost to
transaction throughput, and with fast recovery, mean-
ing we hoped to be able to recover a large database to
a transactionally-consistent state in just a few minutes
without replication. Starting from Silo [27], a very fast
in-memory database system, we built SiloR, which adds
logging, checkpointing, and recovery. Using a combina-
tion of logging and checkpointing, we are able to re-
cover a 43.2 GB YCSB key-value-style database to a
transactionally-consistent snapshot in 106 seconds, and
a more complex > 70 GB TPC-C database with many
tables and secondary indexes in 211 seconds.

Perhaps more interesting than our raw performance is
the way that performance was achieved. We used con-
currency in all parts of the system. The log is written
concurrently to several disks, and a checkpoint is taken
by several concurrent threads that also write to multi-
ple disks. Concurrency was crucial for recovery, and we
found that the needs of recovery drove many of our de-
sign decisions. The key to fast recovery is using all of
the machine’s resources, which, on a modern machine,
means using all cores. But some designs tempting on the
logging side, such as operation logging (that is, logging
transaction types and arguments rather than logging val-
ues), are difficult to recover in parallel. This drive for
fast parallel recovery affected many aspects of our log-
ging and checkpointing designs.

Starting with an extremely fast in-memory database,
we show:

• All the important durability mechanisms can and
should be made parallel.

• Checkpointing can be fast without hurting normal
transaction execution. The fastest checkpoints in-
troduce undesired spikes and crashes into concur-
rent throughput, but through good engineering and
by pacing checkpoint production, this variability
can be reduced enormously.



• Even when checkpoints are taken frequently, a
high-throughput database will have to recover from
a very large log. In our experiments, log recovery
is the bottleneck; for example, to recover a 35 GB
TPC-C database, we recover 16 GB from a check-
point and 180 GB from the log, and log recovery ac-
counts for 90% of recovery time. Our design allows
us to accomplish log replay at roughly the maxi-
mum speed of I/O.

• The system built on these ideas can recover a rela-
tively large database quite quickly.

2 Silo overview
We build on Silo, a fast in-memory relational database
that provides tables of typed records. Clients issue one-
shot requests: all parameters are available when a re-
quest begins, and the request does not interact with its
caller until it completes. A request is dispatched to a sin-
gle database worker thread, which carries it out to com-
pletion (commit or abort) without blocking. Each worker
thread is pinned to a physical core of the server machine.
Most cores run workers, but SiloR reserves several cores
for logging and checkpointing tasks.

Silo tables are stored in efficient, cache-friendly con-
current B-trees [15]. Each table uses one primary tree
and zero or more secondary trees for secondary indexes.
Key data is embedded in tree structures, and values are
stored in separately-allocated records. All structures are
stored in shared memory, so any worker can access the
entire database.

Silo uses a variant of optimistic concurrency control
(OCC) [11] to serialize transactions. Concurrency con-
trol centers on transaction IDs (TIDs). Each record con-
tains the TID of the transaction that most recently mod-
ified it. As a worker runs a transaction, it maintains a
read-set containing the old TID of each read or written
record, and a write-set containing the new state of each
written record. On transaction completion, a worker de-
termines whether the transaction can commit. First it
locks the records in the write-set (in a global order to
avoid deadlock). Then it computes the transaction’s TID;
this is the serialization point. Next it compares the TIDs
of records in the read-set with those records’ current
TIDs, and aborts if any TIDs have changed or any record
is locked by a different transaction. Otherwise it com-
mits and overwrites the write-set records with their new
values and the new TID.

2.1 Epochs
Silo transaction IDs differ in an important way from
those in other systems, and this difference impacts the
way SiloR does logging and recovery. Classical OCC

obtains the TID for a committing transaction by effec-
tively incrementing a global counter. On modern multi-
core hardware, though, any global counter can become
a source of performance-limiting contention. Silo elim-
inates this contention using time periods called epochs
that are embedded in TIDs. A global epoch number E
is visible to all threads. A designated thread advances it
periodically (every 40 ms). Worker threads use E during
the commit procedure to compute the new TID. Specif-
ically, the new TID is (a) greater than any TID in the
read-set, (b) greater than the last TID committed by this
worker, and (c) in epoch E.

This avoids false contention on a global TID, but
fundamentally changes the relationship between TIDs
and the serial order. Consider concurrent transactions
T1 and T2 where T1 reads a key that T2 then over-
writes. The relationship between T1 and T2 is called
an anti-dependency: T1 must be ordered before T2 be-
cause T1 depends on the absence of T2. In conventional
OCC, whose TIDs capture anti-dependencies, our ex-
ample would always have TID(T1) < TID(T2). But in
Silo, there is no communication whatsoever from T1 to
T2, and we could find TID(T1) > TID(T2)! This means
that replaying a Silo database’s committed transactions
in TID order might recover the wrong database.

Epochs provide the key to correct replay. On total-
store-order (TSO) architectures like x86-64, the desig-
nated thread’s update of E becomes visible at all workers
simultaneously. Because workers read the current epoch
at the serialization point, the ordering of TIDs with dif-
ferent epochs is always compatible with the serial or-
der, even in the case of anti-dependencies. Epochs allow
for a form of group commit: SiloR persists and recovers
in units of epochs. We describe below how this impacts
logging, checkpointing, and recovery.

3 Logging
This section explains how SiloR logs transaction modifi-
cations for persistence. Our design builds on Silo, which
included logging but did not consider recovery, log trun-
cation, or checkpoints. The SiloR logging subsystem
adds log truncation, makes changes related to liveness,
and allows more parallelism on replay.

