
Fast Decoding in Sequence Models Using Discrete Latent Variables

Łukasz Kaiser 1 Aurko Roy 1 Ashish Vaswani 1 Niki Parmar 1 Samy Bengio 1 Jakob Uszkoreit 1

Noam Shazeer 1

Abstract

Autoregressive sequence models based on deep

neural networks, such as RNNs, Wavenet and the

Transformer attain state-of-the-art results on many

tasks. However, they are difficult to parallelize

and are thus slow at processing long sequences.

RNNs lack parallelism both during training and

decoding, while architectures like WaveNet and

Transformer are much more parallelizable during

training, yet still operate sequentially during de-

coding. We present a method to extend sequence

models using discrete latent variables that makes

decoding much more parallelizable. We first auto-

encode the target sequence into a shorter sequence

of discrete latent variables, which at inference

time is generated autoregressively, and finally de-

code the output sequence from this shorter latent

sequence in parallel. To this end, we introduce

a novel method for constructing a sequence of

discrete latent variables and compare it with pre-

viously introduced methods. Finally, we eval-

uate our model end-to-end on the task of neu-

ral machine translation, where it is an order of

magnitude faster at decoding than comparable

autoregressive models. While lower in BLEU

than purely autoregressive models, our model

achieves higher scores than previously proposed

non-autoregressive translation models.

1. Introduction

Neural networks have been applied successfully to a variety

of tasks involving natural language. In particular, recur-

rent neural networks (RNNs) with long short-term mem-

ory (LSTM) cells (Hochreiter & Schmidhuber, 1997) in a

sequence-to-sequence configuration (Sutskever et al., 2014)

have proven successful at tasks including machine trans-

1Google Brain, Mountain View, California, USA. Correspon-
dence to: Łukasz Kaiser <lukaszkaiser@google.com>, Aurko
Roy <aurkor@google.com>.

Proceedings of the 35
th International Conference on Machine

Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

lation (Sutskever et al., 2014; Bahdanau et al., 2014; Cho

et al., 2014), parsing (Vinyals et al., 2015), and many others.

RNNs are inherently sequential, however, and thus tend to

be slow to execute on modern hardware optimized for par-

allel execution. Recently, a number of more parallelizable

sequence models were proposed and architectures such as

WaveNet (van den Oord et al., 2016), ByteNet (Kalchbren-

ner et al., 2016) and the Transformer (Vaswani et al., 2017)

can indeed be trained faster due to improved parallelism.

When actually generating sequential output, however, their

autoregressive nature still fundamentally prevents these

models from taking full advantage of parallel computation.

When generating a sequence y1 . . . yn in a canonical order,

say from left to right, predicting the symbol yt first requires

generating all symbols y1 . . . yt−1 as the model predicts

P (yt|yt−1 yt−2 . . . y1).

During training, the ground truth is known so the condition-

ing on previous symbols can be parallelized. But during

decoding, this is a fundamental limitation as at least n se-

quential steps need to be made to generate y1 . . . yn.

To overcome this limitation, we propose to introduce a se-

quence of discrete latent variables l1 . . . lm, with m < n,

that summarizes the relevant information from the sequence

y1 . . . yn. We will still generate l1 . . . lm autoregressively,

but it will be much faster as m < n (in our experiments we

mostly use m = n
8 ). Then, we reconstruct each position in

the sequence y1 . . . yn from l1 . . . lm in parallel.

For the above strategy to work, we need to autoencode the

target sequence y1 . . . yn into a shorter sequence l1 . . . lm.

Autoencoders have a long history in deep learning (Hinton

& Salakhutdinov, 2006; Salakhutdinov & Hinton, 2009a;

Vincent et al., 2010; Kingma & Welling, 2013). Autoen-

coders mostly operate on continuous representations, either

by imposing a bottleneck (Hinton & Salakhutdinov, 2006),

requiring them to remove added noise (Vincent et al., 2010),

or adding a variational component (Kingma & Welling,

2013). In our case though, we prefer the sequence l1 . . . lm
to be discrete, as we use standard autoregressive models to

predict it. Despite some success (Bowman et al., 2016; Yang

et al., 2017), predicting continuous latent representations

does not work as well as the discrete case in our setting.



Fast Decoding in Sequence Models Using Discrete Latent Variables

However, using discrete latent variables can be challenging

when training models end-to-end. Three techniques recently

have shown how to successfuly use discrete variables in deep

models: the Gumbel-Softmax (Jang et al., 2016; Maddison

et al., 2016), VQ-VAE (van den Oord et al., 2017) and

improved semantic hashing (Kaiser & Bengio, 2018). We

compare all these techniques in our setting and introduce

another one: decomposed vector quantization (DVQ) which

performs better than VQ-VAE for large latent alphabet sizes.

Using either DVQ or improved semantic hashing, we are

able to create a neural machine translation model that

achieves good BLEU scores on the standard benchmarks

while being an order of magnitude faster at decoding time

than autoregressive models. A recent paper (Gu et al., 2017)

reported similar gain for neural machine translation. But

their techniques are hand-tuned for translation and require

training with reinforcement learning. Our latent variables

are learned and the model is trained end-to-end, so it can

be applied to any sequence problem. Despite being more

generic, our model outperforms the hand-tuned technique

from (Gu et al., 2017) yielding better BLEU. To summarize,

our main contributions are:

(1) A method for fast decoding for autoregressive models.

(2) An improved discretization technique: the DVQ.

(3) The resulting Latent Transformer model, achieving

good results on translation while decoding much faster.

2. Discretization Techniques

In this section we introduce various discretization bottle-

necks used to train discrete autoencoders for the target se-

quence. We will use the notation from (van den Oord et al.,

2017) where the target sequence y is passed through an

encoder, enc, to produce a continuous latent representation

enc(y) ∈ RD, where D is the dimension of the latent space.

