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Fast Depth Estimation for Light Field Cameras

Kazu Mishiba , Member, IEEE

Abstract— Fast depth estimation for light field images is an
important task for multiple applications such as image-based
rendering and refocusing. Most previous approaches to light field
depth estimation involve high computational costs. Therefore,
in this study, we propose a fast depth estimation method based
on multi-view stereo matching for light field images. Similar to
other conventional methods, our method consists of initial depth
estimation and refinement. For the initial estimation, we use a
one-bit feature for each pixel and calculate matching costs by
summing all combinations of viewpoints with a fast algorithm.
To reduce computational time, we introduce an offline viewpoint
selection strategy and cost volume interpolation. Our refinement
process solves the minimization problem in which the objective
function consists of ℓ1 data and smoothness terms. Although
this problem can be solved via a graph cuts algorithm, it is
computationally expensive; therefore, we propose an approximate
solver based on a fast-weighted median filter. Experiments on
synthetic and real-world data show that our method achieves
competitive accuracy with the shortest computational time of all
methods.

Index Terms— Light fields, depth estimation, multi-view stereo
matching, approximate solver.

I. INTRODUCTION

A
LIGHT field camera records both spatial and angular

light information in a single shot; therefore, it has various

applications such as image-based rendering [1], refocusing [2],

and 3D reconstruction. As most of these applications use

depth information, depth estimation from a light field image

is an important topic for light field image processing

research.

Lenslet-based light field cameras, known as plenoptic cam-

eras, are hand-held and commercially available. They place a

microlens array between the main lens and the image sensor,

enabling a single light field image to be decoded as multi-

ple stereo images, often referred to as sub-aperture images.

Because the baselines are extremely small, traditional depth

estimation methods for multiple large-baseline stereo images

cannot produce satisfactory results for lenslet-based light field

cameras. Thus, various approaches have been proposed for

estimating depth in lenslet-based light field images based

on multi-view stereo matching (MVSM) or epipolar-plane

image (EPI) analysis [3].
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Similar to depth estimation methods for traditional

multi-view stereo images, most of these methods consist of

two stages: an initial depth estimation stage and a refinement

stage. However, these methods involve high computational

costs due to the many redundant viewpoints during initial esti-

mation and as a result of solving optimization problems during

depth refinement. This is limiting for light field applications

such as image-based rendering and refocusing, which perform

depth estimation during preprocessing and therefore require

rapid depth estimation.

Shin et al. [4] proposed a deep learning-based approach that

achieves state-of-the-art results in terms of both accuracy and

fast computation. Compared with other conventional methods,

their method is relatively fast because it directly infers depth

maps using trained networks without a refinement step. How-

ever, a disadvantage of their method is that it takes a long time

to train the networks and different networks are required to

ensure high accuracy in different environments; e.g., different

noise levels and different numbers of sub-aperture images.

In this paper, we propose an MVSM-based depth estimation

method for light field cameras that boasts fast performance

and high accuracy without requiring learning. The key ways

we ensure fast computation are by reducing redundancy in the

initial depth estimation stage and introducing an approximate

solver for optimization during the refinement stage.

Our initial depth map estimation consists of the following

three steps: pixel feature calculation, calculation of matching

cost to construct a cost volume, and application of a winner-

takes-all (WTA) scheme to the cost volume. Our method

represents a pixel feature using only one bit and limits the

number of viewpoints used for estimation. Although matching

cost calculation using more pixel features on more viewpoints

may achieve high accuracy, exceeding a certain amount of

pixel features results in less accuracy improvement but higher

computational cost. In other words, using fewer features

can achieve sufficient accuracy. To ensure stable estimation

with few pixel features, the matching cost is calculated by

summing all combinations of viewpoints used then applying a

cost aggregation method. A typical matching cost calculation

for all combinations has poor computational efficiency due

to the massive number of combinations; however, we show

that the calculation of the matching cost can be accelerated

using the proposed algorithm (discussed in later section).

Subsequently, we employ a cost volume interpolation scheme

that interpolates the cost volume in the depth direction to

reduce the computational time.

Our refinement step uses an approximate solver to solve

the optimization problem to remove outliers. This reduces the
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computational costs compared to the traditional approach of

using a graph cuts algorithm.

The main contributions of this research are as follows:

1) We propose a computationally efficient initial depth

estimation method using one-bit feature calculation, fast

matching cost calculation, a view selection strategy, and

cost volume interpolation.

2) We propose a rapid approximate solver for refinement

of the initial depth map.

The proposed method performs significantly faster than con-

ventional methods whilst achieving competitive accuracy with-

out the need for a training process.

II. RELATED LITERATURE

Existing depth estimation methods can be categorized into

four groups: MVSM-based, EPI-based, focal stack symmetry,

and learning-based approaches.

A. MVSM-Based Approach

Tao et al. [5] estimated two initial depth maps using

correspondences and defocus cues, respectively. Their refine-

ment step combines the maps into a Markov Random

Field (MRF) optimization process. Based on Tao’s method [5],

Wang et al. [6] proposed a depth estimation method that mod-

els occlusions and utilizes them for the initial depth estimation

and refinement steps. Jeon et al. [7] shifted sub-aperture

images using the phase shift theorem to accurately deter-

mine the sub-pixel shift. Multi-label optimization was then

performed using graph cuts to enhance the initial estimation.

Tomioka et al. [8] calculated the matching cost based on cen-

sus transform to withstand degradation caused by sensor noise

and vignetting. Their refinement step minimizes an objective

function that consists of a data term and an edge-preserving

smoothness term. Huang [9] formulated a depth estimation

problem as an optimization problem using MRFs. Without

initial estimation, photo-consistency is directly considered in

the MRF model.

