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Fast Decomposition of Large Nonnegative

Tensors

Jeremy Cohen*, Rodrigo Cabral Farias, Pierre Comon, Fellow, IEEE

Abstract

In Signal processing, tensor decompositions have gained in popularity this last decade. In the meantime, the

volume of data to be processed has drastically increased. This calls for novel methods to handle Big Data tensors.

Since most of these huge data are issued from physical measurements, which are intrinsically real nonnegative, being

able to compress nonnegative tensors has become mandatory. Following recent works on HOSVD compression for

Big Data, we detail solutions to decompose a nonnegative tensor into decomposable terms in a compressed domain.
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Fast Decomposition of Large Nonnegative

Tensors

I. INTRODUCTION

In the era of Big Data, the ability to handle huge data sets has become a key challenge. This fact hits the tensor

decomposition domain as much as any other field, as proven by recent papers on the subject [1]–[3]. However, in the

case where tensors solely contain nonnegative data, little has been made to improve computational speed by using

compression. Still, tensor major applications like fluorescence spectroscopy or image processing (e.g. hyperspectral)

do induce such positiveness.

In this letter, the focus will be on decomposing tensors into a sum of rank-1 terms. Since [4], such a decomposition

is referred to as CP, which now smartly stands either for “Canonical Polyadic” or for “Candecomp/Parafac” [5].

More precisely, our concern will be to find a compressed version of the nonnegative CP decomposition. The well-

known HOSVD will be used as an unconstrained compression method, as was suggested in R. Bro’s thesis [6, p. 92]

before the concept was formally stated in [7]. After unconstrained compression, we will perform a constrained CP

decomposition. To our knowledge, no constructive algorithm has been proposed to date, even though the concept

had already been evoked in Bro’s thesis [6, p. 149-150] but considered as being too difficult to implement. A

constrained compression algorithm has been developed in [3], but the compression in this case is based on the

low rank approximation of a positive matrix and this hypothesis is already used in all CP algorithms. The latter

algorithm also extends to Tucker3, but is not well designed for CP as it would require a full unconstrained CP as

a first step [8]. On the other hand, the solution provided in this letter is specifically designed for CP.

Our approach reduces drastically the dimensions of the problem, in a similar fashion as the recent proposition of

random compression [9]. The use of the HOSVD however enables a straightforward formulation of the problem,

and we make use of the unitary structure of the transformation matrices to ease a fast compression-decompression

scheme.

The letter is organized as follows. First, we formalize the problem and derive an objective function and constraints.

In the second part, some algorithms are detailed and their convergence is discussed. In the last section, we show

the efficiency and gain in computation speed on synthetic data.

II. PROBLEM STATEMENT

Our first contribution is to provide a clear theoretical support to the nonnegative compression scheme. We consider

3-way tensors, but the generalization to n-way tensors is straightforward. Let T be a K × L × M nonnegative

tensor. The main idea is to work on a smaller tensor G, which contains almost the same information as the original

tensor. Because G is meant much smaller than T , performing a CP on G will of course be a way to speed up
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the global tensor decomposition. However, positiveness constraints apply to T and this must be considered when

writing out the optimization problem.

A. HOSVD compression

The compression of T into G can be performed by applying the following unconstrained approximate HOSVD:

T ≈ (U,V,W)G =

t

R1R2R3
∑

pqr

UkpVℓqWmrGpqr

|

kℓm

, (1)

where U, V and W are unitary matrices with a truncated number of columns R1, R2 and R3 to reduce the size

of G, as recommended in [7], [10]. A naive attempt would be to impose the positiveness of the unitary matrices,

but nonnegative unitary matrices mainly reduce to scaled permutations, which are useless in the present context.

Moreover, truncating the HOSVD is a well founded operation, for which algorithms are available. Since HOSVD

is implemented in practice through SVD of the unfolded data, the algorithm that carries out the SVD computation

must be efficient for very large data sets. Therefore, we suggest to resort to randomly initialized Lanczos algorithms

[11].

In this approach, compression parameters Ri are chosen to be as small as possible, such that no (or little)

information is lost. Observe that compression does not only allow to speed up the algorithm but also allows

denoising.

B. Compressed Nonnegative CP

We consider the freely compressed core tensor G as an input of a CP decomposition:

G = (Ac,Bc,Cc)Λ, (2)

where Ac, Bc and Cc are called “compressed factor matrices”, and Λ is a cubical diagonal tensor of dimension R;

R is called the tensor rank of G, which approximately equals that of T , up to discarded information supposably

due to noise [10]. This parameter R can be either inferred from physical modeling or it can be seen as another

compression parameter.