Let K be the size of the discrete latent space and let [K]
denote the set {1, 2, . . . ,K}. The continuous latent enc(y)
is subsequently passed through a discretization bottleneck

to produce a discrete latent representation zd (y) ∈ [K], and

an input zq(y) to be passed to the decoder dec. For integers

i,m we will use τm(i) to denote the binary representation

of i using m bits, with the inverse operation, i.e. conversion

from binary to decimal denoted by τ−1
m .

2.1. Gumbel-Softmax

A discretization technique that has recently received a lot

of interest is the Gumbel-Softmax trick proposed by (Jang

et al., 2016; Maddison et al., 2016). In this case one simply

projects the encoder output enc(y) using a learnable projec-

tion W ∈ RK×D to get the logits l = W enc(y) with the

discrete code zd (y) being defined as

zd (y) = arg max
i∈[K]

li. (1)

The decoder input zq(y) ∈ RD during evaluation and

inference is computed using an embedding e ∈ RK×D

where zq(y) = ej , where j = zd(y). For training,

the Gumbel-Softmax trick is used by generating samples

g1, g2, . . . , gK i.i.d samples from the Gumbel distribution:

gi ∼ − log (− log u), where u ∼ U(0, 1) are uniform sam-

ples. Then as in (Jang et al., 2016; Maddison et al., 2016),

one computes the log-softmax of l to get w ∈ RK :

wi =
exp((li + gi)/τ)

∑

i exp((li + gi)/τ)
, (2)

with the input to the decoder zq(y) being simply the matrix-

vector product we. Note that the Gumbel-Softmax trick

makes the model differentiable and thus it can be trained

using backpropagation.

For low temperature τ the vector w is close to the 1-hot

vector representing the maximum index of l, which is what

is used during evaluation and testing. But at higher tem-

peratures, it is an approximation (see Figure 1 in Jang et al.

(2016)).

2.2. Improved Semantic Hashing

Another discretization technique proposed by (Kaiser &

Bengio, 2018) that has been recently explored stems from

semantic hashing (Salakhutdinov & Hinton, 2009b). The

main idea behind this technique is to use a simple rounding

bottleneck after squashing the encoder state ze(y) using a

saturating sigmoid. Recall the saturating sigmoid function

from (Kaiser & Sutskever, 2016; Kaiser & Bengio, 2016):

σ′(x) = max(0,min(1, 1.2σ(x)− 0.1)). (3)

During training, a Gaussian noise η ∼ N (0, 1)D is added

to ze(y) which is then passed through a saturating sigmoid

to get the vector fe(y):

fe(y) = σ′(ze(y) + η). (4)

To compute the discrete latent representation, the binary

vector ge(y) is constructed via rounding, i.e.:

ge(y)i =

{

1 if fe(y)i > 0.5

0 otherwise,
(5)

with the discrete latent code zd (y) corresponding to

τ−1
logK(g(y)). The input to the decoder zq(y) ∈ RD is com-

puted using two embedding spaces e1, e2 ∈ RK×D, with

zq(y) = e1he(y)
+ e21−he(y)

, where the function he is ran-

domly chosen to be fe or ge half of the time during training,

while he is set equal to ge during inference.



Fast Decoding in Sequence Models Using Discrete Latent Variables

2.3. Vector Quantization

The Vector Quantized - Variational Autoencoder (VQ-VAE)

discretization bottleneck method was proposed in (van den

Oord et al., 2017). Note that vector quantization based

methods have a long history of being used successfully

in various Hidden Markov Model (HMM) based machine

learning models (see e.g., (Huang & Jack, 1989; Lee et al.,

1989)). In VQ-VAE, the encoder output enc(y) ∈ RD is

passed through a discretization bottleneck using a nearest-

neighbor lookup on embedding vectors e ∈ RK×D.

More specifically, the decoder input zq(y) is defined as

zq(y) = ek, k = arg min
j∈[K]

‖enc(y)− ej‖2 . (6)

The corresponding discrete latent zd (y) is then the index k
of the embedding vector closest to enc(y) in ℓ2 distance. Let

lr be the reconstruction loss of the decoder dec given zq(y),
(e.g., the cross entropy loss); then the model is trained to

minimize

L = lr + β ‖enc(y)− sg (zq(y))‖2 , (7)

where sg (.) is the stop gradient operator defined as follows:

sg (x) =

{

x forward pass

0 backward pass
(8)

We maintain an exponential moving average (EMA) over

the following two quantities: 1) the embeddings ej for ev-

ery j ∈ [K] and, 2) the count cj measuring the number

of encoder hidden states that have ej as it’s nearest neigh-

bor. The counts are updated over a mini-batch of targets

{y1, . . . yl, . . . } as:

cj ← λcj + (1− λ)
∑

l

1 [zq(yl) = ej ] , (9)

with the embedding ej being subsequently updated as:

ej ← λej + (1− λ)
∑

l

1 [zq(yl) = ej ] enc(yl)

cj
, (10)

where 1[.] is the indicator function and λ is a decay parame-

ter which we set to 0.999 in our experiments.

2.4. Decomposed Vector Quantization

When the size of the discrete latent space K is large, then

an issue with the approach of Section 2.3 is index collapse,

where only a few of the embedding vectors get trained due

to a rich getting richer phenomena. In particular, if an

embedding vector ej is close to a lot of encoder outputs

enc(y1), . . . , enc(yi), then it receives the strongest signal

to get even closer via the EMA update of Equations (9)

and (10). Thus only a few of the embedding vectors will

end up actually being used. To circumvent this issue, we

propose two variants of decomposing VQ-VAE that make

more efficient use of the embedding vectors for large values

of K.