B. EPI-Based Approach

This approach estimates the slopes of the lines in the EPI,

which correspond to depth. Wanner and Goldluecke [10] used

a structure tensor to compute the vertical and horizontal slopes

and obtain estimation reliability for each pixel. An optimized

depth is obtained by minimizing the objective function, which

consists of estimated depths from these slopes and the estima-

tion reliability. This approach tends to assign high reliability to

incorrect estimations in areas where the depth is discontinuous.

Li et al. [11] refined the estimation reliability so that incor-

rect estimations are assigned low reliability. To remove the

influence of occlusion, Zhang et al. [12] proposed a spinning

parallelogram operator to determine the slopes. While their

refinement step applies a guided filter to the cost volume

instead of an optimization method to avoid high computational

costs for synthetic images, their method requires a further

optimization process to reduce noise in real data.

C. Focal Stack Symmetry Approach

This approach uses the property of the light field focal

stack that pixel values are symmetric along the depth dimen-

sion centered at the correct depth, which holds only for

non-occlusion pixels. Lin et al. [13] proposed the prop-

erty and data consistency measure based on analysis-by-

synthesis. Depth is computed by the iterative optimization

framework which incorporates them. Strecke et al. [14] pro-

posed occlusion-free partial focal stacks. Their method jointly

estimates consistent depth and normal maps by using iterative

optimization.

D. Learning-Based Approach

Johannsen et al. [15] constructed a light field dictionary

using EPI patches and corresponding depths then estimated

depth based on a sparse coding approach that solves the

optimization problem. The depth estimation process of all

approaches discussed in this section includes solving an

optimization problem, which generally involves long com-

putational times. Jeon et al. [16] predicted the initial depth

using a random forest-based depth label prediction then

applied a weighted median filter to the initial estimation,

which reduces the computational time compared with solv-

ing an optimization problem. Although prediction using fea-

ture vectors is fast, calculating the feature vectors involves

high computational costs. Shin et al. [4] used an end-to-

end deep neural network approach, which boasted relatively

fast performance. To overcome the lack of training data,

they introduced light-field image-specific data augmentation.

While learning-based approaches achieve high accuracy when

training and prediction are performed in the same conditions,

many outliers can occur when they are performed in different

conditions, as shown in Section VI.

In conventional methods, a refinement step, typically based

on optimization, is required to remove outliers and achieve

high accuracy. However, while this requires high computa-

tional costs in conventional methods, our proposed method

finds an approximate solution with low computational costs.

III. DEPTH ESTIMATION FRAMEWORK

A. Problem Setting

Let s = (u, v) ∈ S be the view coordinates, where o =

(0, 0) ∈ S is the central viewpoint. Our purpose is to estimate

the depth at the central viewpoint from multiple sub-aperture

images Is . In our method, we use grayscale images as input

viewpoint images. The problem of recovering depth from

multiple images is as follows: Given a point (x, y) on the

central viewpoint, find the corresponding point (Xs , Ys) from

another viewpoint s. Because each viewpoint is on the regular

grid (coordinate) and its interior camera parameters can be

considered equal, the corresponding point can be formulated as

(Xs , Ys) = (pu + x, pv + y), (1)

where p is the disparity between adjacent views.

In this study, we estimate discrete depth parameters
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Fig. 1. Example of estimation results derived from the proposed method.
(a) Center view. (b) One-bit feature map of center view. (c) Initial depth map.
(d) Estimation confidence. (e) Final depth map.

α ∈ A = {1, 2, . . . , αmax }, where αmax is the depth resolution.

The relationship between α and p is defined as

p(α) = pmin +
pmax − pmin

αmax − 1
(α − 1), (2)

where pmin and pmax are the minimum and maximum dispar-

ities between adjacent views, respectively, and can either be

approximately estimated from a scene or be set experimentally.

B. Initial Depth Estimation

Our proposed method estimates the initial depth map as

follows: First, we calculate pixel features in each pixel on all

sub-aperture images. Next, we calculate matching costs for

all depth parameters. Then, cost aggregation is performed to

construct a cost volume. Finally, the WTA scheme is applied

to the cost volume.

Our method uses the following pixel feature at pixel i on

sub-aperture image Is for parameter α:

f α
s,i =

{

1 (eα
s,i ≥ 0)

0 (otherwise),
(3)

where

eα
s,i = ∇x [Is,i ]

α
s + ∇y[Is,i ]

α
s (4)

is the sum of the pixel difference in horizontal and vertical

directions. Here, [Is,i ]
α
s is a remap operator that maps pixel

i = (x, y) onto (p(α)u + x, p(α)v + y) and Is,i is a pixel

value at i on Is . The concept of the pixel feature is similar

to the census transform. While census transform outputs a

binary vector, our transform outputs only one binary for each

pixel. Therefore, our transform requires less computation cost

and memory to store the transformed results than the census

transform. Figure 1 (b) shows a feature map of our method.

Ideally, pixel features of corresponding pixels on all view-

points are the same for the correct α in the case of no

occlusion. Our matching cost of pixel i for parameter α is

defined as the sum of the absolute differences between pixel

features for all combinations of viewpoints:

hα
i =

1

2

∑

s∈S

∑

t∈S\{s}

| f α
s,i − f α

t,i |. (5)

After cost calculation, the cost slice Cα is calculated to

construct a cost volume C by aggregation of the matching cost

using box filtering with a window size of W1 × W1. Finally,

we apply the winner-takes-all (WTA) scheme to C for each

pixel to obtain the initial depth at pixel i as

ᾱi = arg min
α∈A

Cα
i , (6)

where Cα
i is the matching cost at pixel i for parameter α.

