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Fast Decimal Floating-Point Division
Hooman Nikmehr, Braden Phillips, Member, IEEE, and Cheng-Chew Lim, Senior Member, IEEE

Abstract—A new implementation for decimal floating-point
(DFP) division is introduced. The algorithm is based on high-radix
SRT division1 with the recurrence in a new decimal signed-digit
format. Quotient digits are selected using comparison multiples,
where the magnitude of the quotient digit is calculated by com-
paring the truncated partial remainder with limited precision
multiples of the divisor. The sign is determined concurrently by
investigating the polarity of the truncated partial remainder.
A timing evaluation using a logic synthesis shows a significant
decrease in the division execution time in contrast with one of the
fastest DFP dividers reported in the open literature.

Index Terms—Binary-coded decimal (BCD), decimal floating-
point (DFP) arithmetic, digit recurrence division.

I. INTRODUCTION

P
ERFORMING manual calculations using decimal arith-

metic is part of human nature. Typical computers, on the

other hand, support binary arithmetic more readily. The ENIAC,

which became operational in 1945 at the University of Penn-

sylvania, was one of the early attempts to use radix 10 calcu-

lations in digital computers [1]. The IBM eServer z900 seems

to be the only recent processor capable of performing decimal

instructions in hardware [2], [3]. However, its decimal compu-

tation capability is limited to integers operands. Recently, dec-

imal arithmetic has become more attractive in the financial and

commercial world including banking, tax calculation, currency

conversion, insurance, and accounting. The following facts may

explain this recent interest.

• A survey of commercial databases [4] shows that 98.6% of

the numbers stored are decimal or integer while more than

half of them are represented in pure decimal format.

• It is well understood that when converting between dec-

imal and binary formats, most fractional decimal numbers

are only approximately represented in binary floating-point

(FP) representation and, therefore, may loose precision [5],

[6]. This means that using binary FP numbers in financial

applications, which cannot tolerate errors, does not neces-

sarily guarantee correct results.

• Regulations such as that for the European Commission Di-

rectorate General II [7] specify decimal digits for currency

calculations.
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1The SRT division algorithm is named after D. Sweeney [46], J. E. Robertson
[47], and T. D. Tocher [48].

The importance of decimal arithmetic has led to a proposed

revision to the IEEE 754 standard for FP arithmetic to include

specifications for decimal arithmetic [8]. This means that al-

though computers are still carrying out decimal FP (DFP) cal-

culations using software libraries [9], [10] and binary FP num-

bers, it is likely that in the near future, many high-end proces-

sors will perform decimal operations directly on DFP operands

using dedicated DFP units, which are hundreds of times faster

than the software packages [11].

In this paper, a DFP division algorithm and its implementa-

tion are proposed. The algorithm is based on well-known high-

radix SRT1 division [12]–[15]. The division’s partial remainder

is represented in a new redundant format called decimal signed-

digit (DSD) and the SRT recurrence is carried out using decimal

carry-free (DCF) addition [16]. Unlike conventional dividers,

which use the potential difference (PD) plot or the selection con-

stants methods for quotient digit selection [17], the new divider

is designed using comparison multiples [18].

There are three novel issues presented in this paper; em-

ploying the SRT division algorithm, which was originally

developed for radices of power of 2, to implement a divider

with a radix that is not presented as a power of 2, removing

the PD plot (the lookup table) from the conventional imple-

mentation of the SRT algorithm and replacing it with a set

of comparators followed by sign detectors, and introducing

a divider that can perform decimal division faster than any

available counterpart.

It should be noted that the design is optimized for speed at the

expense of power and area. This is reasonable for one of the first

DFP dividers in the literature; however, low-power architectures

remain an open topic.

This paper is organized as follows. High-radix SRT division

is discussed in Section II. Section III presents previous related

works in decimal division. In Section IV, the fundamentals of

DSD arithmetic are discussed. Specification of the DFP format

introduced in the proposal of the IEEE 754R standard [8] is

briefly explained in Section V followed by a short review of the

rounding issues in DFP arithmetic. Section VI describes how

high-radix SRT division can be used for implementing DFP di-

vision. Section VII gives a timing evaluation of the implemen-

tation. This paper presents a conclusion in Section VIII.