2.4.1. SLICED VECTOR QUANTIZATION

The main idea behind this approach is to break up the en-

coder output enc(y) into nd smaller slices

enc1(y) ◦ enc2(y) · · · ◦ encnd(y), (11)

where each enci(y) is a D/nd dimensional vector and ◦
denotes the concatenation operation. Corresponding to each

enci(y) we have an embedding space ei ∈ RK′
×D/nd ,

where K ′ = 2(log2
K)/nd . Note that the reason for the

particular choice of K ′ is information theoretic: using an

embedding space of size K from Section 2.3 allows us to

express discrete codes of size log2 K. In the case when we

have nd different slices, we want the total expressible size

of the discrete code to be still log2 K and so K ′ is set to

2(log2
K)/nd . We now compute nearest neighbors for each

subspace as:

ziq(y) = eiki
, ki = arg min

j∈[K]

∥

∥enci(y)− eij
∥

∥

2
, (12)

with the decoder input being zq(y) = z1q (y) ◦ · · · ◦ z
nd

q (y).

The training objective L is the same as in Section 2.3,

with each embedding space ei trained individually via

EMA updates from enci(y) over a mini-batch of targets

{y1, . . . , yl, . . . }:

cij ← λcij + (1− λ)
∑

l

1
[

zq(yl) = eij
]

(13)

eij ← λeij + (1− λ)

∑

l 1
[

ziq(yl) = eij
]

enci(yl)

cij
, (14)

where 1[.] is the indicator function as before, and λ is the

decay parameter.

Then the discrete latent code zd (y) is now defined as

zd (y) = τ−1
log

2
K

(

τlog
2
K′(k1) ◦ · · · ◦ τlog

2
K′(knd

)
)

.

(15)

Observe that when nd = 1, the sliced Vector Quantization

reduces to the VQ-VAE of (van den Oord et al., 2017). On

the other hand, when nd = log2 K, sliced DVQ is equiva-

lent to improved semantic hashing of Section 2.2 loosely

speaking: the individual table size K ′ for each slice enci(y)
is 2, and it gets rounded to 0 or 1 depending on which

embedding is closer. However, the rounding bottleneck in

semantic hashing of Section 2.2 proceeds via a saturating

sigmoid and thus strictly speaking, the two techniques are

different.



Fast Decoding in Sequence Models Using Discrete Latent Variables

Note that similar decomposition approaches to vector quan-

tization in the context of HMMs have been studied in the

past under the name multiple code-books, see for instance

(Huang et al., 1989; Rogina & Waibel, 1994; Peinado et al.,

1996). The approach of sliced Vector Quantization has also

been studied more recently in the context of clustering, un-

der the name of Product or Cartesian Quantization in (Jegou

et al., 2011; Norouzi & Fleet, 2013). A more recent work

(Shu & Nakayama, 2018) explores a similar quantization

approach coupled with the Gumbel-Softmax trick to learn

compressed word embeddings (see also (Lam, 2018)).

2.4.2. PROJECTED VECTOR QUANTIZATION

Another natural way to decompose Vector Quantization is

to use a set of fixed randomly initialized projections

{

πi ∈ RD×D/nd | i ∈ [nd]
}

(16)

to project the encoder output enc(y) into a RD/nd-

dimensional subspace. For enci(y) = πi(y) ∈ RD/nd

we have an embedding space ei ∈ RK′
×D/nd , where

K ′ = 2(log2
K)/nd as before. The training objective, em-

beddings update, the input zq(y) to the decoder, and the

discrete latent representation zd (y) is computed exactly as

in Section 2.4.1. Note that when nd = 1, projected Vec-

tor Quantization reduces to the VQ-VAE of (van den Oord

et al., 2017) with an extra encoder layer corresponding to

the projections πi. Similarly, when nd = log2 K, projected

DVQ is equivalent to improved semantic hashing of Sec-

tion 2.2 with the same analogy as in Section 2.4.1, except

the encoder now has an extra layer. The VQ-VAE paper

(van den Oord et al., 2017) also use multiple latents in the

experiments reported on CIFAR-10 and in Figure 5, using

an approach similar to what we call projected DVQ.

3. Latent Transformer

Using the discretization techniques from Section 2 we can

now introduce the Latent Transformer (LT) model. Given

an input-output pair (x, y) = (x1, . . . xk, y1, . . . yn) the LT

will make use of the following components.

• The function ae(y, x) will autoencode y into a shorter

sequence l = l1, . . . , lm of discrete latent variables

using the discretization bottleneck from Section 2.

• The latent prediction model lp(x) (a Transformer) will

autoregressively predict l based on x.

• The decoder ad(l, x) is a parallel model that will de-

code y from l and the input sequence x.

The functions ae(y, x) and ad(l, x) together form an autoen-

coder of the targets y that has additional access to the input

x l1 l2 . . . lm

y1 y2 . . . yn

Figure 1. Dependence structure of the Latent Transformer in the

form of a graphical model. We merged all inputs x1 . . . xk into a

single node for easier visibility and we draw an arrow from node a

to b if the probability of a depends on the generated b.

sequence x. For the autoregressive latent prediction we use

a Transformer (Vaswani et al., 2017), a model based on

multiple self-attention layers that was originally introduced

in the context of neural machine translation. In this work

we focused on the autoencoding functions and did not tune

the Transformer: we used all the defaults from the baseline

provided by the Transformer authors (6 layers, hidden size

of 512 and filter size of 4096) and only varied parameters

relevant to ae and ad, which we describe below. The three

components above give rise to two losses:

• The autoencoder reconstruction loss lr coming from

comparing ad(ae(y, x), x) to y.

• The latent prediction loss llp that comes from compar-

ing l = ae(y, x) to the generated lp(x).