C. Depth Refinement

As shown in Fig. 1, the initial depth maps contain outliers;

thus, we refine the initial depth maps with global optimization.

Our refinement strategy is designed to minimize the

following objective function:

E(α) = λ
∑

i

ci |αi − ᾱi | +
∑

i

∑

j∈N(i)

wi, j |αi − α j |, (7)

where λ controls the balance between the first and second

terms, ci is the estimation confidence on pixel i , wi, j is

the weight between pixel i and j , and N(i) is a set of

neighborhood pixels around pixel i . In this study, we refer

to pixels inside the W2 × W2 window centered around i but

excluding i as the neighborhood pixels of i . The first term is

a data term, which is weighted by the estimation confidence

for each pixel. Several methods for measuring the confidence

have been proposed [17]. Here, we calculate the estimation

confidence using the entire cost as follows:

ci = 1 −
minα∈A Cα

i

aveα∈ACα
i

, (8)

where ave calculates the average of Ci . The proposed measure,

which is similar to the Probabilistic Measure described in [17],

has relatively low computational cost and achieves good

performance. The second term is a smoothness term, which

is weighted by the affinity between pixels i and j . We use the

following affinity function:

wi, j = exp

(

−|Io,i − Io, j |
2

2σ 2

)

, (9)

where σ 2 is an affinity control parameter and Io,i is the inten-

sity of pixel i on the central viewpoint. The proposed objective

function uses ℓ1 norm both in the data and smoothness terms,

which efficiently removes outliers [18].

IV. ACCELERATION FOR INITIAL DEPTH ESTIMATION

In this section, we describe three algorithms employed

for faster computation: fast cost calculation, cost volume

interpolation, and view selection.
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A. Fast Cost Calculation

A straightforward implementation of the matching cost

calculation (4) and (5) results in poor computational efficiency;

however, it can be improved by transforming the equations as

follows.

Equation (4) can be written as

eα
s,i = [∇x Is,i + ∇y Is,i ]

α
s . (10)

This transformation is possible if we use a space-invariant

scheme for remapping, such as bilinear and bicubic inter-

polations. Using (10) reduces the number of additions,

differentiations, and remapping operations.

In (5), calculating the differences between pixel features

for all combinations of viewpoints is time-consuming because

of the massive number of combinations. Fortunately, (5) can

be efficiently calculated as follows. Let Fα
i (k) = #Sk

where # indicates the number of elements of a set and

Sk = {s|s ∈ S, f α
s,i = k}. Because S0 ∪ S1 = S, S0 ∩ S1 = ∅,

| f α
s∈S j ,i

− f α
t∈Sk,i

| = 0 for j = k and | f α
s∈S j ,i

− f α
t∈Sk,i

| = 1

for j �= k, (5) is rewritten as

hα
i =

1

2
{
∑

s∈S0

∑

t∈S

| f α
s,i − f α

t,i | +
∑

s∈S1

∑

t∈S

| f α
s,i − f α

t,i |}

=
∑

s∈S0

∑

t∈S1

1 (11)

= Fα
i (0)Fα

i (1), (12)

where

Fα
i (0) =

∑

s∈S0

f α
s,i = #S − Fα

i (1), (13)

Fα
i (1) =

∑

s∈S1

f α
s,i =

∑

s∈S

f α
s,i . (14)

As a result, the matching cost for parameter α can be

calculated as follows. First, pixel features of all viewpoints

are summed to calculate Fα
i (1) as shown in (14). Then,

Fα
i (0) is calculated by subtracting Fα

i (1) from the number

of viewpoints, as shown in (13). Finally, Fα
i (0) and Fα

i (1)

are multiplied, as shown in (12).

B. Cost Volume Interpolation

We also introduce cost volume interpolation for faster com-

putation. In the initial depth estimation step, cost calculation

in each cost slice is the main task, which occupies most of

the processing time. The cost calculation for each slice repeats

αmax times. Although using smaller αmax reduces the number

of computations, it also decreases the estimation accuracy due

to insufficient depth resolution. Because aggregated matching

costs change smoothly according to the change of α, as shown

in Fig. 2, the matching cost can be predicted by interpolation

along the α direction. Instead of interpolating matching costs

for all decimated slices, we only interpolate the matching

cost around the parameter that has the minimum cost among

sampled slices for computational efficiency. This approach is

similar to subpixel displacement estimation [19].

Fig. 2. Matching costs after aggregation.

We first construct a cost volume with sampled parameters

α ∈ Â ⊆ A then apply the WTA scheme, described as

α̂i = arg min
α∈ Â

Cα
i . (15)

In this study, A is sampled at a regular interval, t; i.e., Â =

{1, 1 + t, . . . , αmax − t, αmax}. Next, we interpolate parameter

α as follows:

ᾱi =

{

α̂i (α̂i = 1, αmax)

α̂i + round(δα
i ) (otherwise),

(16)

where δα
i is a fitting function. Equiangular line fitting and

parabola fitting are commonly used for subpixel estimation.

Through experiments, we found that equiangular line fitting is

more suitable for our cost interpolation than parabola fitting.

Using equiangular line fitting, δα
i is formulated as

δα
i =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1

2

C α̂i +t − C α̂i −t

C α̂i − C α̂i −t
(C α̂i +t < C α̂i−t )

1

2

C α̂i +t − C α̂i +t

C α̂i − C α̂i −t
(otherwise).

(17)

C. View Selection

For faster computation, we limit the number of viewpoints

used for depth estimation instead of using all viewpoints. Sub-

aperture images taken by a lenslet-based light field camera

have high redundancy because of the short baseline between

images. It is desirable to reduce the number of viewpoints

because using overly redundant viewpoints increase the com-

putational time without improving the estimation accuracy.