3.1 Basic logging
The responsibility for logging in SiloR is split between
workers, which run transactions, and separate logging
threads (“loggers”), which handle only logging, check-
pointing, and other housekeeping tasks. Workers gener-
ate log records as they commit transactions; they pass
these records to loggers, which commit the logs to disk.
When a set of logs is committed to disk via fsync, the
loggers inform the workers. This allows workers to send
transaction results to clients.
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A log record comprises a committed transaction’s TID
plus the table, key, and value information for all records
modified by that transaction. Each worker constructs
log records in disk format and stores them in a mem-
ory buffer taken from a per-worker buffer pool. When a
buffer fills, or at an epoch boundary, the worker passes
the buffer to the logger over a shared-memory queue.

3.2 Value logging vs. operation logging
SiloR uses value logging, not operation or transaction
logging. This means that SiloR logs contain each trans-
action’s output keys and values, rather than the identity
of the executed operation and its parameters.

The choice of value logging is an example of re-
covery parallelism driving the normal-case logging de-
sign. Value logging has an apparent disadvantage rela-
tive to operation logging: for many workloads (such as
TPC-C) it logs more data, and therefore might unnec-
essarily slow transaction execution. However, from the
point of view of recovery parallelism, the advantages of
value logging outweigh its disadvantages. Value logging
is easy to replay in parallel—the largest TID per value
wins. This works in SiloR because TIDs reflect depen-
dencies, i.e., the order of writes, and because we recover
in units of epochs, ensuring that anti-dependencies are
not a problem. Operation logging, in contrast, requires
that transactions be replayed in their original serial or-
der. This is always hard to parallelize, but in Silo, it
would additionally require logging read-sets (keys and
TIDs) to ensure anti-dependencies were obeyed. Op-
eration logging also requires that the initial pre-replay
database state be a transactionally consistent snapshot,
which value logging does not; and for small transactions
value and operation logs are about the same size. These
considerations led us to prefer value logging in SiloR.
We solve the problem of value logging I/O by adding
hardware until logging is not a bottleneck, and then us-
ing that hardware wisely.

3.3 Workers and loggers
Loggers have little CPU work to do. They collect logs
from workers, write them to disk, and await durability
notification from the kernel via the fsync/fdatasync sys-
tem call. Workers, of course, have a lot of CPU work to
do. A SiloR deployment therefore contains many worker
threads and few logger threads. We allocate enough log-
ger threads per disk to keep that disk busy, one per disk
in our evaluation system.

But how should worker threads map to logger
threads? One possibility is to assign each logger a par-
tition of the database. This might reduce the data writ-
ten by loggers (for example, it could improve the ef-
ficacy of compression), and it might speed up replay.
We rejected this design because of its effect on normal-
case transaction execution. Workers would have to do

more work to analyze transactions and split their up-
dates appropriately. More fundamentally, every worker
might have to communicate with every logger. Though
log records are written in batches (so the communica-
tion would not likely introduce contention), this design
would inevitably introduce remote writes or reads: phys-
ical memory located on one socket would be accessed,
either for writes or reads, by a thread running on a dif-
ferent socket. Remote accesses are expensive and should
be avoided when possible.

Our final design divides workers into disjoint subsets,
and assigns each subset to exactly one logger. Core pin-
ning is used to ensure that a logger and its workers run
on the same socket, making it likely that log buffers al-
located on a socket are only accessed by that socket.

3.4 Buffer management
Although loggers should not normally limit transaction
execution, loggers must be able to apply backpressure
to workers, so that workers don’t generate indefinite
amounts of log data. This backpressure is implemented
by buffer management. Loggers allocate a maximum
number of log buffers per worker core. Buffers circu-
late between loggers and workers as transactions exe-
cute, and a worker blocks when it needs a new log buffer
and one is not available. A worker flushes a buffer to
its logger when either the buffer is full or a new epoch
begins, whichever comes first. It is important to flush
buffers on epoch changes, whether or not those buffers
are full, because SiloR cannot mark an epoch as persis-
tent until it has durably logged all transactions that hap-
pened in that epoch. Each log buffer is 512 KB. This
is big enough to obtain some benefit from batching, but
small enough to avoid wasting much space when a par-
tial buffer is flushed.

We found that log-buffer backpressure in Silo trig-
gered unnecessarily often because it was linked with
fsync times. Loggers amplified file system hiccups, such
as those caused by concurrent checkpoints, into major
dips in transaction rates. SiloR’s loggers instead recircu-
late log buffers back to workers as soon as possible—
after a write, rather than after the following epoch
change and fsync. We also increased the number of log
buffers available to workers, setting this to about 10% of
the machine’s memory. The result was much less noise
in transaction execution rates.

3.5 File management
Each SiloR logger stores its log in a collection of files
in a single directory. New entries are written to a file
called data.log, the current log file. Periodically (cur-
rently every 100 epochs) the logger renames this file to
old_data.e, where e is the largest epoch the file contains,
then starts a new data.log. Using multiple files simpli-
fies the process of log truncation and, in our measure-
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ments, didn’t slow logging relative to Silo’s more prim-
itive single-file design.

Log files do not contain transactions in serial order. A
log file contains concatenated log buffers from several
workers. These buffers are copied into the log without
rearrangement; in fact, to reduce data movement, SiloR
logger threads don’t examine log data at all. A log file
can even contain epochs out of order: a worker that de-
lays its release of the previous epoch’s buffer will not
prevent other workers from producing buffers in the new
epoch. All we know is that a file old_data.e contains no
records with epochs > e. And, of course, a full log com-
prises multiple log directories stored independently by
multiple loggers writing to distinct disks. Thus, no single
log contains enough information for recovery to produce
a correct database state. It would be possible to extract
this information from all logs, but instead SiloR uses
a distinguished logger thread to maintain another file,
pepoch, that contains the current persistent epoch. The
logger system guarantees that all transactions in epochs
≤ pepoch are durably stored in some log. This epoch is
calculated as follows:

1. Each worker w advertises its current epoch, ew, and
guarantees that all future transactions it sends to its
logger will have epoch ≥ ew. It updates ew by set-
ting ew ← E after flushing its current log buffer to
its logger.