II. HIGH-RADIX SRT DIVISION

Surveys [14] and [19] show that many VLSI implementations

of FP division are based on the SRT digit recurrence division

algorithms. SRT division is an iterative algorithm with linear

convergence toward the quotient. In this algorithm, the quo-

tient digit selection (QDS) function calculates a fixed number of

bits of the quotient every iteration. The speed of a SRT divider

is mainly determined by the complexity of the QDS function

[20], which is traditionally implemented using the lookup table

1063-8210/$20.00 © 2006 IEEE
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method. In this method, the QDS function is realized in a table

implemented with a programable logic array (PLA) or a ROM

[17].

Radix- SRT division compliant with the IEEE 754 standard

[21] is implemented using the recurrence

where (1)

plus one more cycle to produce the quotient in the IEEE 754

standard. In the recurrence (1), the dividend and the divisor

are two normalized binary numbers in the range and

is the number of iterations needed to produce the bits of the

precision. Also, represents the quotient digit in the signed-

digit (SD) redundant format [22] selected from the redundant

radix- digit set

(2)

where and . In (1), the next

partial remainder (PR), , is represented in a redundant

format [22]. To select the correct , the QDS function applies

the most significant bits of and to a lookup table. The

resulting quotient digit should be such that is always

bounded as

(3)

where is known as the redundancy factor. The

inequality (3) is known as the convergence condition. To sat-

isfy the convergence condition in the first iteration, the first PR,

, is initialized to . The quotient rep-

resented in SD is converted to radix- nonredundant form using

the on-the-fly conversion and rounding algorithm [23].

III. HISTORY OF DECIMAL DIVIDERS

Yabe et al. [24] present an implementation of a digit recur-

rence decimal division. Every iteration, limited digit numbers

from the normalized divisor and the PR are applied to a pre-

diction table to find a value for the quotient digit. If the new

PR is negative, then the divisor is added to the PR (restora-

tion step) and the incorrectly predicted quotient digit, which is

represented in a redundant form, is adjusted in the next itera-

tion. This restoring decimal division requires a full-length dec-

imal addition per iteration. Moreover, if restoration is needed,

a full-length decimal subtraction must be performed as well.

Therefore, due to these two time consuming operations, the di-

vider is very slow.

The division presented by Busaba et al. [3] is a simple

restoring division, which like the approach of Yabe et al. [24],

subtracts the divisor from the PR each iteration until the PR

becomes negative. The algorithm restores the PR and obtains

the corresponding quotient digit. This method, which is used in

the IBM z900 decimal arithmetic unit, again uses a very slow

full-length BCD addition/subtraction per iteration.

Yamaoka et al. [25] develop a nonrestoring decimal divider,

which subtracts the divisor from the dividend every iteration and

accumulates the number of iterations in the quotient register.

It suffers from a full-length decimal addition/subtraction every

iteration since the PR is represented in the conventional binary-

coded decimal (BCD) format. Also, as another disadvantage, the

number of iterations is unknown until a negative PR is found.

A nonheuristic decimal divider presented by Ferguson [26],

determines one quotient digit every iteration. It limits the

number of candidates for the quotient digit to two by normal-

izing both the divisor and the dividend. The normalization is

performed by multiplying the dividend and the divisor by a

common factor. This adds a large delay overhead to the oper-

ation. To select the correct quotient digit from the candidates,

a subtraction must be performed. Using the quotient digit, the

corresponding multiple of the normalized divisor is selected

from a table. The multiples must be precomputed and stored in

the table. This operation requires parallel full-length multiplica-

tions (or successive full-length additions/subtractions), which

not only increase the decimal division execution time massively

but also increase the implementation area. The divider adjusts

the final quotient if the divisor is normalized at the beginning of

division. This adjustment involves doubling, and several times

incrementing or decrementing the quotient. The delay penalty

caused by the adjustment is also rather high.

Wang and Schulte [27] claim the first DFP divider complying

with the proposal of the IEEE 754R standard. The divider, which

uses the Newton–Raphson iteration [14], doubles the number

of quotient digits every iteration. This feature makes it very

fast compared to the previously discussed decimal dividers.

This improvement is achieved by using an optimized piecewise

linear approximation, a modified Newton–Raphson iteration,

a specialized rounding technique, and a simplified combined

decimal incrementer/decrementer in the design. However, a

Newton–Raphson iteration requires two multiplications every

iteration. This has a negative impact on the latency of decimal

division since a pipelined decimal multiplier is difficult to build

and requires much more delay than decimal addition.

IV. DSD ARITHMETIC

Among decimal arithmetic operations, there are some com-

plex functions such as sequential multiplication and digit recur-

rence division, which compute and accumulate partial results.