Our strategy is to first determine the order of viewpoints

then use a certain number of viewpoints for the estimation

according to this order. The number of viewpoints to be used

is determined experimentally. Here, we focus on determining

the order of viewpoints, which is known as view selection.

View selection has been employed for multi-view stereo

images [20] and for estimating the depth from light

fields [21]. Conventional view selection methods select the

next view that optimizes a certain objective function based

on already-selected viewpoints. Such online selection requires

additional time to calculate the next view in the depth esti-

mation procedure; therefore, we propose an offline selection

strategy.
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Fig. 3. Visualization of view selection. Each square corresponds to a
viewpoint and the number in the square indicates the order of selection.

Our strategy uses a symmetric viewpoints selection to be

independent of orientation. Let Q be a set of symmetric

viewpoints q where

q =

{

{(i, j), (−i,− j), (i,− j), (−i, j)} (i �=0∧ j �=0)

{(i, 0), (−i, 0), (0, i), (0,−i)} (otherwise).
(18)

Our view selection method first selects the central viewpoint

then sequentially determines the optimal next symmetric view-

points q∗ by solving the following minimization problem

q∗ = arg min
q∈Q\Q̄

V (q), (19)

where Q̄ is a set of selected symmetric viewpoints and

V (q) =
∑

s∈q

⎛

⎝γ ‖s‖1 −
1

# S̄

∑

s̄∈S̄

‖s − s̄‖1

⎞

⎠ , (20)

where γ is a parameter and ‖ · ‖1 is the ℓ1 norm. The first

term in the bracket in (20) seeks to select a view close to

the center view to avoid occlusions. The second term in the

bracket in (20) seeks to use a view far from already-selected

viewpoints to avoid redundancy in view positions. When

multiple solutions for (19) exist, one of them is randomly

selected. Figure 3 illustrates an order of view selection in 9×9

viewpoints.

V. FAST APPROXIMATE SOLVER FOR REFINEMENT

Although a global minimizer for (7) can be found via graph

cuts [22] if α is restricted to discrete values, the computational

time is high. A possible solution is to obtain an approximate

solution by stopping the iteration in an iterative optimization

process. Although gradient-based methods, e.g., the steepest

descent method, can be used as iterative optimization meth-

ods, their rate of convergence is slow. Thus, we propose an

approximate solver for (7), which, despite not guaranteeing

convergence, can experimentally find approximate solutions

in fewer iterations.

We introduce an auxiliary variable β and reformulate the

objective function for refinement into

E(α, β) =
λ

2

∑

i

ci |ᾱi −βi |+
λ

2

∑

i

ci |ᾱi −αi |

+
∑

i

∑

j∈N(i)

wi, j |αi − β j |+µ
∑

i

|αi −βi |, (21)

where µ > 0 is a parameter for controlling the similarity

between α and β. Parameter α which minimizes (7) and (21)

becomes identical with µ → ∞. We alternately solve the

following problems with increasing µ:

α(k+1) = arg min
α

E(α, β(k)), (22)

β(k+1) = arg min
β

E(α(k+1), β). (23)

The above problems can be solved for each pixel. The

objective function of these problems can be written as the

same formulation:

F(x p, y)=
λ

2
cp|x p − ᾱp|+

∑

q∈N(p)

wp,q |x p−yq |+µ|x p−yp|.

(24)

Here, using x p = αp, y = β(k), and x p = βp, y = α(k+1) cor-

responds to the objective function for each pixel in Eqs. (22)

and (23), respectively. Consequently, our refinement algorithm

iteratively solves the following minimization problem:

α(k+1)
p = arg min

αp

F(αp, α(k)). (25)

We begin with µ = µ0 and α(0) = ᾱ. In each iteration, µ is

increased by multiplying κ > 1. The convergence properties

of the proposed algorithm are not analyzed in this research.

The solution of (25) is a weighted median [23]; we propose a

method for solving (25) based on the faster weighted median

filter (WMF) [24].

A formulation of the WMF is as follows. Let X̃ =
(

x̃1, x̃2, . . . , x̃NI

)

be the sequence of all possible pixel values

in an ascending order. The WMF then finds x̃r where

r =min k s.t.

k
∑

i=1

∑

q∈Q i

wp,q −

NI
∑

i=k+1

∑

q∈Q i

wp,q ≥ 0, (26)

where Qi = {q ∈ R(p)|xq = x̃i } and R(p) is a set of pixels in

a local window. wp,q is a weight calculated from the affinity

between pixels p and q , which can be written as wp,q =

g(fp, fq) where fp and fq are pixel features at p and q , and g

is an affinity function, such as (9).

Next, we review the faster WMF [24]. The WMF can be

regarded as finding the optimal cut point k satisfying bk−1 < 0

and bk ≥ 0 where the balance bk is

bk =

k
∑

i=1

∑

q∈Q i

wp,q −

NI
∑

i=k+1

∑

q∈Q i

wp,q . (27)

Let H be a 2D joint-histogram denoted as

H (i, f ) = #{q ∈ R(p)|Xq = X̃ i , fq = f̃ f }, (28)
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where f̃ f ∈ F̃ =
(

f̃1, f̃2, . . . , f̃NF

)

and F̃ is the sequence of

all possible pixel features in ascending order. For any pixel

q belonging to bin (i, f ), the weight wp,q between pixel p

and q can be computed as g(fp, f̃ f ). Using this, bk can be

rewritten as

k
∑

i=1

N f
∑

f =1

H (i, f )g(fp, f̃ f )−

NI
∑

i=k+1

N f
∑

f =1

H (i, f )g(fp, f̃ f ). (29)