We train the LT model by minimizing lr + llp. Note that

the final outputs y are generated only depending on the

latents l but not on each other, as depicted in Figure 1. In an

autoregressive model, each yi would have a dependence on

all previous yj , j < i, as is the case for ls in Figure 1.

The function ae(y, x). The autoencoding function

ae(y, x) we use is a stack of residual convolutions fol-

lowed by an attention layer attending to x and a stack of

strided convolutions. We first apply to y a 3-layer block of

1-dimensional convolutions with kernel size 3 and padding

with 0s on both sides (SAME-padding). We use ReLU non-

linearities between the layers and layer-normalization (Ba

et al., 2016). Then, we add the input to the result, forming a

residual block. Next we have an encoder-decoder attention

layer with dot-product attention, same as in (Vaswani et al.,

2017), with a residual connection. Finally, we process the

result with a convolution with kernel size 2 and stride 2,

effectively halving the size of s. We do this strided pro-

cessing c times so as to decrease the length C = 2c times



Fast Decoding in Sequence Models Using Discrete Latent Variables

(later C = n
m ). The result is put through the discretization

bottleneck of Section 2. The final compression function is

given by ae(y, x) = zq(y) and the architecture described

above is depicted in Figure 2.

residual block

length×hidden size

relu

convk=3

s=1
×3

layer-norm

+

length×hidden size

ae(y, x)

length×hidden size

residual block

attend(x)

convk=2

s=2
×c

bottleneck

length/C×hidden size

Figure 2. Architecture of ae(y, x). We write convk=a

s=b to denote

a 1D convolution layer with kernel size a and stride b.

The function ad(l, x). To decode from the latent se-

quence l = ae(y, x), we use the function ad(l, x). It con-

sists of c steps that include up-convolutions that double the

length, so effectively it increases the length 2c = C = n
m

times. Each step starts with the residual block, followed by

an encoder-decoder attention to x (both as in the ae function

above). Then it applies an up-convolution, which in our case

is a feed-forward layer (equivalently a kernel-1 convolution)

that doubles the internal dimension, followed by a reshape

to twice the length. The result after the c steps is then passed

to a self-attention decoder, same as in the Tranformer model

(Vaswani et al., 2017).

Note that at the beginning of training (for the first 10K

steps), we give the true targets y to the transformer-decoder

here, instead of the decompressed latents l. This pre-training

ensures that the self-attention part has reasonable gradients

that are then back-propagated to the convolution stack and

single up-step

length/2×hidden size

residual block

attend(x)

up-conv

length×hidden size

ad(y, x)

length/C×hidden size

single up-step ×c

transf.decoder

length×hidden size

Figure 3. Architecture of ad(l, x). We write upconv to denote a

1D up-convolution layer.

then back to the ae function and the discretization bottleneck

of Section 2.

4. Related Work

Neural Machine Translation. Machine translation using

deep neural networks achieved great success with sequence-

to-sequence models (Sutskever et al., 2014; Bahdanau et al.,

2014; Cho et al., 2014) that used recurrent neural net-

works (RNNs) with LSTM cells (Hochreiter & Schmid-

huber, 1997). The basic sequence-to-sequence architecture

is composed of an RNN encoder which reads the source

sentence one token at a time and transforms it into a fixed-

sized state vector. This is followed by an RNN decoder,

which generates the target sentence, one token at a time,

from the state vector. While a pure sequence-to-sequence

recurrent neural network can already obtain good translation

results (Sutskever et al., 2014; Cho et al., 2014), it suffers

from the fact that the whole input sentence needs to be en-

coded into a single fixed-size vector. This clearly manifests

itself in the degradation of translation quality on longer

sentences and was overcome in (Bahdanau et al., 2014) by

using a neural model of attention. Convolutional architec-

tures have been used to obtain good results in word-level

neural machine translation starting from (Kalchbrenner &

Blunsom, 2013) and later in (Meng et al., 2015). These

early models used a standard RNN on top of the convolution

to generate the output, which creates a bottleneck and hurts

performance. Fully convolutional neural machine transla-

tion without this bottleneck was first achieved in (Kaiser &

Bengio, 2016) and (Kalchbrenner et al., 2016). The model

in (Kaiser & Bengio, 2016) (Extended Neural GPU) used

a recurrent stack of gated convolutional layers, while the

model in (Kalchbrenner et al., 2016) (ByteNet) did away

with recursion and used left-padded convolutions in the de-

coder. This idea, introduced in WaveNet (van den Oord

et al., 2016), significantly improves efficiency of the model.

The same technique was improved in a number of neural

translation models recently, including (Gehring et al., 2017)

and (Kaiser et al., 2017). Instead of convolutions, one can

use stacked self-attention layers. This was introduced in

the Transformer model (Vaswani et al., 2017) and has sig-

nificantly improved state-of-the-art in machine translation

while also improving the speed of training. Thus, we use

the Transformer model as a baseline in this work.

Autoencoders and discretization bottlenecks. Varia-

tional autoencoders were first introduced in (Kingma &

Welling, 2013; Rezende et al., 2014), however training them

for discrete latent variable models has been challenging. The

NVIL estimator of (Mnih & Gregor, 2014) proposes using

a single sample objective to optimize the variational lower

bound, while VIMCO (Mnih & Rezende, 2016) proposes us-

ing a muliti-sample objective of (Burda et al., 2015) which



Fast Decoding in Sequence Models Using Discrete Latent Variables

further speeds up convergence by using multiple samples

from the inference network. There have also been several

discretization bottlenecks proposed recently that have been

used successfully in various learning tasks, see Section 2 for

a more detailed description of the techniques directly rele-

vant to this work. Other recent works with similar approach

to autoencoding include (Subakan et al., 2018).