These repetitive operations cannot be accomplished in a reason-

able time without fast circuits for decimal addition. One method

for implementing fast decimal adders is to take advantage of

carry-free addition.

Nikmehr [18] introduces an 8-bit decimal signed-digit arith-

metic for representing redundant decimal digit of the form

, where

. In DSD arithmetic, a DSD number expressed as

is an -digit array with

DSD in a maximally redundant set

(4)

Although a DSD can be represented in 5 bits in 2’s complement

format [28], in this paper, the 8-bit format is used because it is

a natural extension to the traditional binary signed-digit (BSD)

format. Therefore, it is quite possible that this representation

makes building circuits capable of performing both binary and

decimal division more feasible. In addition, as explained later,

while an 8-bit DSD number can be negated using an array of
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inverters, this needs a 2’s complement operation in the 5-bit

DSD representation.

The DSD is represented by a BSD vector as

, where and

0,1,2,3. Hence, each DSD is encoded as 8 bits. The

value of can be determined as

, where the op-

erator “ ” refers to decimal subtraction. A BCD to DSD

format conversion can be performed in zero time with no use

of hardware. However, converting from DSD to BCD, like all

conversions from redundant to nonredundant formats, requires

a time consuming operation.

A DSD number can be negated as

(5)

where “ ” denotes a 1’s complement (invert) function.

For example, while number 9 can be represented in DSD

as (1001,0000), using (5), can be expressed as either

or since in BSD

arithmetic , 0 either (1,1) or (0,0) and (0,1).

A new DCF addition is presented in [16]. This addition, like

its binary predecessors [29]–[31], limits carry propagation to a

small number of digit positions to the left and, therefore, all dig-

itwise addition operations, irrespective of their length, execute

in the same time. The adder can be easily simplified if the ad-

dends are either two BCD numbers or one BCD and one DSD

number.

An interesting feature of DSD arithmetic is that subtraction

, where and are two -digit BCD num-

bers, can be performed with no hardware time delay as

, where is in the DSD format.

It should be noted that in the remainder of the paper, the word

“digit” is frequently used. Where this is not further qualified,

based on the context, “digit” refers to a decimal digit, repre-

sented in either DSD or BCD.

V. DFP IN IEEE 754R STANDARD PROPOSAL

In the proposed revision to the IEEE 754 standard, the encod-

ings for decimal numbers allow for a range of positive and neg-

ative values together with values of , , and not-a-number

(NaN) [32]. Three formats of decimal numbers are allowed as

follows:

• decimal32 numbers, which are encoded in four consecutive

bytes (32 bits);

• decimal64 numbers, which encoded in eight consecutive

bytes (64 bits);

• decimal128 numbers, which are encoded in 16 consecutive

bytes (128 bits).

A finite DFP number is defined by a sign, an exponent, and a

decimal integer coefficient. The value of the DFP number is

given by coefficient . In this repre-

sentation, sign is a single bit (as in IEEE 754 standard for binary

FP), exponent is encoded as an unsigned binary integer from

which a is subtracted, and coefficient is an unsigned dec-

imal integer. The three DFP formats, decimal32, decimal64, and

decimal128, have 7-, 16-, and 34-B coefficients, respectively.

The representation format proposed for coefficient uses densely

packed decimal encoding [33]. It is a compressed form of the

traditional binary-coded decimal (BCD) format. This encoding

is a lossless algorithm, which compresses three BCD digits into

10 bits. The algorithm can be applied or reversed using only

simple Boolean operations.

Unlike the binary FP representation in which the significand

is a normalized number, coefficient has no such limitation. This

means that it can take any value between 0 and ,

where is the length of coefficient in decimal digits.

A. Precision

Precision , is a positive integer, which sets the maximum

number of significant digits that can result from an arithmetic

operation. The upper limit to it can be the length of the coeffi-

cient supported by the decimal representation format, i.e., 7, 16,

or 34 digits corresponding to decimal32, decimal64, and dec-

imal128, respectively. There is a lower limit on the setting ,

which may be the same as the upper limit.

B. Rounding

According to the proposal of the IEEE 754R standard [8], a

final quotient that might be represented in more digits than the

standard requires should be rounded to fit the destination format.

Among different rounding modes introduced by the proposal,

round to nearest even (RNE) is the mode used in the decimal

division developed in this paper since it rounds with zero bias2

[22].

VI. DFP DIVISION USING SRT ALGORITHM

This section introduces DFP division using the high-radix

SRT algorithm, i.e., 10. The proposed method fulfills the

requirements of the proposal of the IEEE 754R standard [8].