2. Each logger l reads log buffers from workers and
writes them to log files.

3. Each logger regularly decides to make its writes
durable. At that point, it calculates the minimum of
the ew for each of its workers and the epoch number
of any log buffer it owns that remains to be written.
This is the logger’s current epoch, el . The logger
then synchronizes all its writes to disk.

4. After this synchronization completes, the logger
publishes el . This guarantees that all associated
transactions with epoch < el have been durably
stored for this logger’s workers.

5. The distinguished logger thread periodically com-
putes a persistence epoch ep as min{el}− 1 over
all loggers. It writes ep to the pepoch file and then
synchronizes that write to disk.

6. Once pepoch is durably stored, the distinguished
logger thread publishes ep to a global variable. At
that point all transactions with epochs≤ ep have be-
come durable and workers can release their results
to clients.

This protocol provides a form of group commit. It en-
sures that the logs contain all information about trans-

actions in epochs ≤ ep, and that no results from trans-
actions with epoch > ep were released to clients. There-
fore it is safe for recovery to recover all transactions with
epochs ≤ ep, and also necessary since those results may
have been released to clients. It has one important dis-
advantage, namely that the critical path for transaction
commit contains two fsyncs (one for the log file and one
for pepoch) rather than one. This somewhat increases
latency.

4 Checkpoints
Although logs suffice to recover a database, they do
not suffice to recover a database in bounded time. In-
memory databases must take periodic checkpoints of
their state to allow recovery to complete quickly, and to
support log truncation. This section describes how SiloR
takes checkpoints.

4.1 Overview
Our main goal in checkpoint production is to produce
checkpoints as quickly as possible without disrupting
worker throughput. Checkpoint speed matters because
it limits the amount of log data that will need to be re-
played at recovery. The smaller the distance between
checkpoints, the less log data needs to be replayed, and
we found the size of the log to be the major recovery ex-
pense. Thus, as with log production, checkpointing uses
multiple threads and multiple disks.

Checkpoints are written by checkpointer threads, one
per checkpoint disk. In our current implementation
checkpoints are stored on the same disks as logs, and
loggers and checkpointers execute on the same cores
(which are separate from the worker cores that exe-
cute transactions). Different checkpointers are responsi-
ble for different slices of the database; a distinguished
checkpoint manager assigns slices to checkpointers.
Each checkpointer’s slices amount to roughly 1/n th of
the database, where n is the number of disks. A check-
point is associated with a range of epochs [el ,eh], where
each checkpointer started its work during or after el and
finished its work during or before eh.

Each checkpointer walks over its assigned database
slices in key order, writing records as it goes. Since
OCC installs modifications at commit time, all records
seen by checkpointers are committed. This means that
full ARIES-style undo and redo logging is unnecessary;
the log can continue to contain only “redo” records for
committed transactions. However, concurrent transac-
tions continue to execute during the checkpoint period,
and they do not coordinate with checkpointers except
via per-record locks. If a concurrent transaction commits
multiple modifications, there is no guarantee the check-
pointers will see them all. SiloR checkpoints are thus in-
consistent or “fuzzy”: the checkpoint is not necessarily
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a consistent snapshot of the database as of a particular
point in the serial order. To recover a consistent snap-
shot, it is always necessary both to restore a checkpoint
and to replay at least a portion of the log.

We chose to produce an inconsistent checkpoint be-
cause it’s less costly in terms of memory usage than
a consistent checkpoint. Silo could produce consis-
tent checkpoints using its support for snapshot trans-
actions [27]. However, checkpoints of large databases
take a long time to write (multiple tens of seconds),
which is enough time for all database records to be over-
written. The memory expense associated with preserv-
ing the snapshot for this period, and especially the al-
location expense associated with storing new updates
in newly-allocated records (rather than overwriting old
records), reduces normal-case transaction throughput by
10% or so. We prefer better normal-case throughput.
Our choice of inconsistent checkpoints further neces-
sitates our choice of value logging; it is impossible to
recover from an inconsistent checkpoint without either
value logging or some sort of ARIES-style undo log-
ging.

Another possible design for checkpoints is to avoid
writing information about keys whose records haven’t
changed since the previous checkpoint, for example, de-
signing a disk format that would allow a new check-
point to elide unmodified key ranges. We rejected this
approach because ours is simpler, and also because chal-
lenging workloads, such as uniform updates, can cause
any design to effectively write a complete checkpoint ev-
ery time a checkpoint is required. We wanted to under-
stand the performance limits caused by these workloads.

In an important optimization, checkpointer threads
skip any records with current epoch ≥ el . Thus, the
checkpoint contains those keys written in epochs < el
that were not overwritten in epochs ≥ el . It is not nec-
essary to write such records because, given any incon-
sistent checkpoint started in el , it is always necessary to
replay the log starting at epoch el . Specifically, the log
must be complete over a range of epochs [el ,ex], where
ex ≥ eh, for recovery of a consistent snapshot to be pos-
sible. There’s no need to store a record in the checkpoint
that will be replayed by the log. This optimization re-
duces our checkpoint sizes by 20% or more.

4.2 Writing the checkpoint
Checkpointers walk over index trees to produce the
checkpoint. Since we want each checkpointer to be re-
sponsible for approximately the same amount of work,
yet tables differ in size, we have all checkpointers walk
over all tables. To make the walk efficient, we partition
the keys of each table into n subranges, one per check-
pointer. This way each checkpointer can take advantage
of the locality for keys in the tree.