Non-autoregressive Neural Machine Translation.

Much of the recent state of the art models in Neural

Machine Translation are auto-regressive, meaning that the

model consumes previously generated tokens to predict

the next one. A recent work that attempts to speed up

decoding by training a non-autotregressive model is (Gu

et al., 2017). The approach of (Gu et al., 2017) is to use the

self-attention Transformer model of (Vaswani et al., 2017),

together with the REINFORCE algorithm (Williams, 1992)

to model the fertilities of words to tackle the multi-modality

problem in translation. However, the main drawback of this

work is the need for extensive fine-tuning to make policy

gradients work for REINFORCE, as well as the issue that

this approach only works for machine translation and is not

generic, so it cannot be directly applied to other sequence

learning tasks.

Graphical models. The core of our approach to fast de-

coding consists of finding a sequence l of latent variables

such that we can predict the output sequence y in parallel

from l and the input x. In other words, we assume that each

token yi is conditionally independent of all other tokens yj
(j 6= i) given l and x: yi ⊥⊥ yj | l, x. Our autoencoder is

thus learning to create a one-layer graphical model with m
variables (l1 . . . lm) that can then be used to predict y1 . . . yn
independently of each other.

5. Experiments

We train the Latent Transformer with the base configuration

to make it comparable to both the autoregressive baseline

(Vaswani et al., 2017) and to the recent non-autoregressive

NMT results (Gu et al., 2017). We used around 33K sub-

word units as vocabulary and implemented our model in Ten-

sorFlow (Abadi et al., 2015). Our implementation, together

with hyper-parameters and everything needed to reproduce

our results is available as open-source1.

For non-autoregressive models, it is beneficial to generate a

number of possible translations and re-score them with an

autoregressive model. This can be done in parallel, so it is

still fast, and it improves performance. This is called noisy

parallel decoding in (Gu et al., 2017) and we include results

both with and without it. The best BLEU scores obtained by

different methods are summarized in Table 1. As you can

1The code is available under redacted.

Model BLEU

Baseline Transformer [1] 27.3

Baseline Transformer [2] 23.5

Baseline Transformer [2] (no beam-search) 22.7

NAT+FT (no NPD) [2] 17.7

LT without rescoring
(

n
m = 8

)

19.8

NAT+FT (NPD rescoring 10) [2] 18.7

LT rescornig top-10
(

n
m = 8

)

21.0

NAT+FT (NPD rescoring 100) [2] 19.2

LT rescornig top-100
(

n
m = 8

)

22.5

Table 1. BLEU scores (the higher the better) on the WMT English-

German translation task on the newstest2014 test set. The

acronym NAT corresponds to the Non-Autoregressive Transformer,

while FT denotes an additional Fertility Training and NPD denotes

Nosiy Parallel Decoding, all of them from (Gu et al., 2017). The

acronym LT denotes the Latent Transformer from Section 3. Re-

sults reported for LT are from this work, the others are from (Gu

et al., 2017) [2] except for the first baseline Transformer result

which is from (Vaswani et al., 2017) [1].

see, our method with re-scoring almost matches the baseline

autoregressive model without beam search.

To get a better understanding of the non-autoregressive mod-

els, we focus on performance without rescoring and in-

vestigate different variants of the Latent Transformer. We

include different discretization bottlenecks, and report the

final BLEU scores together with decoding speeds in Table 2.

The LT is slower in non-batch mode than the simple NAT

baseline of (Gu et al., 2017), which might be caused by sys-

tem differences (our code is in TensorFlow and has not been

optimized, while their implementation is in Torch). Latency

at higher batch-size is much smaller, showing that the speed

of the LT can still be significantly improved with batching.

The choice of the discretization bottleneck seems to have a

small impact on speed and both DVQ and improved seman-

tic hashing yield good BLEU scores, while VQ-VAE fails

in this context (see below for a discussion).

6. Discussion

Since the discretization bottleneck is critical to obtaining

good results for fast decoding of sequence models, we fo-

cused on looking into it, especially in conjunction with the

size K of the latent vocabulary, the dimension D of the la-

tent space, and the number of decompositions nd for DVQ.

An issue with the VQ-VAE of (van den Oord et al., 2017)

that motivated the introduction of DVQ in Section 2.3 is

index collapse, where only a few embeddings are used and

subsequently trained. This can be visualized in the his-

togram of Figure 4, where the x-axis corresponds to the pos-

sible values of the discrete latents (in this case {1, . . . ,K}),
and the y-axis corresponds to the training progression of

redacted


Fast Decoding in Sequence Models Using Discrete Latent Variables

Model BLEU Latency

b = 1 b = 64
Baseline (no beam-search) 22.7 408 ms -

NAT 17.7 39 ms -

NAT+NPD=10 18.7 79 ms -

NAT+NPD=100 19.2 257 ms -

LT, Improved Semhash 19.8 105 ms 8 ms

LT, VQ-VAE 2.78 148 ms 7 ms

LT, s-DVQ 19.7 177 ms 7 ms

LT, p-DVQ 19.8 182 ms 8 ms

Table 2. BLEU scores and decode times on the WMT English-

German translation task on the newstest2014 test set for dif-

ferent variants of the LT with n

m
= 8 and D = 512 and nd = 2

with s-DVQ and p-DVQ representing sliced and projected DVQ

respectively. The LT model using improved semantic hashing from

Section 2.2 uses log
2
K = 14, while the one using VQ-VAE and

DVQ from Sections 2.3 and 2.4 uses log
2
K = 16. For compar-

ison, we include the baselines from (Gu et al., 2017). We report

the time to decode per sentence averaged over the whole test set as

in (Gu et al., 2017); decoding is implemented in Tensorflow on a

Nvidia GeForce GTX 1080. The batch size used during decoding

is denoted by b and we report both b = 1 and b = 64.

the model (time steps increase in a downward direction).