For fast computation to determine the optimal cut point, a

balance counting box (BCB) is introduced as follows:

Bk( f ) =

k
∑

i=1

H (i, f ) −

NI
∑

i=k+1

H (i, f ). (30)

Using Bk , bk is formulated as

bk =

N f
∑

f =1

Bk( f )g(fp, f̃ f ). (31)

For the initial cut, bk is calculated as in (31). If bk ≥ 0, k is

updated to k − 1, otherwise to k + 1. bk can be updated as

bk−1 = bk − 2

N f
∑

f =1

H (k, f )g(fp, f̃ f ) (32)

in the case of bk ≥ 0. This step is repeated until we find k

satisfying bk−1 < 0 and bk ≥ 0. After finding the optimal cut

point for a pixel, the filter window is shifted to the next pixel

and the joint-histogram and BCB are updated. Because the

current window and subsequent window largely overlap, only

exiting and entering pixels are examined for the update of the

joint-histogram and BCB. For more details, see the description

of computational efficiency in [24].

Our optimization problem in (25) has a similar formation to

the WMF but with slight differences. The WMF is equivalent

to

arg min
x p

∑

q∈R(p)

wp,q |x p − xq |. (33)

To use an efficient algorithm to solve (25), we rewrite (24)

using R(p) = {N(p) ∪ p} into

F(x p, y) =
∑

q∈R(p)

wp,q |x p − yq | +
λ

2
cp|x p − ᾱp |

+ (µ − wp,p)|x p − yp|. (34)

The minimization of (34) corresponds to finding the optimal

cut point of the following bk :

bk =

N f
∑

f =1

Bk( f )g(fp, f̃ f )+δ(ᾱp, k,
λ

2
cp)+δ(yp, k, µ−wp,p),

(35)

where

δ( j, k, l) =

{

l ( j ≤ k)

−l ( j > k).
(36)

The first term on the right-hand side of (35) can be calculated

by the same procedure as described in [24]. Calculation of

the second and third terms can be easily built into the cut

point update procedure as follows. For δ( j, k, l), when k is

updated to k −1 to find the optimal cut, we substitute 2l from

bk if j = k − 1 in the same manner as (32).

In our implementation, we use a coarse-to-fine strategy to

speed up the convergence. The iteration is stopped when the

ratio of elements whose values are changed before and after

the last iteration is below a threshold τ .

VI. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, the performance of the proposed method is

evaluated using synthetic and real-world datasets. For the syn-

thetic experiments, we used the 4D light field benchmark [25],

which contains 9×9 sub-aperture images with 512×512 spatial

resolution and ground truth depth data. For the real-world

experiments, we used center 9 × 9 sub-aperture images from

light field images captured with a Lytro Illum camera and

two Lytro first generation cameras. Our method was imple-

mented in C++ and used parallel computation with CUDA

for initial estimation and OpenMP for optimization. We used

a Core i7-3770 @ 3.40 GHz CPU with a 12 GB RAM and

NVIDIA GeForce GT 640 and set the parameters as follows:

αmax = 256, γ = 0.8, λ = 15, σ = 10, W1 = 5, and

W2 = 7.

A. Algorithm Validation

In this section, we discuss the effectiveness of our proposed

view selection, cost volume interpolation, and approximate

solver using four light-field test images on the 4D light field

benchmark [25].

1) View Selection: To verify the effectiveness of our view

selection strategy, we compared the following four strategies:

best view selection, random selection, static selection, and the

proposed strategy. The best view selection strategy selects the

next view, which minimizes the mean squared error (MSE)

between the ground truth and the estimated depth. In a real

situation, we cannot adopt this strategy because the ground

truth data are unavailable. The random selection strategy

randomly selects the next views. The static selection strategy

selects central vertical, central horizontal, right diagonal, and

left diagonal viewpoints first, which are used in [4], followed

by the remaining viewpoints. Visualization of the order of the

static selection is shown in Fig. 4. In this experiment, we used

no cost volume interpolation, i.e., t = 1.

Figure 4 shows the relationship between the number of

viewpoints used and the average MSEs of the initial estima-

tion. The computation time of our initial estimation is also

shown in the figure. The figure clearly indicates that our

proposed view selection strategy achieved better performance

in MSE than the random and static selection strategies. More-

over, two key findings are clear. One is that an increase in

the number of viewpoints increases the computational time

for the initial depth estimation but does not necessarily lead

to a decrease in estimation error. The other is that using

approximately 20 viewpoints achieved satisfactory results in

our strategy.
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Fig. 4. Average MSEs of initial estimation for each viewpoint selection,
computational times for the initial depth estimation using the proposed view
selection, and the visualization of the static selection. The MSEs of the random
selection is the average of 10 trials per image.

TABLE I

AVERAGE MSES AND COMPUTATIONAL TIMES FOR

DIFFERENT SAMPLING RATES (t )

2) Cost Volume Interpolation: To show the effectiveness of

cost volume interpolation, we performed an initial estimation

with different sampling rates and all viewpoints. The sampling

rates were set to t = 1, 3, 5, 15, 51, 85. Table I lists the

averages of the MSEs and computation times of the initial

estimation for each t . While the MSEs for t = 1, 3, 5 were

similar, the computational times decreased as t increased.

Thus, cost volume interpolation can reduce the computational

time for initial estimation without significantly reducing the

accuracy.

3) Optimization: To verify the effectiveness of our proposed

solver, we solved the optimization problem of (7) by the

following three methods: a graph cut algorithm, the steepest

descent algorithm, and our proposed method. An initial depth

was obtained with all viewpoints and t = 1. For a clearer

comparison, a coarse-to-fine strategy was not employed. The

parameters for our optimization were set to µ0 = 0.001 and

κ = 1.2 and the step size at each iteration on the steepest

descent algorithm was determined by the Armijo rule [26].