Assumptions

• The radix is equal to 10.

• It is known that in high-radix SRT division, to perform the

recurrence using a carry-free adder (CFA) [22] in radix ,

the SD set from which the quotient digit is selected must

satisfy [22]. Therefore, for DFP

division, , where is the largest allowed value

for the quotient digit. Investigation shows that almost the

same propagation delay occurs when generating either set

of the multiples of used in the SRT recurrence of DFP di-

vision: or . So, for

the DFP division described here

(6)

which is the maximally redundant set corresponding to

1. This choice makes the QDS function simpler and, there-

fore, reduces its delay.

2bias is the average rounding error.
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A. DFP Division Formulation

Considering as the PR and as the precision, the DFP

division definition (for nonzero and nonspecial operands)3 can

be expressed as follows.

• The unpacked (BCD) representations of the dividend co-

efficient, , and the di-

visor coefficient, , are

written in the fraction form as

and , respectively.

• With the appropriate number of left shifts, the fractions are

normalized such that

and (7)

where and represent normalized and , respec-

tively. Consequently, the dividend exponent, ,

and the divisor exponent, , should be modified

accordingly. Using the new values, the quotient exponent

is set as

(8)

• The decimal QDS function selects the correct value for the

quotient digit from DSD set (6) so that the conver-

gence condition

(9)

is always satisfied.

• The decimal SRT recurrence

(10)

where is used to generate the next PR.

Since the inequality cannot always be guaranteed,

in order to satisfy the convergence condition (9), the PR is

initialized as

(11)

The PR is represented in the DSD format and, therefore,

(10) can be carried out using DCF addition [16].

• Using the quotient digits generated in every recurrence,

is formed as

(12)

after cycles. The additional digit is used later

for rounding.

• The value of is set as

XOR (13)

B. Convert and Round

In the DFP divider, RNE is considered as the default rounding

mode. As in binary dividers, after the th division iteration,

3This simplifying assumption prevents any exception handling.

TABLE I
RULES USED BY THE DECIMAL CR UNITS TO REPRESENT THE UNROUNDED

QUOTIENT IN THE PROPOSAL OF THE IEEE 754R STANDARD FORMAT. S
AND Z ARE DEFINED BY (14) AND (16), RESPECTIVELY

another cycle is needed to complete the quotient conversion and

rounding processes. In that cycle, the last PR, , is sign

detected by the convert and round (CR) unit as

if and

if .
(14)

Unlike binary rounding, the decimal rounding may encounter a

halfway condition [34]. Examples include

(15)

To deal with this, the final PR is zero detected in the th

cycle as

if

if .
(16)

Then, the rounded is determined using the values formed by

the on-the-fly rounding algorithm [23] in the ,

, and registers, where 1 refers to 1 unit of

the last position (ulp), and the rules shown in Table I. It should be

noted that the final is not post-normalized because the decimal

representation in the proposal of the IEEE 754R standard is a

nonnormalized format.

C. Dealing With Exact Results

An issue unique to DFP division is to represent exact quo-

tients correctly. Based on the proposal of the IEEE 754R stan-

dard, if the final quotient is exact then decimal division should

return the coefficient and the exponent of the correct value. The

exponent has to be the closest value to the ideal exponent. The
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ideal exponent is the original dividend exponent minus the orig-

inal divisor exponent. In our implementation of DFP division,

, which is calculated every iteration as

if

if
(17)

signals whether the quotient is exact. Once the th PR is found

equal to zero, one can conclude that all the consequent quo-

tient digits are zero and, therefore, the division is exact. In this

case, can be adjusted by an appropriate number of right or left

shifts. Correspondingly, using the value of , ob-

tained from (8) should be adjusted. The circuit performing this

operation can be embedded in the CR unit.

D. Decimal QDS Function

This section explains how the comparison multiples method

[18] has been used to develop the QDS function of the DFP di-

vider. In this method, the quotient digit’s magnitude is obtained

by comparison of the truncated PR with truncated multiples of

. Meanwhile, another circuit determines the sign of the quo-

tient digit by checking only a few most significant digits of the

PR.

Having considered the assumption given in Section VI-A and

the normalizations (7), substituting (1) in (3) and adding

results in

(18)

Considering (3), since can take any of the 19 values

in , the range (18) can be sliced

into 19 intervals in the general form of

. Each interval is associated with a member of the SD

set. So, to find an appropriate value for , it is sufficient to

investigate which interval contains . This means that the

QDS function can be expressed alternatively as

if (19)

Table II shows the QDS function (19) in an expanded form.