The checkpoint is organized to enable efficient recov-
ery. During recovery, all cores are available, so we de-
signed the checkpoint to facilitate using those cores.

For each table, each checkpointer divides its assigned
key range into m files, where m is the number of cores
that would be used during recovery for that key range.
Each of a checkpointer’s m files are stored on the same
disk. As the checkpointer walks over its range of the ta-
ble, it writes blocks of keys to these m files. Each block
contains a contiguous range of records, but blocks are
assigned to files in round-robin order. There is a tension
here between two aspects of fast recovery. On the one
hand, recovery is more efficient when a recovery worker
is given a continuous range of records, but on the other
hand, recovery resources are more effectively used when
the recovery workload is evenly distributed (each of the
m files contain about the same amount of work). Calcu-
lating a perfect partition of an index range into equal-
size subranges is somewhat expensive, since to do this
requires tree walks. We chose a point on this tradeoff
where indexes are coarsely divided among checkpoint-
ers into roughly-equal subranges, but round-robin as-
signment of blocks to files evens the workload at the file
level.

The checkpoint manager thread starts a new check-
point every C seconds. It picks the partition for each ta-
ble and writes this information into a shared array. It then
records el , the checkpoint’s starting epoch, and starts up
n checkpointer threads, one per disk. For each table, each
thread creates the corresponding checkpoint files and
walks over its assigned partition using a range scan on
the index tree. As it walks, it constructs a block of record
data, where each record is stored as a key/TID/value tu-
ple. When its block fills up, the checkpointer writes that
block to one of the checkpoint files and continues. The
next full block is written to the next file in round-robin
order.

Each time a checkpointer’s outstanding writes exceed
32 MB, it syncs them to disk. These intermediate syncs
turned out to be important for performance, as we dis-
cuss in §6.2.

When a checkpointer has processed all tables, it does
a final sync to disk. It then reads the current epoch E
and reports this information to the manager. When all
checkpointers have reported, the manager computes eh;
this is the maximum epoch reported by the checkpoint-
ers, and thus is the largest epoch that might have updates
reflected in the checkpoint. Although, thanks to our re-
duced checkpoint strategy, new tuples created during eh
are not stored in the checkpoint, tuples removed or over-
written during eh are also not stored in the checkpoint,
so the checkpoint can’t be recovered correctly without
complete logs up to and including eh. Thus, the man-
ager waits until eh ≤ ep, where ep is the persistence
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epoch computed by the loggers (§3.5). Once this point is
reached, the manager installs the checkpoint on disk by
writing a final record to a special checkpoint file. This
file records el and eh, as well as checkpoint metadata,
such as the names of the database tables and the names
of the checkpoint files.

4.3 Cleanup
After the checkpoint is complete, SiloR removes old
files that are no longer needed. This includes any previ-
ous checkpoints and any log files that contain only trans-
actions with epochs < el . Recall that each log comprises
a current file and a number of earlier files with names
like old_data.e. Any file with e < el can be deleted.

The next checkpoint is begun roughly 10 seconds af-
ter the previous checkpoint completed. Log replay is far
more expensive than checkpoint recovery, so we aim to
minimize log replay by taking frequent checkpoints. In
future work, we would like to investigate a more flexi-
ble scheme that, for example, could delay a checkpoint
if the log isn’t growing too fast.

5 Recovery
SiloR performs recovery by loading the most recent
checkpoint, then correcting it using information in the
log. In both cases we use many concurrent threads to
process the data and we overlap processing and I/O.

5.1 Checkpoint recovery
To start recovery, a recovery manager thread reads the
latest checkpoint metadata file. This file contains infor-
mation about what tables are in the system and el , the
epoch in which the checkpoint started. The manager cre-
ates an in-memory representation for each of the T index
trees mentioned in the checkpoint metadata. In addition
it deletes any checkpoint files from earlier or later check-
points and removes all log files from epochs before el .

The checkpoint is recovered concurrently by many
threads. Recall that the checkpoint consists of many files
per database table. Each table is recorded on all n disks,
partitioned so that on each disk there are m files for
each table. Recovery is carried out by n×m threads.
Each thread reads from one disk, and is responsible for
reading and processing T files from that disk (one file
per index tree). Processing is straightforward: for each
key/value/TID in the file, the key is inserted in the index
tree identified by the file name, with the given value and
TID. Since the files contain different key ranges, check-
point recovery threads are able to reconstruct the tree in
parallel with little interference; additionally they benefit
from locality when processing a subrange of keys in a
particular table.

5.2 Log recovery
After all threads have finished their assigned checkpoint
recovery tasks, the system moves on to log recovery. As
mentioned in §3, there was no attempt at organizing the
log records at runtime (e.g. partitioning the log records
based on what tables were being modified). Instead it is
likely that each log file is a jumble of modifications to
various index trees. This situation is quite different than
it was for the checkpoint, which was organized so that
concurrent threads could work on disjoint partitions of
the database. However, SiloR uses value logging, which
has the property that the logs can be processed in any
order. All we require is that at the end of processing, ev-
ery key has an associated value corresponding to the last
modification made up through the most recent persistent
epoch prior to the failure. If there are several modifi-
cations to a particular key k, these will have associated
TIDs T1, T2, and so on. Only the entry with the largest
of these TIDs matters; whether we happen to find this
entry early or late in the log recovery step does not.

We take advantage of this property to process the log
in parallel, and to avoid unnecessary allocations, copies,
and work. First the manager thread reads the pepoch
file to obtain ep, the number of the most recent persis-
tent epoch. All log records for transactions with TIDs
for later epochs are ignored during recovery. This is im-
portant for correctness since group commit has not fin-
ished for those later epochs; if we processed records for
epochs after ep we could not guarantee that the resulting
database corresponded to a prefix of the serial order.