From (1) and (2), it is clear that the full decomposition of T is:

T ≈ (UAc,VBc,WCc)Λ, (3)

so that the positiveness of T imposes that the matrices below have nonnegative entries:

UAc � 0, VBc � 0, WCc � 0,

where � means element-wise inequality. Decomposition (3) is a compressed version of the usual (uncompressed)

CP decomposition:

T ≈ (A,B,C)Λ, (4)
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where factors A, B, C are constrained to be nonnegative. This leads to the following non-convex objective function:

minimize Υ = ‖G − (Ac,Bc,Cc)Λ‖22 ,
w.r.t. Ac,Bc,Cc,Λ

subject to UAc � 0, VBc � 0, WCc � 0.

(5)

The tricky question of existence of a best rank-R approximate is solved in our case:

Proposition 1: The infimum of the objective Υ in (5) is always reached.

Proof: First, the best low multilinear rank approximation always exists as it is computed from low-rank matrix

approximations [7]. Then the rest of the proof goes along the same lines as in [12]. In fact, on one hand the

objective also writes ‖T − (UAc,VBc,WCc)Λ‖22 because the L2 norm is invariant with respect to semi-unitary

matrices, and matrices UAc, VBc and WCc still belong to closed bounded subsets since columns of Ac, Bc and

Cc are normalized. And on the other hand the objective (5) is still coercive with respect to Λ.

Now that the problem has been well-posed, we have to make sure it can be solved numerically. In the next

section, we show how an ALS algorithm can be designed to answer the optimization problem. Next, a constrained

descent algorithm is promoted in Section IV. Both perform well on synthetic data as shown in the last section.

III. COMPRESSED AND PROJECTED ALTERNATING LEAST SQUARES (CP-ALS)

The most widely used algorithm to solve (5) without constraints is the alternating least squares algorithm (ALS)

[10]. At iterate k of ALS, two previous estimates of factor matrices, say B̂k
c and Ĉk

c are fixed, and the objective

Υ
(

Ac, B̂
k
c , Ĉ

k
c

)

is minimized w.r.t. Ac. This leads to a linear least squares problem with the following closed-form

solution

Âk+1
c = G(1)

(

Ĉk
c ⊙ B̂k

c

)†
, (6)

G(1) is the unfolding matrix of G in the first way and X† denotes the pseudo-inverse of X. Note that the scaling

factor Λ has been pulled in the matrix factor Cc, whereas matrices Bc and Ac still have normalized columns.

After solving for Ac, the objective is minimized w.r.t. the other factor matrices, in turn. This alternating procedure

is pursued until convergence. The popularity of this method does not come from its proved performances but rather

from the fact that each of its step has an analytical solution that can be easily programmed.

A. Projected ALS for the uncompressed problem

In the original uncompressed space, projection onto the nonnegative orthant of the results given by each step of

ALS allows to deal with the nonnegative tensor decomposition problem. For example, the update in the uncompressed

space including a projection step is given by

Âk+1 = max
[

0,T(1)

(

Ck ⊙Bk
)†]

, (7)

where max [X,Z] is the maximum function applied entry-wise to X and Z. This modified ALS algorithm is

commonly known as projected ALS or alternating nonnegative least squares (ANLS) [2]. One question that arises

is the following: can we apply a similar simple modification to ALS to find the solution to the nonnegative tensor

decomposition problem in the compressed space?
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B. Projected ALS for the compressed problem

Clearly this simple way of imposing nonnegativity within the ALS algorithm by clipping nonnegative values to

zero cannot be directly applied to update (6) without care. Indeed, the nonnegative constraints need to apply in the

original space and not in the compressed subspace. Should solution (7) be applied in the algorithm, then a simple

solution to the following projection problem is needed:

minimize

∥

∥

∥Acp − Âk+1
c

∥

∥

∥

2

2
, w.r.t. Acp,

subject to UAcp � 0,
(8)

Acp stands for the factor matrix obtained after decompression-projection-re-compression. Now, the solution is harder

to find because UU⊤ is an orthogonal projector onto a smaller dimensional subspace, hence U not invertible. The

only way to solve it exactly is to resort to iterative optimization methods. Since this problem is convex, iterative

algorithms could be used to find the projection. However, the large number of constraints makes it deterrent, bearing

in mind that (8) is just one iteration of an ALS algorithm, and should not be too computationally heavy.

Due to the difficulties explained above, we propose a simple and approximate solution to (8), which is given in

3 steps (notation for factor Ac is used as an example and expressions are similar for the two other factors)

1: Âk+1 = UÂk+1
c ,

2:
[

Âk+1
]+

= max
[

0, Âk+1
]

,

3: Âk+1
cp = U⊤

[

Âk+1
]+

.