Since (3) must always be satisfied and also because there is

no possible choice for larger (smaller) than 9 , interval

is replaced by

in the table.

Investigation reveals that the intervals in Table II always have

some overlaps, where there are two choices for the . There-

fore, to make the QDS function one-to-one, every two conjunct

intervals are detached using separating points, namely the com-

parison multiples. The comparison multiple is chosen such

that

(20)

where . The radix- nonredun-

dant number is represented as , where is a

TABLE II
DIFFERENT EXPRESSION OF THE QDS FUNCTION

rational number. The QDS function shown in Table II can be

expressed as

if

if
...

if
...

if

if .

(21)

Fortunately, existence of the overlaps means that there are some-

times more than one possible value for . This allows the

QDS function to compare just the most significant fractional

digits of with truncated to fractional bits. So, (21)

can be rewritten into the truncated form

if

if
...

if
...

if

if

(22)

which requires 18 comparisons

(23)

followed by 18 sign detections and a coder to be implemented.

E. Optimized QDS Function

The two major ideas to speed up the QDS function, and con-

sequently, the recurrence cycle time, are as follows:

1) breaking the critical path into two or more concurrent, but

shorter paths;

2) decreasing the fan-out of the circuits delivering

to the QDS function.

From (20) and Table II, a symmetry among the margins can

be found. Therefore, having used the substitutions

(24)
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Fig. 1. Comparison multiples based QDS function used in DFP division. Superscript C denotes a 9’s complement. Subscripts c and c are defined in Section VI-H.

Equation (22) is redefined as

if

if
...

if

if

if

if
...

if

if
(25)

where “ ” is logical “AND” and . The number

of comparisons in (25) decreases to 9; however, (25) cannot be

fulfilled unless the sign of the shifted PR is known. Checking

the sign of , while represented in the DSD format, needs

a full-length carry generation. This causes an impracticable

response time proportional to of the operand width.

Investigation in Section VI-H shows that existence of the

overlaps helps to convert the full-length sign detection to a

limited-range. In other words, to make the decision whether

or should participate in the comparisons, it

is not necessary to know the exact sign of , but the sign

of truncated to fractional digits. So, (25) changes to

(26), shown at the bottom of the page. Fig. 1 shows the general

structure of the QDS function (26). The design’s subunits are

explained later.

F. DFP Recurrence

Fig. 2 shows an implementation for the recurrence of DFP di-

vision using the QDS function shown in Fig. 1. For simplicity,

the CR unit is not shown. This design follows the general struc-

ture of the high-radix SRT recurrence [15], [34]; however, due

to the special features of the proposed QDS function, minor

changes are applied. In the following, the subunits involved in

the DFP recurrence are briefly introduced.

1) PR Formation: In Fig. 2, the PR formation unit calculates

all the possible candidates for the next PR, . They are

named corresponding to the values obtained from

, where . These values are kept in registers

and in the next iteration, the correct value for the PR is selected

using the magnitude of the quotient digit and MUX 11:1.

Considering 1-digit normalizations (7) and the fact that

has one integer digit, the PR formation can be con-

structed using a -digit DCF adder [16] with a DSD

addend and a BCD augend. Representation overflow may

increase the length of to . A small adjust circuit can

be developed based on the following observation to cancel the

overflow every iteration [18]. Since the convergence condition

(9) is always true, regardless of the exact value of , the 3

most significant digits of the next PR can take one of the

combinations , , , , , and , where

and .

2) Factor Generator: The factor generator used in the DFP

divider provides the multiples and the 9’s complemented mul-

tiples of not only in full range, but also in truncated form to

supply the comparison multiple generator.

if

if
...

if

if

if

if
...

if

if

(26)
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Fig. 2. Recurrence of the proposed DFP division. QDS is the QDS function shown in Fig. 1 without the PR sign detector. The critical path is shown in gray.
Superscript C denotes a 9’s complement.

Using the following scheme, the appropriate multiples of

are produced in full-range in the BCD format as quickly as pos-

sible.

1) Having produced in the BCD format just by a wired

left shift, value is calculated in the DSD format as

. Meanwhile, is produced in the DSD form as

.

2) Then, using the values obtained, , , and are calcu-

lated in the DSD format as , ,

and .

3) Afterward, , , and are generated and represented in

DSD as , , and .