The manager reads the directory for each disk, and
creates a variable per disk, Ld , that is used to track which
log files from that disk have been processed. Initially
this variable is set to the number of relevant log files for
that disk, which, in our experiments, is in the hundreds.
Then the manager starts up g log processor threads for
each disk. We use all threads during log recovery. For in-
stance, on a machine with N cores and n disks, we have
g= dN/ne. This can produce more recovery threads than
there are cores. We experimented with the alternative
m = bN/nc, but this leaves some cores idle during re-
covery, and we observed worse recovery times than with
oversubscription.

A log processor thread proceeds as follows. First it
reads, decrements, and updates Ld for its disk. This up-
date is done atomically: this way it learns what file it
should process, and updates the variable so that the next
log processor for its disk will process a different file.
If the value it reads from Ld is ≤ 0, the log processor
thread has no more work to do. It communicates this to
the manager and stops. Otherwise the processor thread
reads the next file, which is the newest file that has not
yet been processed. In other words, we process the files
in the opposite order than they were written. The proces-
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sor thread on disk d that first reads Ld processes the cur-
rent log file data.log; after this files are read in reverse
order by the epoch numbers contained in their names.
The files are large enough that, when reading them, we
get good throughput from the disk; there’s little harm in
reading the files out of order (i.e., in an order different
from the order they were written).

The processor thread reads the entries in the file se-
quentially. Recall that each entry contains a TID t and a
set of table/key/value tuples. If t contains an epoch num-
ber that is < el or > ep, the thread skips the entry. Oth-
erwise, the thread inserts a record into the table if its key
isn’t there yet; when a version of the record is already in
the table, the thread overwrites only if the log record has
a larger TID.

Value logging replay has the same result no matter
what order files are processed. We use reverse order for
reading log files because it uses the CPU more efficiently
than forward order when keys are written multiple times.
When files are processed in strictly forward order, ev-
ery log record will likely require overwriting some value
in the tree. When files are processed in roughly reverse
order, and keys are modified multiple times, then many
log records don’t require overwriting: the tree’s current
value for the key, which came from a later log file, is
often newer than the log record.

5.3 Correctness
Our recovery strategy is correct because it restores the
database to the state it had at the end of the last persis-
tent epoch ep. The state of the database after processing
the checkpoint is definitely not correct: it is inconsis-
tent, and it is also missing modifications of persistent
transactions that ran after it finished. All these problems
are corrected by processing the log. The log contains all
modifications made by transactions that ran in epochs in
el up through ep. Therefore it contains what is needed to
rectify the checkpoint. Furthermore, the logic used to do
the rectification leads to each record holding the modifi-
cation of the last transaction to modify it through epoch
ep, because we make this decision based on TIDs. And,
importantly, we ignore log entries for transactions from
epochs after ep.

It’s interesting to note that value logging works with-
out having to know the exact serial order. All that is re-
quired is enough information so that we can figure out
the most recent modification. That is, log record “version
numbers” must capture dependencies, but need not cap-
ture anti-dependencies. Silo TIDs meet this requirement.
And because TID comparison is a simple commutative
test, log processing can take place in any order. In addi-
tion, of course, we require the group commit mechanism
provided by epochs to ensure that anti-dependencies are
also preserved.

6 Evaluation
In this section, we evaluate the effectiveness of the tech-
niques in SiloR, confirming the following performance
hypotheses:

• SiloR’s checkpointer has only a modest effect on
both the latency and throughput of transactions on
a challenging write-heavy key-value workload and a
typical online transaction processing workload.

• SiloR recovers 40–70 GB databases within minutes,
even when crashes are timed to maximize log replay.

6.1 Experimental setup
All of our experiments were run on a single machine
with four 8-core Intel Xeon E7-4830 processors clocked
at 2.1 GHz, yielding a total of 32 physical cores. Each
core has a private 32 KB L1 cache and a private 256 KB
L2 cache. The eight cores on a single processor share a
24 MB L3 cache. The machine has 256 GB of DRAM
with 64 GB of DRAM attached to each socket, and runs
64-bit Linux 3.2.0. We run our experiments without net-
worked clients; each database worker thread runs with
an integrated workload generator. We do not take advan-
tage of our machine’s NUMA-aware memory allocator,
a decision discussed in §6.5.

We use three separate Fusion ioDrive2 flash drives
and one RAID-5 disk array. Each disk is used for both
logging and checkpointing. Each drive has a dedicated
logger thread and checkpointer thread, both of which
run on the same core. Within a drive, the log and check-
point information reside in separate files. Each logger or
checkpointer writes to a series of files on a single disk.

We measure three related databases, SiloR, LogSilo,
and MemSilo. These systems have identical in-memory
database structures. SiloR is the full system described
here, including logging and checkpointing. LogSilo is
a version of SiloR that only logs data: there are no
checkpointer threads or checkpoints. MemSilo is Silo
run without persistence, and is a later version of the sys-
tem of Tu et al. [27] Unless otherwise noted, we run
SiloR and LogSilo with 28 worker threads and MemSilo
with 32 worker threads.

6.2 Key-value workload
To demonstrate that SiloR can log and checkpoint with
low overhead, we run SiloR on a variant of YCSB
workload mix A. YCSB is a popular key-value bench-
mark from Yahoo [4]. We modified YCSB-A to have
a read/write (get/put) ratio of 70/30 (not 50/50), and a
record size of 100 bytes (not 1000). This workload mix
was originally designed for MemSilo to stress database
internals rather than memory allocation; though the
read/write ratio is somewhat less than standard YCSB-
A, it is still quite high compared to most workloads.
Our read and write transactions sample keys uniformly.
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Figure 1: Throughput and latency of SiloR, and
throughput of LogSilo and MemSilo, on our mod-
ified YCSB benchmark. Average throughput was
8.76 Mtxn/s, 9.01 Mtxn/s, and 10.83 Mtxn/s, respec-
tively. Average SiloR latency was 90 ms/txn. Database
size was 43.2 GB. Grey regions show those times
when the SiloR experiment was writing a checkpoint.
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Figure 2: Throughput of MemSilo on YCSB with
32 and 28 workers. Average throughput was
10.83 Mtxn/s and 9.77 Mtxn/s, respectively.