Our method and the steepest descent algorithm used parallel

computation with OpenMP and we used the GCoptimization

software [27]–[29] for graph cuts.

While the steepest descent algorithm and our method took

approximately 100 ms and 10 ms in each iteration, respec-

tively, the graph cut algorithm took approximately 15 min to

solve. Figure 5 represents the values of (7) over iterations

for the Cotton scene, in which the objective function value

decreased rapidly when using our proposed method.

B. Comparisons

In this section, the performance of the proposed method is

evaluated using synthetic and real-world datasets. We com-

pared our method (FDE) with the following state-of-the-art

methods: EPI1 [15], EPI2 [10], PS_RF [16], RPRF-5view [9],

SPO [12], LF [7], LF_OCC [6], and Epinet-fcn9x9 [4].

Fig. 5. Comparison of objective function variations for the Cotton scene,
in the benchmark dataset [25].

The names of these methods were derived from the benchmark

website [25].

In our proposed optimization, the coarse-to-fine strategy

starts with data downsampled by 2 then upsamples the con-

vergence result to the original resolution. We set κ = 1.2,

τ = 0.001 and µ0 = 0.001 and 0.1 for the downsampled

and original resolutions, respectively. From the experimental

results in Section VI-A, we set t = 5 and used 21 viewpoints,

which revealed promising results regarding fast computation

and high accuracy.

1) Synthetic Data: We used the 4D light field

benchmark [25] with the eight light-field test images

for the quantitative evaluation.1 The eight test images

include four photorealistic scenes and four stratified scenes,

which are designed to pose specific isolated challenges.

As quality measurements, we used the MSE and the bad

pixel ratio (BP), which represents the percentage of pixels

whose disparity error is larger than 0.07 pixels. Estimation

results, quality measurements and computational times of

the conventional methods were derived from the benchmark

website. Computational times of our proposed method exclude

the times taken for view selection because it can be computed

in advance.

The quantitative results are listed in Table II. The pro-

posed method showed competitive performance in quantitative

measurements and the best performance for computational

speed. Figure 6 shows estimation results and error maps.

As represented by the photorealistic Cotton scene, our method

estimated reasonable results. We investigate the strength and

weakness of our proposed method by using estimation results

of stratified scenes.

1It is preferable to evaluate our method by submitting estimation results of
all 12 test images to the benchmark site, including four test images whose
ground truth depth maps are not disclosed. However, no new submissions
were possible at the time of writing this manuscript due to the server
problems. Therefore, we evaluated the eight images with ground truth using
the benchmark program.
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Fig. 6. Comparison of estimation results using Cotton scenes (1st and 2nd rows), Stripes scenes (3rd and 4th rows), Dots scenes (5th and 6th rows), and
Backgammon scenes (7th and 8th rows) from the [25] dataset. The odd rows are the estimated depth and even rows are the error maps for MSEs. (a) Ground
truth depth map and center view image. (b) EPI1 [15]. (c) EPI2 [10]. (d) PS_RF [16]. (e) RPRF-5view [9]. (f) SPO [12]. (g) LF [7]. (h) LF_OCC [6].
(i) Epinet-fcn9x9 [4]. (j) FDE (proposed method).

TABLE II

AVERAGED EVALUATION METRICS AND RANKING FOR EIGHT

SYNTHETIC SCENES OF THE [25] DATASET. OUR METHOD

ACHIEVES COMPETITIVE RESULTS FOR THE MEAN

SQUARED ERROR (MSE) AND BAD PIXEL RATIO (BP)
WITH THE SHORTEST COMPUTATIONAL TIME

The strength of our method is that it is not signifi-

cantly affected by the amount of contrast and texture due

to the proposed one-bit feature calculation, which can be

seen from the Stripes scene. This scene consists of high

and low contrast stripes with texture whose amount varies

spatially. As can be seen from the low scores of the Stripes

scene shown in Fig. 7 and the estimation result shown

in Fig. 6, our proposed method shows decent performance

on all areas, i.e., low texture, low contrast, and high contrast

areas.

The weakness of our method is that it is challenging to

reconstruct small geometries and occlusion boundaries due

to the cost aggregation and refinement step, which can be

seen from the Dots and Backgammon scenes. The Dots scene

consists of a plane and circles which suffer from Gaussian

noise whose variances varies spatially. The refinement step

reduced the influence of noise in planer areas as can be seen

from the low score of Background MSE shown in Fig. 7,

while missing small geometries as can be seen from the high

score of Missed Dots shown in Fig. 7. The Backgammon

scene consists of two parallel background planes and one
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Fig. 7. The radar chart on stratified scenes. Lower scores represent better
performance. The details of the metrics are shown in [25].

Fig. 8. Zoomed-in results of the Backgammon scene. In each result, 1st row
is the estimated depth, 2nd row is the error map for MSE, and 3rd row is the
error map for BP. Parameters (W1, W2) are (a) (1,−), (b) (5, −), (c) (1, 3),
(d) (5, 3), (e) (1, 7), and (f) (5, 7).

foreground jagged plane. As can be seen from the high score

of Backgammon Thinning shown in Fig. 7 and the estimation

result shown in Fig. 6, accurate depth estimation on occlusion

boundaries is challenging for our proposed method. For a more

detailed analysis of the cost aggregation and refinement step,

we performed our depth estimation method on the Backgam-

mon scene with different parameters, (W1, W2) = (1,−),

(1, 3), (1, 7), (5,−), (5, 3), and (5, 7), which is the default

parameters. Using W1 = 1 is equivalent to no cost aggregation.