4) The multiples of represented in the DSD format are re-

formatted into the BCD form.

In this scheme, subtractions with BCD minuend and subtrahend

are performed as explained in Section IV. The other addition

and subtraction operations can be carried out using DCF addi-

tion [16]. DSD to BCD conversion can be implemented by ap-

propriately modifying any BSD to 2’s complement conversion

approaches [35], [36] with parallel-prefix carry generating net-

works [37].

Due to the complex and time consuming operation performed

by the factor generator, it needs an interval equal to one recur-

rence cycle time to generate and in the BCD format.

With this initializing cycle at the beginning of DFP division

(i.e., before the first recurrence iteration starts), DFP division

produces the final quotient in cycles.4

G. Precisions of QDS Function Operands

1) Determining and : To determine , which denotes the

number of fractional digits of (as well as the number of

fractional bits of ) involved in the DCF additions, the com-

parison intervals shown in (26) are studied. For simplicity, only

the general interval shown as

4One initialization cycle, p + 1 iterations to generate p + 1 quotient digits
and one cycle for rounding.

is investigated. However, the other cases can be derived in the

same way. The interval is divided into

(27a)

(27b)

It is known that if BCD number is truncated to digits of

precision right of the decimal point, then

(28)

However, for DSD number , the same truncation results in

(29)

Using (28) and (29), (27a) changes to

or simply

(30)

Since , adding to (30) and using (1) results in

. To maintain the convergence

condition (3), the inequality or equiv-

alently

(31)

must be complied with. For interval (27b), a similar derivation

can be used to obtain

(32)

Replacing with in (32) and combining with (31) gives

(33)

This inequality gives tighter ranges than condition (20). This is

because rather than full-range, truncated comparison multiples

are used in the comparisons. To make sure that finding a value

for using (33) is always possible, the inequality
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should always be maintained. This leads

to . Since , it follows that or

(34)

which gives the lower bound on for the comparison multiples-

based QDS function used in DFP division.

In addition to , it is required to determine , which is the

width of the integer section of the operands involved in the com-

parisons (23). Having considered as the largest comparison

multiple and , inequality (20) results in . This

means that is a BCD number with at most one integer digit.

On the other hand, Fig. 2 indicates that the comparators receive

, which has one digit in its integer section. These two

observations lead to 1. It should be noted that the repre-

sentation overflow [38] may make the inputs to the comparison

sign detectors one digit wider.

2) Determining and : In Fig. 1, the PR sign detector finds

the polarity of represented as a -digit SD

number. Since the more digits the PR sign detector checks, the

larger its response time is, it is useful to derive the lower bounds

on and .

From (29), it can be derived that

or equivalently . To make

this inequality comply with the convergence condition (3) in

the neighborhood of 0 with 0, the inequality

must be satisfied. Since , this inequality can be

changed to a tighter condition independent to as or

(35)

To find , one can see that since in Fig. 2 the registers

store numbers with no integer digits, (the output of MUX

11:1), can have just one integer digit. Therefore, when is

applied to the PR formation, to , which are

the candidates for the next PR , will have at most two

integer digits. This means that for , which is used by

the PR sign detector in Fig. 1, 3.

H. QDS Function Implementation

Having assumed 4 and 4, the main modules

involved in the implementation are explained as follows.

1) Limited-Range Comparators: For every ,

a four-digit DCF adder performs

if (36a)

if (36b)

or equivalently

if (37a)

if (37b)

where is 9’s complement of and

if

if .
(38)

In Fig. 1, each comparator “ ” can be realized using a

DCF adder introduced by Nikmehr et al. [16] simplified for a

DSD addend and a BCD augend.

2) Limited-Range Comparison Sign Detectors: Unlike BCD

numbers, the sign of a DSD number is equal to the sign of

its most significant nonzero digit. It means that a DSD sign

detection may require an investigation over the length of the

input operand. Each comparator in the QDS function is fol-

lowed by a five-digit sign detector shown as “Comp Sign ”

in Fig. 1. To find the signs of the DSD results obtained from

(37), there are nine sign detectors in the system. They can be

implemented using networks similar to those used for precal-

culating the input carries in either parallel-prefix adders [37] or

reverse-carry adders [39]. Therefore, having considered the fact

that the input operands are very short, a comparison sign de-

tector does not incur large delay. The sign bits are later used to

form the magnitude of the quotient digit.