On the other hand, using the DVQ from Section 2.4.1 with

nd = 2 leads to a much more balanced use of the available

discrete latent space, as can be seen from Figure 5. We

also report the percentage of available latent code-words

used for different settings of nd in Table 3; the usage of the

code-words is maximized for nd = 2.

The other variables for DVQ are the choice of the decom-

position, and the number nd of decompositions. For the

projected DVQ, we use fixed projections πi’s initialized us-

ing the Glorot initializer (Glorot & Bengio, 2010). We also

found that the optimal number of decompositions for our

choice of latent vocabulary size log2 K = 14 and 16 was

nd = 2, with nd = 1 (i.e., regular VQ-VAE) performing

noticeably worse (see Table 2 and Figure 4). Setting higher

values of nd led to a decline in performance, possibly be-

cause the expressive power (log2 K
′) was reduced for each

decomposition, and the model also ended up using fewer

latents (see Table 3).

Another important point about LT is that it allows making

different trade-offs by tuning the n
m fraction of the length

of the original output sequence to the length of the latent

sequence. As n
m increases, so does the parallelism and

decoding speed, but the latents need to encode more and

more information to be able to decode the outputs in parallel.

To study this tradeoff, we measure the reconstruction loss

(the perplexity of the reconstructed y vs the original) for

different n
m and varying the number of bits in the latent

variables. The results, presented in Table 4, show clearly

Figure 4. Histogram of discrete latent usage for VQ-VAE from

(van den Oord et al., 2017), or equivalently sliced DVQ with

nd = 1 and log
2
K = 14. The x-axis corresponds to the dif-

ferent possible discrete latents, while the y-axis corresponds to

the progression of training steps (time increases in a downwards

direction). Notice index collapse in the vanilla VQ-VAE where

only a few latents ever get used.

Figure 5. Histogram of discrete latent usage for sliced DVQ with

nd = 2 and log
2
K = 14. The x-axis corresponds to the dif-

ferent possible discrete latents, while the y-axis corresponds to

the progression of training steps (time increases in a downwards

direction). Notice the diversity of latents used in this case.

that reconstruction get better, as expected, if the latent state

has more bits or is used to compress less subword units.

7. Conclusions

Autoregressive sequence models based on deep neural net-

works were made successful due to their applications in

machine translation (Sutskever et al., 2014) and have since

yielded state-of-the-art results on a number of tasks. With

models like WaveNet and Transformer, it is possible to train

them fast in a parallel way, which opened the way to ap-

plications to longer sequences, such as WaveNet for sound

generation (van den Oord et al., 2016) or Transformer for

long text summarization (Liu et al., 2018) and image gener-

ation (Vaswani et al., 2018). The key problem appearing in

these new applications is the slowness of decoding: it is not

practical to wait for minutes to generate a single example.

In this work, while still focusing on the original problem

of machine translation, we lay the groundwork for fast de-

coding for sequence models in general. While the latent

transformer does not yet recover the full performance of

the autoregressive model, it is already an order of magni-



Fast Decoding in Sequence Models Using Discrete Latent Variables

nd Percentage of latents used

1 5%
2 74.5%
4 15.6%
8 31.2%

Table 3. Percentage of latent codewords used by the Decomposed

Vector Quantization (DVQ) of Section 2.4.1 for log
2
K = 16

and D = 512 after 500, 000 steps. Note that when nd = 1,

i.e. for vanilla VQ-VAE, only 5% of the available 216 discrete

latents (roughly 3000) are used. The latent usage is maximized for

nd = 2.

n
m log2 K = 8 log2 K = 14
2 1.33 0.64

4 2.04 1.26

8 2.44 1.77

Table 4. Log-perplexities of autoencoder reconstructions on the

development set (newstest2013) for different values of n

m
and

numbers of bits in latent variables (LT trained for 250K steps).

tude faster and performs better than a heavily hand-tuned,

task-specific non-autoregressive model.

In the future, we plan to improve both the speed and the

accuracy of the latent transformer. A simple way to improve

speed that we did not yet try is to use the methods from

this work in a hierarchical way. As illustrated in Figure 1,

the latents are still generated autoregressively which takes

most of the time for longer sentences. In the future, we

will apply the LT model to generate the latents in a hierar-

chical manner, which should result in further speedup. To

improve the BLEU scores, on the other hand, we intend to

investigate methods related to Gibbs sampling or even make

the model partially autoregressive. For example, one could

generate only the odd-indexed outputs, y1y3y5 . . . , based

on the latent symbols l, and then generate the even-indexed

ones based on both the latents and the odd-indexed outputs.

We believe that including such techniques has the potential

to remove the gap between fast-decoding models and purely

autoregressive ones and will lead to many new applications.

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen,

Z., Citro, C., Corrado, G., Davis, A., Dean, J., Devin,

M., Ghemawat, S., Goodfellow, I., Harp, A., Irv-

ing, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser,

L., Kudlur, M., Levenberg, J., Mané, D., Monga,

R., Moore, S., Murray, D., Olah, C., Schuster, M.,

Shlens, J., Steiner, B., Sutskever, I., Talwar, K.,

Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F.,

Vinyals, O., Warden, P., Wattenberg, M., Wicke, M.,

Yu, Y., and Zheng, X. Tensorflow: Large-scale ma-

chine learning on heterogeneous distributed systems,

2015. URL http://download.tensorflow.

org/paper/whitepaper2015.pdf.

Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normalization.

arXiv preprint arXiv:1607.06450, 2016. URL http:

//arxiv.org/abs/1607.06450.