There are 400M keys for a total database size of roughly
43.2 GB (3.2 GB of key data, 40 GB of value data).

Figure 1 shows the results over a 10-minute exper-
iment. Checkpointing can be done concurrently with
logging without greatly affecting transaction through-
put. The graph shows, over the length of the experi-
ment, rolling averages of throughput and latency with
a 0.5-second averaging window. For SiloR and LogSilo,
throughput and latency are measured to transaction per-
sistence (i.e., latency is from the time a transaction is
submitted to the time SiloR learns the transaction’s ef-
fects are persistent). Intervals during which the check-
pointer is running are shown in gray. Figure 1’s results
are typical of our experimental runs; Figure 6 in the ap-
pendix shows two more runs.

SiloR is able to run multiple checkpoints and al-
most match LogSilo’s throughput. Its throughput is also
close to that of MemSilo, although MemSilo does no
logging or checkpointing whatsoever: SiloR achieves
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Figure 3: Throughput and latency of SiloR on
YCSB with 32 workers. Average throughput was
9.14 Mtxn/s and average latency 153 ms.

8.76 Mtxn/s, 80% the average throughput of MemSilo
(10.83 Mtxn/s). Average latency is affected by logging
and checkpointing somewhat more significantly; it is
90 ms/transaction.1 Some of this latency is inherent in
Silo’s epoch design. Since the epoch advances every
40 ms, average latency cannot be less than 20 ms. The
rest is due to a combination of accumulated batching de-
lays (workers batch transactions in log buffers, loggers
batch updates to synchronizations) and delays in the per-
sistent storage itself (i.e., the two fsyncs in the critical
path each take 10–20 ms, and sometimes more). Never-
theless, we believe this latency is not high for a system
involving persistent storage.

During the experiment, SiloR generates approxi-
mately 298 MB/s of IO per disk. The raw bandwidth of
our Fusion IO drives is reported as 590 MB/s/disk; we
are achieving roughly half of this.

SiloR and LogSilo’s throughput is less than Mem-
Silo’s for several reasons, but as Figure 2 shows, an im-
portant factor is simply that MemSilo has more workers
available to run transactions. SiloR and LogSilo require
extra threads to act as loggers and checkpointers; we
run four fewer workers to leave cores available for those
threads. If we run MemSilo with 28 workers, its through-
put is reduced by roughly 10% to 9.77 Mtxn/s, making
up more than half the gap with SiloR. We also ran SiloR
with 32 workers. This bettered the average throughput
to 9.13 Mtxn/s, but CPU oversubscription caused wide
variability in throughput and latency (Figure 3).

As we expect, the extensive use of group commit in
LogSilo and SiloR make throughput, and particularly la-
tency, more variable than in MemSilo. Relative to Mem-

1Due to a technical limitation in SiloR’s logger implementation, the
latency shown in the figure is the (running) average latency for write
transactions only; we believe these numbers to be a converative upper
bound on the actual latency of the system.
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Figure 4: Importance of regular disk synchronization. In (a), one fsync call synchronizes the checkpoint;
throughput and latency are extremely bursty (note the latency axis tops out at 2 sec). In (b), regular sleep
calls in the checkpoint threads reduce burstiness, but do not eliminate it. In (c), SiloR, regular calls to fsync
almost entirely eliminate burstiness. Here we run the modified YCSB benchmark.

Silo with 28 cores, LogSilo’s performance is more vari-
able, and SiloR’s more variable still. The spike in latency
visible in Figure 1, which happened at one time or an-
other in most of our runs, is discussed below in §6.5.

Importance of regular synchronization. A check-
point is useless until it is complete, so the obvious dura-
bility strategy for a checkpointer thread is to call fsync
once, after writing all checkpoint data and before report-
ing completion to the manager. But SiloR checkpoint-
ers call fsync far more frequently—once per 32 MB of
data written. Figure 4 shows why this matters: the naive
strategy, (a), is very unstable on our Linux system, in-
ducing wild throughput swings and extremely high la-
tency. Slowing down checkpointer threads through the
occasional introduction of sleep() calls, (b), reduces the
problem, but does not eliminate it. We believe that, with
the single fsync, the kernel flushed old checkpoint pages
only when it had to—when the buffer cache became
full—placing undue stress on the rest of the system. Fre-
quent synchronization, (c), produces far more stable re-
sults; it also can produce a checkpoint more quickly than
can the version with occasional sleeps.

Compression. We also experimented with compress-
ing the database checkpoints via lz4 before writing to
disk. This didn’t help either latency or throughput, and it
actually slowed down the time it took to checkpoint. Our
storage is fast enough that the cost of checkpoint com-
pression outweighed the benefits of writing less data.

6.3 On-line transaction processing workload
YCSB-A, though challenging, is a well-behaved work-
load: all records are in one table, there are no secondary
indexes, accesses are uniform, all writes are overwrites
(no inserts or deletes), all transactions are small. In this
section, we evaluate SiloR on a more complex work-
load, the popular TPC-C benchmark for online trans-
action processing [26]. TPC-C transactions involve cus-

tomers assigned to a set of districts within a local ware-
house, placing orders in those districts. There are ten pri-
mary tables plus two secondary indexes (SiloR treats pri-
mary tables and secondary indexes identically). We do
not model client “think” time, and we run the standard
workload mix. This contains 45% “new-order” transac-
tions, which contain 8–18 inserts and 5–15 overwrites
each. Also write-heavy are “delivery” transactions (4%
of the mix), which contain up to 150 overwrites and 10
removes each.2 Unmodified TPC-C is not a great fit for
an in-memory database: very few records are removed,
so the database grows without bound. During our 10-
minute experiments, database record size (not includ-
ing keys) grows from 2 GB to 94 GB. Nevertheless, the
workload is well understood and challenging for our sys-
tem.