3) Limited-Range PR Sign Detector: The comparisons (37)

cannot be accomplished unless the sign of is already

known. Therefore, to prevent any additional delay to the itera-

tion response time, the QDS function should be implemented in

such a way that the sign of becomes available before

(37) starts. Since 0, the sign of is already known

before the first iteration begins. Therefore, selecting a value for

using (26) is independent of PR sign detection in the first it-

eration. This observation can be extended to the th iteration to

find the polarity of .

The PR sign detector is based on (38). This operation is per-

formed in parallel to the rest of the QDS function and, therefore,

does not affect the iteration delay.

The four-digit PR sign detector, which is shown as “PR Sign

Det” in Fig. 1, is implemented in the same way as the compar-

ison sign detectors; however, as shown in Fig. 2, when the QDS

function is used in the DFP recurrence, it is duplicated in ten

copies and put after the PR formation. According to this struc-

ture, the PR sign detectors find the polarity of , for

. These signs are stored in the registers and

then in the next iteration, one of them is selected as the correct

sign using the magnitude of the quotient digit and MUX 10:1.

4) Coder: In the proposed QDS function for DFP division,

the DSD quotient digit is represented in the sign-magni-

tude format using and . In this repre-

sentation

don't care if

otherwise
(39)

determines the sign and indicates the magnitude

(absolute) of the value selected for . In other words,

(40)

Based on the value of , the comparison sign de-

tectors produce nine bits, namely to . These bits, along

with , are used by the coder to construct

. The values represented by to as well as their

relationship with the exact value of are shown in Table III.

Investigating the table reveals that can
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TABLE III
FORMING q USING Sign(q ) AND Mag(q ) = q3q2q1q0. Sign

AND Mag ARE DEFINED BY (39) AND (40), RESPECTIVELY

TABLE IV
VALID RANGES FOR M

be generated using to and by implementing

expressions

(41a)

(41b)

(41c)

(41d)

where XNOR for and “ ”

is logical “OR.”

5) Comparison Multiple Generator: To perform the com-

parisons (37), nine positive comparison multiples and

nine 9’s complement comparison multiples , where

, are provided by the comparison multiple gen-

erator. The generator produces and then, using these

values, are supplied.

From (33), can be selected in the range

for . The

ranges are listed in Table IV in detail. In the rightmost column

of the table, one set of the most easily-calculated values for

is shown. Having assumed that the integer multiples of , ,

are already available in the BCD format, can be obtained

just by truncating to two fractional digits and then shifting the

result one digit to the right as . However, to

calculate the rest of the comparison multiples, the calculation

(42)

for is required. For a given , (42) is performed

as a full length BCD subtraction followed by a two-

digit truncation over the result and a one-digit right shift. As

shown, the full length subtraction stage incurs an intolerable

delay. In the following, it is shown that to obtain for

, the calculation

(43)

can be used instead. If (43) is to be an appropriate re-

placement for (42), it must satisfy the convergence con-

dition (9) in the neighborhood of . For simplicity,

the investigation through (26) is limited to the positive

quotient digits; however, inspecting the negative region

gives identical results. Having used the truncation con-

ditions (28) and (29), inequality ,

which corresponds to , can be expressed as

or equivalently

(44)

To satisfy the convergence condition (3), (44) becomes

or correspondingly

(45)

This is always correct since . Repeating the inspec-

tion in the right neighborhood of , where and

, gives the same result. This means that

(43) is a correct replacement for (42).

In the comparison multiples generator, all the division

(multiplication) by ten operations are performed simply by

one BCD wired right (left) shift, in zero time. Also, since the

minuends and subtrahends are in the BCD format, as discussed

in Section IV, the subtraction in (43) is carried out in zero time

as well. However, since the final needs to be in the DSD

format, only once during the initializing cycle, DSD to BCD

conversion is required after subtraction (43). The conversion

can be carried out using techniques, which are very similar to

the ones developed for BSD to 2’s complement conversion [35],

[40]–[42]. These techniques have a delay of , where

is the width of the DSD operand in digits. The comparison

multiple generator fulfills its tasks in the initializing cycle of

DFP division (i.e., first cycle).

VII. DFP DIVISION EVALUATION

In this section, the latency and the area of the proposed DFP

divider is estimated using a prelayout logical synthesis (Syn-

opsys Design Compiler with Artisan 0.18- m typical standard-

cell library). It should be noted that the stages of unpacking the



960 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 9, SEPTEMBER 2006

input operands and packing the quotient are not considered in

the synthesis and, therefore, their delays do not participate in

the estimation of the DFP division latency.