W2 = − represents the initial depth estimation. Figure 8 shows

parts of results. Table III lists MSE, BP, Backgammon Thin-

ning, and Backgammon Fattening of the Backgammon scene.

Backgammon Thinning represents the percentage of the fore-

ground that is estimated as the background. Backgammon

Fattening represents the percentage of the background that

is estimated as the foreground. First, we focus on the initial

estimation to see the effect of the cost aggregation. As can

be seen from the comparison between Fig. 8 (a) and (b),

TABLE III

EVALUATION METRICS AND RANKING FOR DIFFERENT

PARAMETERS ON THE Backgammon SCENE

the cost aggregation reduced noisy outliers while tending to

lead to estimation error of which the background on the

occlusion boundary is estimated as the foreground. This error

is caused by the cost aggregation across occlusion boundaries.

As can be seen from the comparison between (1,−) and

(5,−) in Table III, using the cost aggregation exhibited a low

score of Backgammon Thinning, while exhibiting a high score

of Backgammon Fattening. Since the occlusion area is small

relative to the entire image, an initial estimation result with

the cost aggregation exhibited lower scores of MSE and BP

than one without the cost aggregation. Next, we focus on the

effect of the refinement step. The refinement step with larger

window size removed noisy outliers more and improved MSE

and BP more. In contrast, it worsened Backgammon Thinning

score when W1 = 5. As can be seen from the estimation results

shown in Fig. 8 (d) and (f), the refinement process expanded

estimation error of which the background on the occlusion

boundary is estimated as the foreground, which greatly wors-

ens MSE because the difference between the foreground

and background depth is large. Using an adaptive window

with occlusion prediction may help to improve estimation

accuracy.

2) Real-World Data: We also conducted experiments on

real-world scenes by comparing our method with those of

SPO [12], LF [7], LF_OCC [6], and Epinet-fcn9x9 [4].

We used the codes provided by the authors and ran the algo-

rithms with their default settings except for the minimum and

maximum disparities on each scene, which we set manually.

Real images were captured with a Lytro Illum camera by [30]

and with Lytro first generation cameras by [5] and in this

study.

Figure 9 compares the qualitative results. The top three

images were captured with a Lytro Illum camera and the

others were captured with Lytro first generation cameras.

All methods except LF [7] produced reasonable results for

Lytro Illum data, whereas the results of LF [7] tended to

be oversmoothed. Depth estimation for Lytro first generation

cameras is challenging because captured images suffer from

lower resolution, more calibration error, and more severe

image noise than Lytro Illum cameras. Our method produced

reasonable results by removing outliers in the refinement step,

as shown in Fig. 10. Although Epinet-fcn9x9 [4] exhibited

robustness against noise, as the scores of Dots in Fig. 7 indi-

cated, the results for images captured by Lytro first generation

cameras included many outliers. This is because the trained

network of Epinet-fcn9x9 was unsuitable for the images.
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Fig. 9. Depth estimation results for selected real-world images. The top three images were captured with a Lytro Illum camera by [30] and other images
were captured with Lytro first generation cameras. The fourth and fifth images are from [5] and the last two images are from this study. (a) Center view.
(b) SPO [12]. (c) LF [7]. (d) LF_OCC [6]. (e) Epinet-fcn9x9 [4]. (f) FDE (proposed method).

The training data of Epinet-fcn9x9 in all the experiments only

comprised synthetic data and did not include real-world data.

Moreover, adapting to various conditions requires a large-scale

data set that includes real-world data. However, it is difficult

owing to the unavailability of the ground truth depth of

real-world data.

As can be seen from the experimental results of synthetic

and real data, the advantage of our proposed method is that
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Fig. 10. Zoomed-in results of the last row image in Fig. 9.
(a) Epinet-fcn9x9 [4]. (b) Initial estimation of our method. (c) After
refinement of our method.

it achieves fast performance and reasonable estimation under

various conditions without requiring learning.

VII. CONCLUSION

In this study, we proposed and verified a fast and accurate

depth estimation method for light field cameras. In the initial

depth estimation step, our method uses one-bit feature calcu-

lation, fast matching cost calculation, view selection, and cost

volume interpolation to achieve fast initial estimation. In the

refinement step, our method uses a rapid approximate solver to

minimize the objective function, which consists of ℓ1 data and

smoothness terms. Experiments on synthetic data showed that

our method achieved competitive accuracy with the shortest

computational time when compared to other methods. The

proposed method also produced plausible results in real-world

scenes thanks to our refinement step.

As the proposed method is a simple MVSM approach, it has

the capacity for additional processes; therefore, future work

will aim to improve the estimation accuracy of the proposed

method by also considering occlusions.

REFERENCES

[1] M. Levoy and P. Hanrahan, “Light field rendering,” in Proc. 23rd Annu.

Conf. Comput. Graph. Interact. Techn. (SIGGRAPH), New York, NY,
USA, 1996, pp. 31–42.

[2] A. Isaksen, L. McMillan, and S. J. Gortler, “Dynamically reparameter-
ized light fields,” in Proc. 27th Annu. Conf. Comput. Graph. Interact.

Techn. (SIGGRAPH), New York, NY, USA, 2000, pp. 297–306.
[3] R. C. Bolles, H. H. Baker, and D. H. Marimont, “Epipolar-plane

image analysis: An approach to determining structure from motion,”
Int. J. Comput. Vis., vol. 1, no. 1, pp. 7–55, 1987.