Figure 5 shows the results. TPC-C transactions are
challenging enough for Silo’s in-memory structures that
the addition of persistence has little effect on throughput:
SiloR’s throughput is about 93% that of MemSilo. The
MemSilo graph also shows that this workload is more in-
herently variable than YCSB-A. We use 28 workers for
MemSilo, rather than 32, because 32-worker runs actu-
ally have lower average throughput, as well as far more
variability (see Figure 7 in the appendix: our 28-worker
runs achieved 587–596 Ktxn/s, our 32-worker runs 565–
583 Ktxn/s). As with YCSB-A, the addition of persis-
tence increases this variability, both by batching transac-
tions and by further stressing the machine. (Figure 7 in
the appendix shows that, for example, checkpoints can
happen at quite different times.) Throughput degrades
over time in the same way for all configurations. This is
because the database grows over time, and Silo tables are
stored in trees with height proportional to the log of the
table size. The time to take a checkpoint also grows with

2It is common in the literature to report TPC-C results for the stan-
dard mix as “new order transactions per minute.” Following Silo, we
report transactions per second for all transactions.
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Figure 5: Throughput and latency of SiloR and LogSilo, and throughput of MemSilo, on a modified TPC-C
benchmark. Average throughput is 548 Ktxn/s, 575 Ktxn/s, and 592 Ktxn/s, respectively. Average SiloR latency
is 110 ms/txn; average LogSilo latency is 97 ms/txn. The database initially contains 2 GB of record data, and
grows to 94 GB by the end of the experiment. All experiments run 28 workers.

database size (3.5 s or so per GB of record data). La-
tency, which is 110 ms/txn average for SiloR, is higher
than in YCSB-A, but not by much, even though TPC-C
transactions are far more complex. In summary, SiloR
can handle more complex workloads with larger trans-
actions as well as it can handle simple workloads with
small transactions.

6.4 Recovery
We now show that SiloR checkpoints allow for fast re-
covery. We run YCSB-A and TPC-C benchmarks, and
in each case, crash the database immediately before a
checkpoint completes. This maximizes the length of the
log that must be recovered to restore a transactionally-
correct state. We use 6 threads per disk (24 threads to-
tal) to restore the checkpoint, and 8 threads per disk (32
threads total) to recover the log.

For YCSB-A, SiloR must recover 36 GB of check-
point and 64 GB of log to recreate a 43.2 GB database.
Recovery takes 106 s, or about 1.06 s/GB of recovery
data. 31% of this time (33 s) is spent on the check-
point and the rest (73 s) on the log. The TPC-C database
grows over time, so checkpoints have different sizes.
We stop a SiloR run of TPC-C immediately before its
fourth checkpoint completes, at about 465 s into the ex-
periment, when the database contains about 72.2 GB
of record data (not including keys). SiloR must recover
15.7 GB of checkpoint and 180 GB of log to recreate this
database. Recovery takes 211 s, or about 1.08 s/GB of re-
covery data. 8% of this time (17 s) is spent on the check-
point and the rest (194 s) on the log. Thus, recovery time
is proportional to the amount of data that must be read to
recover, and log replay is the limiting factor in recovery,
justifying our decision to checkpoint frequently.

6.5 Discussion
This work’s motivation was to explore the performance
limits afforded by modern hardware. However, there are

other limits that SiloR would encounter in a real deploy-
ment. At the rates we are writing, our expensive flash
drives would reach their maximum endurance in a bit
more than a year!

In contrast with the evaluation of Silo, we disable the
NUMA-aware allocator in our tests. When enabled, this
allocator improves average throughput by around 25%
on YCSB (to 10.91 Mtxn/s for SiloR) and 20% on TPC-
C (to 644 Ktxn/s for SiloR). The cost—which we de-
cided was not worth paying, at least for TPC-C—was
performance instability and dramatically worse latency.
Our TPC-C runs saw sustained latencies of over a second
in their initial 40 s or so, and frequent latency spikes later
on, caused by fsync calls and writes that took more than
1 s to complete. These slow file system operations ap-
pear unrelated to our storage hardware: they occur only
when two or more disks are being written simultane-
ously; they occur at medium write rates as well as high
rates; they occur whether or not our log and checkpoint
files are preallocated; and they occur occasionally on
each of our disks (both Fusion and RAID). Turning off
NUMA-aware allocation greatly reduces the problem,
but traces of it remain: the occasional latency spikes visi-
ble in our figures have the same cause. NUMA-aware al-
location is fragile, particularly in older versions of Linux
like ours;3 it is possible that a newer kernel would miti-
gate this problem.

7 Related work
SiloR is based on Silo, a very fast in-memory database
for multicore machines [27]. We began with the publicly
available Silo distribution, but significantly adapted the
logging implementation and added checkpointing and
recovery. Silo draws from a range of work in databases

3For instance, to get good results with the NUMA allocator, we
had to pre-fault our memory pools to skirt kernel scalability issues;
this step could take up to 30 minutes per run!
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and in multicore and transactional memory systems
more generally [1, 3, 6–9, 11, 12, 15, 18, 19, 21].