(9)

The first step corresponds to decompression, the second step forces the uncompressed factor to be nonnegative,

and the third step is re-compression; note that U⊤U = I. The standard ALS in the compressed space with the

additional steps (9) will be referred to as “compressed and projected ALS” (CP-ALS).

a) Nonincreasing cost function: note that this procedure is not the exact solution to (8). If we go back to the

uncompressed space with Âk+1 = UÂk+1
c after this approximate projection, we get

UU⊤
[

Âk+1
]+

, (10)

which has no reason to be nonnegative because UU⊤ 6= I. Yet, the approximate projection decreases the error on

the compressed factor, as stated by the proposition below.

Lemma 1: Let S1 and S2 be two convex closed sets of R
N , with a non empty intersection, xo be a vector in

S1 ∩ S2, and pi denote the projector onto Si. Then we have, ∀x ∈ R
N :

‖p2 ◦ p1x− xo‖ ≤ ‖x− xo‖,

where ‖ · ‖ denotes the euclidian norm.

Proof: The proof is straightforward: ‖p2 ◦ p1x − xo‖ = ‖p2 ◦ p1x − p2 ◦ p1xo‖ because xo ∈ S1 ∩ S2, and

since pi are contracting ‖p2 ◦ p1x− p2 ◦ p1xo‖ ≤ ‖x− xo‖.

Proposition 2: In the compression-decompression iteration described above, it holds that
∥

∥

∥

∥

U⊤
[

Âk+1
]+

−Ac

∥

∥

∥

∥

2

F

≤
∥

∥

∥Â
k+1
c −Ac

∥

∥

∥

2

F
. (11)
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Proof: Apply the lemma with S1 being the nonnegative orthant of RN , N = K×R, and with S2 = span{U}⊗
R

R being the subspace spanned by the R1 columns of matrix U. In that case, p2 = UUT . Then for any nonnegative

matrix Xo of S1 ∩ S2, and for any matrix X of RK×R, we have:

‖UUT p1X−Xo‖F ≤ ‖X−Xo‖F .

Yet, as any element of S2, Xo can be written as Xo = UMo, where Mo is a matrix of size R1 ×R. Now apply

this result to a general element of S2, X = UMc. We get the inequality:

‖UT p1UMc −Mo‖F ≤ ‖Mc −Mo‖F , (12)

which holds true because U is an isometry, that is, because ‖Uy‖ = ‖y‖.

b) Link with alternating direction method of multipliers: There is an interesting connection between the

approximate projection method proposed above and the alternating direct method of multipliers (ADMM). ADMM

has been recently popularized through its use in distributed estimation and optimization problems. The ADMM

form of the solution to (8) is (see [13] for details on ADMM)

1: Âi+1
c = Âc

1+ρ
+ ρ

1+ρ
U⊤

(

Âi −Ei
A

)

,

2: Âi+1 = max
(

0,UÂi+1
c +Ei

A

)

,

3: Ei+1
A = Ei

A +UÂi+1
c − Âi+1,

(13)

where Âc is the point to be projected (the estimate given by the unconstrained ALS update), ρ is a penalty parameter

and Ek
A is a matrix of scaled dual variables. If we choose the previous estimate of the uncompressed factor Â0 to

be UÂc and we set E0
A = 0, then 2 iterations of ADMM with ρ = 1 are equal to the approximate projection (9).

In the next section, another algorithm is described to solve (5), based on a conjugate gradient descent.

IV. SOFT PENALIZATION GRADIENT-BASED ALGORITHM

Although simple to implement, nothing guarantees that the number of iterates needed for the convergence of an

alternating minimization approach, CP-ALS for example, will not make it slower than an all-at-once optimization

method, which updates all factors at the same time. On the other hand, gradient-based all-at-once methods are

widely used to compute the CP decomposition of data tensor [10], [14]. The Fletcher-Reeves non-linear conjugate

gradient is especially efficient and makes convergence proofs possible for a backtracking step size satisfying some

conditions [15] (which will be detailed later).

There exist in the literature various ways to ensure non-negativity of the factors in gradient-based approaches.

Some authors consider the constraint explicitly by using barrier functions [14], dual formulations, or projection

onto the positive orthant at each gradient iterate [16]. There are other techniques which are based on imposing

nonnegativity through multiplicative updates [17] or re-parameterizations [18].

A. Soft Penalization

Unlike a barrier function which renders negative factors impossible, we chose a soft penalization function. This

choice seems somewhat arbitrary considering the wide panel of possibilities. However, this choice presents some
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advantages: (i) if the trajectory is allowed to cross non admissible regions, convergence may be faster, (ii) it is easy

to implement in large dimensions.