Bahdanau, D., Cho, K., and Bengio, Y. Neural machine

translation by jointly learning to align and translate.

CoRR, abs/1409.0473, 2014. URL http://arxiv.

org/abs/1409.0473.

Bowman, S. R., Vilnis, L., Vinyals, O., Dai, A. M.,

Józefowicz, R., and Bengio, S. Generating sentences from

a continuous space. In Proceedings of the SIGNLL’16,

pp. 10–21, 2016. URL https://arxiv.org/abs/

1511.06349.

Burda, Y., Grosse, R., and Salakhutdinov, R. Importance

weighted autoencoders. CoRR, abs/1509.00519, 2015.

URL http://arxiv.org/abs/1509.00519.

Cho, K., van Merrienboer, B., Gulcehre, C., Bougares, F.,

Schwenk, H., and Bengio, Y. Learning phrase represen-

tations using RNN encoder-decoder for statistical ma-

chine translation. CoRR, abs/1406.1078, 2014. URL

http://arxiv.org/abs/1406.1078.

Gehring, J., Auli, M., Grangier, D., Yarats, D., and Dauphin,

Y. N. Convolutional sequence to sequence learning.

CoRR, abs/1705.03122, 2017. URL http://arxiv.

org/abs/1705.03122.

Glorot, X. and Bengio, Y. Understanding the difficulty

of training deep feedforward neural networks. In Pro-

ceedings of the Thirteenth International Conference on

Artificial Intelligence and Statistics, pp. 249–256, 2010.

Gu, J., Bradbury, J., Xiong, C., Li, V. O., and Socher, R.

Non-autoregressive neural machine translation. CoRR,

abs/1711.02281, 2017. URL http://arxiv.org/

abs/1711.02281.

Hinton, G. E. and Salakhutdinov, R. Reducing the dimen-

sionality of data with neural networks. Science, 313

(5786):504–507, 2006.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.

Neural computation, 9(8):1735–1780, 1997.

Huang, X. and Jack, M. Unified techniques for vector

quantization and hidden markov modeling using semi-

continuous models. In Acoustics, Speech, and Signal

Processing, 1989. ICASSP-89., 1989 International Con-

ference on, pp. 639–642. IEEE, 1989.

http://download.tensorflow.org/paper/whitepaper2015.pdf
http://download.tensorflow.org/paper/whitepaper2015.pdf
http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1511.06349
https://arxiv.org/abs/1511.06349
http://arxiv.org/abs/1509.00519
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1705.03122
http://arxiv.org/abs/1705.03122
http://arxiv.org/abs/1711.02281
http://arxiv.org/abs/1711.02281


Fast Decoding in Sequence Models Using Discrete Latent Variables

Huang, X., Hon, H.-W., and Lee, K.-F. Multiple code-

book semi-continuous hidden markov models for speaker-

independent continuous speech recognition. 1989.

Jang, E., Gu, S., and Poole, B. Categorical reparameteriza-

tion with gumbel-softmax. CoRR, abs/1611.01144, 2016.

URL http://arxiv.org/abs/1611.01144.

Jegou, H., Douze, M., and Schmid, C. Product quantization

for nearest neighbor search. IEEE transactions on pattern

analysis and machine intelligence, 33(1):117–128, 2011.

Kaiser, Ł. and Bengio, S. Can active memory replace

attention? In Advances in Neural Information Pro-

cessing Systems, pp. 3781–3789, 2016. URL https:

//arxiv.org/abs/1610.08613.

Kaiser, L. and Bengio, S. Discrete autoencoders for se-

quence models. CoRR, abs/1801.09797, 2018. URL

http://arxiv.org/abs/1801.09797.

Kaiser, L. and Sutskever, I. Neural GPUs learn algorithms.

In International Conference on Learning Representa-

tions (ICLR), 2016. URL https://arxiv.org/

abs/1511.08228.

Kaiser, L., Gomez, A. N., and Chollet, F. Depthwise separa-

ble convolutions for neural machine translation. CoRR,

abs/1706.03059, 2017. URL http://arxiv.org/

abs/1706.03059.

Kalchbrenner, N. and Blunsom, P. Recurrent continuous

translation models. In Proceedings EMNLP 2013, pp.

1700–1709, 2013. URL http://www.aclweb.org/

anthology/D13-1176.

Kalchbrenner, N., Espeholt, L., Simonyan, K., van den Oord,

A., Graves, A., and Kavukcuoglu, K. Neural machine

translation in linear time. CoRR, abs/1610.10099, 2016.

URL http://arxiv.org/abs/1610.10099.

Kingma, D. P. and Welling, M. Auto-encoding variational

bayes. CoRR, abs/1312.6114, 2013. URL http://

arxiv.org/abs/1312.6114.

Lam, M. Word2Bits – quantized word vectors. CoRR,

abs/1803.05651, 2018. URL http://arxiv.org/

abs/1803.05651.

Lee, K.-F., Hon, H.-W., Hwang, M.-Y., Mahajan, S., and

Reddy, R. The sphinx speech recognition system. In

Acoustics, Speech, and Signal Processing, 1989. ICASSP-

89., 1989 International Conference on, pp. 445–448.

IEEE, 1989.

Liu, P. J., Saleh, M., Pot, E., Goodrich, B., Sepassi, R.,

Kaiser, L., and Shazeer, N. Generating wikipedia by sum-

marizing long sequences. CoRR, abs/1801.10198, 2018.

URL http://arxiv.org/abs/1801.10198.

Maddison, C. J., Mnih, A., and Teh, Y. W. The concrete

distribution: A continuous relaxation of discrete random

variables. CoRR, abs/1611.00712, 2016. URL http:

//arxiv.org/abs/1611.00712.