Checkpointing and recovery for in-memory databases
has long been an active area of research [5, 20, 22–24].
Salem et al. [24] survey many checkpointing and recov-
ery techniques, covering the range from fuzzy check-
points (that is, inconsistent partial checkpoints) with
value logging to variants of consistent checkpoints with
operation logging. In those terms, SiloR combines an
action-consistent checkpoint (the transaction might con-
tain some, but not all, of an overlapping transaction’s
effects) with value logging. Salem et al. report this as a
relatively slow combination. However, the details of our
logging and checkpointing differ from any of the sys-
tems they describe, and in our measurements we found
that those details matter. In Salem et al. action-consistent
checkpoints either write to all records (to paint them), or
copy concurrently modified records; our checkpointers
avoid all writes to global data. More fundamentally, we
are dealing with database sizes and speeds many orders
of magnitude higher, and technology tradeoffs may have
changed.

H-Store and its successor, VoltDB, are good represen-
tatives of modern fast in-memory databases [10, 13, 25].
Like SiloR, VoltDB achieves durability by a combina-
tion of checkpointing and logging [14], but it makes
different design choices. First, VoltDB uses command
logging (a variant of operation logging), in contrast to
SiloR’s value logging. Since VoltDB, unlike Silo, par-
titions data among cores, it can recover command logs
somewhat in parallel (different partitions’ logs can pro-
ceed in parallel). Command logging in turn requires that
VoltDB’s checkpoints be transactionally consistent; it
takes a checkpoint by marking every database record
as copy-on-write, an expense we deem unacceptable.
Malviya et al. also evaluate a variant of VoltDB that
does “physiological logging” (value logging). Although
their command logging recovers transactions not much
faster than it can execute them—whereas physiological
logging can recover transactions 5x faster—during nor-
mal execution command logging performs much better
than value logging, achieving 1.5x higher throughput
on TPC-C. This differs from the results we observed,
where value logging was just 10% slower than a sys-
tem with persistence entirely turned off. Our raw per-
formance results also differ from those of Malviya et al.
For command logging on 8 cores, they report roughly
1.3 Ktxn/s/core for new-order transactions, using a vari-
ant of TPC-C that entirely lacks cross-warehouse trans-
actions. (Cross-warehouse transactions are particularly
expensive in the partitioned VoltDB architecture.) Our
TPC-C throughput with value logging, on a mix includ-
ing cross-warehouse transactions and similar hardware,
is roughly 8.8 Ktxn/s/core for new-order transactions. Of

course, VoltDB is more full-featured than SiloR.

Cao et al. [2] describe a design for frequent consis-
tent checkpoints in an in-memory database. Their re-
quirements align with ours—fast recovery without slow-
ing normal transaction execution or introducing latency
spikes—but for much smaller databases. Like Malviya et
al., they use “logical logging” (command/operation log-
ging) to avoid the expense of value logging. The focus
of Cao et al.’s work is two clever algorithms for preserv-
ing the in-memory state required for a consistent check-
point. These algorithms, Wait-Free ZigZag and Wait-
Free Ping-Pong, effectively preserve 2 copies of the
database in memory, a current version and a snapshot
version; but they use a bitvector to mark on a per-record
basis which version is current. During a checkpoint, up-
dates are directed to the noncurrent version, leaving the
snapshot version untouched. This requires enough mem-
ory for at least 2, and possibly 3, copies of the database,
which for the system’s target databases is realistic (they
measure a maximum of 1.6 GB). As we also observe, the
slowest part of recovery is log replay, so Cao et al. aim
to shorten recovery by checkpointing every couple sec-
onds. This is only possible for relatively small databases.
Writing as fast as spec sheets promise, it would take at
least 10 seconds for us to write a 43 GB checkpoint in
parallel to 3 fast disks, and that is assuming there is no
concurrent log activity, and thus that normal transaction
processing has halted.

The gold standard for database logging and check-
pointing is agreed to be ARIES [16], which combines
undo and redo logging to recover inconsistent check-
points. Undo logging is necessary because ARIES might
flush uncommitted data to the equivalent of a check-
point; since SiloR uses OCC, uncommitted data never
occurs in a checkpoint, and redo logging suffices.

The fastest recovery times possible can be obtained
through hot backups and replication [14, 17]. RAM-
Cloud, in particular, replicates a key-value store node’s
memory across nearby disks, and can recover more than
64 GB of data to service in just 1 or 2 seconds. However,
RAMCloud is not a database: it does not support trans-
actions that involve multiple keys. Furthermore, RAM-
Cloud achieves its fast recovery by fragmenting failed
partitions across many machines. This fragmentation is
undesirable in a database context because increased par-
titioning requires more cross-machine coordination to
run transactions (e.g., some form of two-phase commit).
Nevertheless, 1 or 2 seconds is far faster than SiloR can
provide. Replication is orthogonal to our system and an
interesting design point we hope to explore in future
work.
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8 Conclusions
We have presented SiloR, a logging, checkpointing, and
recovery subsystem for a very fast in-memory database.
What distinguishes SiloR is its focus on performance
for extremely challenging workloads. SiloR writes logs
and checkpoints at gigabytes-per-second rates without
greatly affecting normal transaction throughput, and can
recover > 70 GB databases in minutes.

For future work, we would like to investigate check-
pointers that cycle through logical partitions of the
database. We believe this approach will allow us to sub-
stantially reduce the amount of log data that needs to be
replayed after a crash. Another possibility is to investi-
gate a RAMCloud-like recovery approach in which data
is fragmented during recovery, allowing quick resump-
tion of service at degraded rates, but then reassembled at
a single server to recover good performance.
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Figure 6: Performance of SiloR, LogSilo, and MemSilo on our modified YCSB benchmark: additional runs.
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Figure 7: Performance of SiloR, LogSilo, and MemSilo (with 32 and 28 workers) on our modified TPC-C bench-
mark: additional runs.
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