Investigation shows that the critical path delay of the design

depicted in Fig. 2 is about 2.33 ns. This comprises the delays

of 0.23 ns in the register (including the setup and the hold

times), 0.85 ns in the multiplexors, and 1.25 ns in the .

Assuming the dividend and the divisor to be two decimal128

numbers with 34, then since the proposed DFP divider cal-

culates the final quotient in 37 cycles, the division ex-

ecution time is 86.2 ns.

The prelayout synthesis estimates an area of 48100 2-input

NAND gates for the new comparison multiple based DFP divider.

To the best of the authors’ knowledge, this is only the second

hardware DFP divider to be reported in the literature and the

first to use the SRT algorithm. There are, therefore, few points

of reference against, which to evaluate the divider; however, to

help place it in the context it is interesting to note that one of

the latest IEEE 754 compliant radix-4 FP dividers [43] occupies

4780 2-input NAND gates and has a latency of 72.6 ns (estimated

using a 0.35- m technology).

The first IEEE 754R compliant DFP divider published is due

to Wang and Schulte [27]. It is based on the Newton-Raphson al-

gorithm [14], which is different from the proposed DFP divider

in nature. However, since both dividers accept the same inputs

and generate the same output (in terms of the size and represen-

tation standard), it is reasonable to compare their latencies.

An estimated critical path delay of 0.69 ns is reported by

Wang and Schulte [27]. The timing evaluation is obtained from

a synthesis using Synopsys Design Compiler and LSI Logic

0.11- m gflx-p standard cell library, under nominal operating

conditions and a supply voltage of 1.2 V.

Wang and Schulte use a sequential fixed-point decimal multi-

plier [28] in the heart of the divider. It is able to produce between

one and four digits per cycle. With a four-digit per cycle mul-

tiplier and for decimal128 dividend/divisor, Wang and Schulte

report a DFP division latency of 113 cycles, which is equivalent

to 77.97 ns. When they simulate the divider under more real-

istic conditions, i.e., an initial reciprocal approximation lookup

table with a reasonable size and a one-digit per cycle multiplier,

the Newton-Raphson-based DFP divider requires 246 cycles or

169.74 ns to produce the quotient.

The technologies used for timing evaluation in this paper and

in [27] are different. Therefore, the absolute delays themselves

could not be utilized for comparison. In order to make the de-

lays comparable, the delays must be represented in FO4 [44].

Nedovic et al. [45] report 1 45 ps measured by Fujitsu

Laboratories for the 0.11- m/1.2-V CMOS technology. For the

0.18- m technology, 1 65 ps. Having used these two

numbers, the latency of the comparison multiple-based DFP di-

vider is calculated as 1332 FO4, while the fastest and the slowest

circuits reported by Wang and Schulte have the latencies of 1733

and 3772 FO4, respectively. Although these latencies include

the delays of unpacking the input operands, handling the other

rounding modes, and packing the result, the figures still show

that the design proposed in this paper is faster than the latest

DFP dividers reported in the literature.

VIII. CONCLUSION

Due to increasing demand for decimal arithmetic in financial

and banking applications, developing circuits capable of per-

forming arithmetic directly on decimal operands has become an

important research topic. While addition, subtraction, and mul-

tiplication are much simpler to implement, implementing a di-

vider accepting decimal dividends and divisors in the recently

introduced IEEE 754R standard proposal is a great challenge.

A new DFP divider has been introduced. This uses DSD arith-

metic, a new type of redundant decimal arithmetic. It also makes

use of the comparison multiplies method for quotient digit se-

lection. This method, which has been described both mathemat-

ically and as a VLSI architecture, calculates quotient digits in

the sign-magnitude format, instead of searching for them in a

lookup table. The QDS function receives a truncated PR and in-

vestigates the range to which the PR belongs. It performs the

examination by comparing the truncated PR with the truncated

multiples of the divisor produced once at the beginning of di-

vision. The result of the comparisons are delivered to a coder

in order to produce the magnitude of the quotient digit. Mean-

while, another part of the QDS function, called the PR sign de-

tector, calculates the polarity of the quotient digit by inspecting

the sign of the truncated PR. In the comparison multiples-based

QDS function, the PR sign detector operates off the critical path

because the quotient digit sign and magnitude are calculated

separately.

A logic synthesis with Artisan 0.18- m typical standard-cell

library indicates that the new DFP divider calculates the quo-

tient’s coefficient in 86.2 ns and occupies an implementation

area equal to 48100 two-input NAND gates.
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