Meng, F., Lu, Z., Wang, M., Li, H., Jiang, W., and Liu,

Q. Encoding source language with convolutional neural

network for machine translation. In ACL, pp. 20–30, 2015.

URL https://arxiv.org/abs/1503.01838.

Mnih, A. and Gregor, K. Neural variational inference and

learning in belief networks. CoRR, abs/1402.0030, 2014.

URL http://arxiv.org/abs/1402.0030.

Mnih, A. and Rezende, D. Variational inference for monte

carlo objectives. In International Conference on Machine

Learning, pp. 2188–2196, 2016.

Norouzi, M. and Fleet, D. J. Cartesian k-means. In Com-

puter Vision and Pattern Recognition (CVPR), 2013 IEEE

Conference on, pp. 3017–3024. IEEE, 2013.

Peinado, A. M., Segura, J. C., Rubio, A. J., Garcia, P., and

Pérez, J. L. Discriminative codebook design using multi-

ple vector quantization in hmm-based speech recognizers.

IEEE transactions on speech and audio processing, 4(2):

89–95, 1996.

Rezende, D. J., Mohamed, S., and Wierstra, D. Stochas-

tic backpropagation and approximate inference in deep

generative models. CoRR, abs/1401.4082, 2014. URL

http://arxiv.org/abs/1401.4082.

Rogina, I. and Waibel, A. Learning state-dependent stream

weights for multi-codebook hmm speech recognition sys-

tems. In Acoustics, Speech, and Signal Processing, 1994.

ICASSP-94., 1994 IEEE International Conference on,

volume 1, pp. I–217. IEEE, 1994.

Salakhutdinov, R. and Hinton, G. E. Deep Boltzmann ma-

chines. In Proceedings of AISTATS’09, pp. 448–455,

2009a.

Salakhutdinov, R. and Hinton, G. E. Semantic hashing. Int.

J. Approx. Reasoning, 50(7):969–978, 2009b.

Shu, R. and Nakayama, H. Compressing word embed-

dings via deep compositional code learning. In In-

ternational Conference on Learning Representations,

2018. URL https://openreview.net/forum?

id=BJRZzFlRb.

Subakan, C., Koyejo, O., and Smaragdis, P. Learning the

base distribution in implicit generative models. CoRR,

abs/1803.04357, 2018. URL http://arxiv.org/

abs/1803.04357.

http://arxiv.org/abs/1611.01144
https://arxiv.org/abs/1610.08613
https://arxiv.org/abs/1610.08613
http://arxiv.org/abs/1801.09797
https://arxiv.org/abs/1511.08228
https://arxiv.org/abs/1511.08228
http://arxiv.org/abs/1706.03059
http://arxiv.org/abs/1706.03059
http://www.aclweb.org/anthology/D13-1176
http://www.aclweb.org/anthology/D13-1176
http://arxiv.org/abs/1610.10099
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1803.05651
http://arxiv.org/abs/1803.05651
http://arxiv.org/abs/1801.10198
http://arxiv.org/abs/1611.00712
http://arxiv.org/abs/1611.00712
https://arxiv.org/abs/1503.01838
http://arxiv.org/abs/1402.0030
http://arxiv.org/abs/1401.4082
https://openreview.net/forum?id=BJRZzFlRb
https://openreview.net/forum?id=BJRZzFlRb
http://arxiv.org/abs/1803.04357
http://arxiv.org/abs/1803.04357


Fast Decoding in Sequence Models Using Discrete Latent Variables

Sutskever, I., Vinyals, O., and Le, Q. V. Sequence to

sequence learning with neural networks. In Advances

in Neural Information Processing Systems, pp. 3104–

3112, 2014. URL http://arxiv.org/abs/1409.

3215.

van den Oord, A., Dieleman, S., Zen, H., Simonyan, K.,

Vinyals, O., Graves, A., Kalchbrenner, N., Senior, A.,

and Kavukcuoglu, K. WaveNet: A generative model for

raw audio. CoRR, abs/1609.03499, 2016. URL http:

//arxiv.org/abs/1609.03499.

van den Oord, A., Vinyals, O., and Kavukcuoglu,

K. Neural discrete representation learning. CoRR,

abs/1711.00937, 2017. URL http://arxiv.org/

abs/1711.00937.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,

L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention

is all you need. CoRR, 2017. URL http://arxiv.

org/abs/1706.03762.

Vaswani, A., Parmar, N., Uszkoreit, J., Shazeer, N., and

Kaiser, L. Image transformer, 2018. URL https://

openreview.net/forum?id=r16Vyf-0-.

Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., and Man-

zagol, P. Stacked denoising autoencoders: Learning use-

ful representations in a deep network with a local denois-

ing criterion. Journal of Machine Learning Research, 11:

3371–3408, 2010.

Vinyals, Kaiser, Koo, Petrov, Sutskever, and Hinton. Gram-

mar as a foreign language. In Advances in Neural

Information Processing Systems, 2015. URL http:

//arxiv.org/abs/1412.7449.

Williams, R. J. Simple statistical gradient-following al-

gorithms for connectionist reinforcement learning. In

Reinforcement Learning, pp. 5–32. Springer, 1992.

Yang, Z., Hu, Z., Salakhutdinov, R., and Berg-Kirkpatrick,

T. Improved variational autoencoders for text modeling

using dilated convolutions. In Proceedings of ICML’17,

pp. 3881–3890, 2017.

http://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1609.03499
http://arxiv.org/abs/1609.03499
http://arxiv.org/abs/1711.00937
http://arxiv.org/abs/1711.00937
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://openreview.net/forum?id=r16Vyf-0-
https://openreview.net/forum?id=r16Vyf-0-
http://arxiv.org/abs/1412.7449
http://arxiv.org/abs/1412.7449