[4] C. Shin, H.-G. Jeon, Y. Yoon, I. S. Kweon, and S. J. Kim, “EPINET:
A fully-convolutional neural network using epipolar geometry for depth
from light field images,” in Proc. IEEE Conf. Comput. Vis. Pattern

Recognit., Jun. 2018, pp. 4748–4757.
[5] M. W. Tao, S. Hadap, J. Malik, and R. Ramamoorthi, “Depth from

combining defocus and correspondence using light-field cameras,” in
Proc. IEEE Int. Conf. Comput. Vis., Dec. 2013, pp. 673–680.

[6] T.-C. Wang, A. A. Efros, and R. Ramamoorthi, “Occlusion-aware depth
estimation using light-field cameras,” in Proc. IEEE Int. Conf. Comput.

Vis., Dec. 2015, pp. 3487–3495.
[7] H.-G. Jeon et al., “Accurate depth map estimation from a lenslet light

field camera,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2015, pp. 1547–1555.

[8] T. Tomioka, K. Mishiba, Y. Oyamada, and K. Kondo, “Depth map
estimation using census transform for light field cameras,” in Proc. IEEE
Int. Conf. Acoust. Speech Signal Process., Mar. 2016, pp. 1641–1645.

[9] C.-T. Huang, “Robust pseudo random fields for light-field stereo match-
ing,” in Proc. IEEE Int. Conf. Comput. Vis., Oct. 2017, pp. 11–19.

[10] S. Wanner and B. Goldluecke, “Globally consistent depth labeling of
4D light fields,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2012, pp. 41–48.

[11] J. Li, M. Lu, and Z.-N. Li, “Continuous depth map reconstruction
from light fields,” IEEE Trans. Image Process., vol. 24, no. 11,
pp. 3257–3265, Nov. 2015.

[12] S. Zhang, H. Sheng, C. Li, J. Zhang, and Z. Xiong, “Robust depth
estimation for light field via spinning parallelogram operator,” Comput.

Vis. Image Understand., vol. 145, pp. 148–159, Apr. 2016.
[13] H. Lin, C. Chen, S. B. Kang, and J. Yu, “Depth recovery from light

field using focal stack symmetry,” in Proc. IEEE Int. Conf. Comput.

Vis., Dec. 2015, pp. 3451–3459.
[14] M. Strecke, A. Alperovich, and B. Goldluecke, “Accurate depth and

normal maps from occlusion-aware focal stack symmetry,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Jul. 2017, pp. 2529–2537.

[15] O. Johannsen, A. Sulc, and B. Goldluecke, “What sparse light field
coding reveals about scene structure,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2016, pp. 3262–3270.

[16] H.-G. Jeon et al., “Depth from a light field image with learning-based
matching costs,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 41, no. 2,
pp. 297–310, Feb. 2019.

[17] X. Hu and P. Mordohai, “A quantitative evaluation of confidence
measures for stereo vision,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 34, no. 11, pp. 2121–2133, Nov. 2012.

[18] S. Farsiu, M. Robinson, M. Elad, and P. Milanfar, “Fast and robust
multiframe super resolution,” IEEE Trans. Image Process., vol. 13,
no. 10, pp. 1327–1344, Oct. 2004.

[19] M. Shimizu and M. Okutomi, “Significance and attributes of subpixel
estimation on area-based matching,” Syst. Comput. Jpn., vol. 34, no. 12,
pp. 1–10, Nov. 2003.

[20] A. Hornung, B. Zeng, and L. Kobbelt, “Image selection for improved
multi-view stereo,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2008, pp. 1–8.

[21] C. Kim, K. Subr, K. Mitchell, A. Sorkine-Hornung, and M. Gross,
“Online view sampling for estimating depth from light fields,” in Proc.
IEEE Int. Conf. Image Process., Sep. 2015, pp. 1155–1159.

[22] H. Ishikawa, “Exact optimization for Markov random fields with convex
priors,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 10,
pp. 1333–1336, Oct. 2003.

[23] L. Yin, R. Yang, M. Gabbouj, and Y. Neuvo, “Weighted median filters:
A tutorial,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 43, no. 3,
pp. 157–192, Mar. 1996.

[24] Q. Zhang, L. Xu, and J. Jia, “100+ times faster weighted median filter
(WMF),” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2014,
pp. 2830–2837.

[25] K. Honauer, O. Johannsen, D. Kondermann, and B. Goldluecke,
“A dataset and evaluation methodology for depth estimation on 4D
light fields,” in Computer Vision—ACCV (Lecture Notes in Computer
Science: Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), vol. 10113. Cham, Switzerland: Springer, 2017,
pp. 19–34.

[26] L. Armijo, “Minimization of functions having Lipschitz continuous first
partial derivatives,” Pacific J. Math., vol. 16, no. 1, pp. 1–3, Jan. 1966.

[27] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy min-
imization via graph cuts,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 23, no. 11, pp. 1222–1239, Nov. 2001.

[28] Y. Boykov and V. Kolmogorov, “An experimental comparison of min-
cut/max-flow algorithms for energy minimization in vision,” IEEE Trans.

Pattern Anal. Mach. Intell., vol. 26, no. 9, pp. 1124–1137, Sep. 2004.
[29] V. Kolmogorov and R. Zabih, “What energy functions can be minimized

via graph cuts?” IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 2,
pp. 147–159, Feb. 2004.

[30] M. Rerabek and T. Ebrahimi, “New light field image dataset,” in Proc.

8th Int. Conf. Quality Multimedia Exper., 2016.

Kazu Mishiba (Member, IEEE) received the B.E.
and M.E. degrees from Keio University, Yokohama,
Japan, in 2004 and 2006, respectively, and the Ph.D.
degree from Keio University, in 2011. In 2006,
he joined Fujifilm Co., Ltd. He became an Assistant
Professor at Keio University in 2011. He is cur-
rently an Associate Professor with Tottori University.
His research interests are image processing and
computer vision.