In the following, we use a general sigmoid function fα, but other functions may be used such as the hyperbolic

tangent or the arc-tangent functions. It takes the form

fα(x) = δ

(

1− 1

1 + e−(α
√
d)x

)

(14)

where δ is the penalization amplitude, α is the stiffness and d is the dimension of the penalized subspace. The

rescaling by
√
d is meant for normalization. Parameters d and α may be different in each mode, but we use only

one global amplitude parameter δ to control the weight of penalization; in particular, it can be decreased when

approaching convergence, if constraints are inactive. Some numerical observations with proper initializations tend

to suggest that the constraints were indeed not active most of the time, so that for simulations, the penalization was

rarely needed.

B. Conjugate gradient computation

As explained previously, we use the non-linear conjugate gradient as a descent method, subsequently called

“compressed conjugate gradient” (CCG). Some implementation details are now given.

1) Normalization choices: because the Big Data setting induces important variations in the dimensions of the

input tensor, we need to build an algorithm that is robust to these variations. That is, we want the tuning of parameters

of the algorithm to depend as little as possible on input dimensions. This requires a careful normalization of the

data when computing the positive compressed CP. Therefore, we normalize the stiffness and amplitude in the

penalization.

2) Objective function: taking in consideration all previous observations, we get the following objective function

to minimize:

S(θ) = Υ(θ) +
1

R(K + L+M)





∑

ij

fα1

(

[UÂc]ij

)

+ . . .





where θ is a R1R2R3R×1 parameter vector containing the entries of Âc, B̂c and Ĉc, that is θ = vec
(

ÂT
c , B̂

T
c , Ĉ

T
c

)

.

3) Gradient computation: the computation of the gradient of S(θ) does not raise any difficulty. If needed,

compact expressions can be obtained with a similar approach as in [18].

C. CCG update rule

The CCG algorithm iterates as follows:

1: pk = −∇S(θ̂
k
),

2: βk =
‖pk‖2

2

‖pk−1‖2

2

,

3: sk = pk + βksk−1,

4: θ̂
k+1

= θ̂
k
+ µks

k.

(15)

The step size µk is chosen at the end of each iteration using Armijo’s backtracking method. Under this backtrack-

ing strategy two conditions are sufficient to prove convergence to a local minimum of the conjugate gradient method
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Fig. 1. Reconstruction error by computation speed of CP decomposition for T in R
250×250×250

+
. Compressed space is of size 20× 20× 20.

[15, p. 49]: the objective function must be Lipschitz continuous and the second Wolfe condition on curvature must

be satisfied (since the first is already satisfied by Armijo’s rule). The gradient of our objective function clearly

satisfies the Lipschitz condition because the CP objective (5) is a polynomial in the factors. Thus, by choosing a

step size that satisfies the curvature condition, convergence of the CCG to a local minimum is guaranteed.

Computational complexities of CCG and CPALS are of same order O(R1R2R3R). We thus expect both algorithms

to be of similar running time. The main advantage of CCG is that it is less sensitive to swamps encountered with ALS,

which have been extensively studied by the community [19], [20]. The next section compares the two algorithms

in terms of speed and performance on different data sets.

V. RESULTS ON SIMULATED DATA

For the following simulations, tensor T is generated randomly by drawing coefficients from a centered normalized

Gaussian distribution and taking their absolute value. White Gaussian noise is added with standard deviation σ =

10−4. The tensor rank R of T is set to 6. Fletcher-Reeves and Pollack-Ribiere implementations of the CCG yield

similar results.

We first check the computation speed of CCG and CP-ALS compared with a ANLS without compression. One

typical realization of the nonnegative tensor decomposition is given in Fig. 1. It appears that CP-ALS is faster than

CCG, even though it will fail in some rare cases where CCG does not. Both proposed algorithms are faster than

ANLS as the tensor dimensions increase. Note that the computation of the SVD through the randomized method

[11] for T costs as much as a few steps of ANLS, and compression becomes worthwhile when the factorization

of T is to be repeated.

Next, the compression error is reported in Fig. 2 for various compression rates, and is averaged over 20 trials.

Because important information in T is contained in R = 6 rank-1 factors, compressing the data further than (6, 6, 6)

results in reconstruction error.
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Fig. 2. Reconstruction error as a function of compressed dimensions T in R+
100×100×100. Compressed space is of size Rc ×Rc ×Rc.

VI. CONCLUSION

Up to now, nonnegative tensors have not been decomposed in a compressed domain because the HOSVD cannot

handle nonnegativity. In this letter, we suggest to solve this problem as a low dimensional constrained tensor

decomposition. Reproducible algorithms derived from workhorse methods are proposed and simulation results show,

without any substantial increase in the tensor reconstruction error, that such an approach allows a major speed up

in the computation of the decomposition. This letter serves the purpose of introducing compression in constrained

multilinear data; other types of constraints or compressions could be handled in a similar way, and give a full

picture of the possibilities to deal with large tensor datasets.
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