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Fast Detection and Display of Symmetry in Trees

Joseph Manning AND Mikhail J. Atallah

DEPARTMENT OF COMPUTER SCIENCES
PURDUE UNIVERSITY

WEST LAFAYETTE, IN 47907

Abstract: The automatic construction of good drawings of abstract graphs is a
problem of practical importance. Displaying symmetry appears as one of the main
criteria for achieving goodness. An expression is obtained for the maximum number of
axial symmetries of a tree which can be simultaneously displayed in a single drawing,
and an algorithm is presented for constructing such a maximally-symmetric drawing.
Similar results are also obtained for rotational symmetries in trees. The algorithms
run in time which is linear in the size of the tree, and hence are optimal.

Summary

1. Drawing Graphs

discusses the concept of producing good drawings of graphs and the criteria for goodness.

2. Displaying Symmetry in Graphs

examines the problem of displaying axial and rotational symmetry in dra.wings of graphs.

3. Some Basic Properties of Axial and Rota.tional Symmetry

reviews simple basic results on axial and rotational symmetry of a.ny geometrical figure.

4. Symmetry and the Center of a Tree

defines the center of a tree and demonstrates its importance in relationship to symmetry.

5. Axial Symmetry in Trees

derives an expression for the maximum number of axial symmetries of a tree which
can be simultaneously displayed in a single drawing, and presents a linear-time algorithm
for constructing such a drawing.

6. Rotational Symmetry in Trees

derives an expression for the maximum number of rota.tional symmetries of a tree which
can be simultaneously displayed in a single drawing, and presents a linear-time algorithm
for constructing such a drawing.

7. Remarks

discusses the current computer implementation of the algorithms, drawing trees which
ha.ve little symmetry, and related results for outerplanar graphs.
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1. Drawing Graphs

Mathematically, an abstract graph simply consists of two sets, V and E C V x V,

and as such is completely specified by an enumeration of these sets or by adjacency

lists or an adjacency matrix [AHU 74]. However, such representations convey little

structural information about the graph, and so graphs are instead often presented

by means of drawings. Every given abstract graph may be drawn in various different

ways, all equally "correct", but some certainly "better" than others in the sense

that they clearly display important structural properties of the graph. For example,

both drawings in Figure 1 represent the same abstract graph (the Herschel graph),

but key properties such as planarity, biconnectivity, symmetry, diameter, and even

bipartition are readily apparent from the second drawing but not from the first:

Figure 1: Two drawings 0/ the same graph

To formalize the notion of a "good" drawing of a given graph, there are several

criteria which may be applied, including:

• USE STRAlGHT LINE SEGMENTS TO DRAW EDGES [Far 48]

• DISPLAY AXIAL SYMMETRIES OF THE GRAPH [LNS 85J

• DISPLAY ROTATIONAL SYMMETRIES OF THE GRAPH (LNS 85]

• MINIMIZE THE NUMBER OF EDGE CROSSINGS (NP-complete: [GaJ 79J)

• MINIMIZE THE RATIO OF LONGEST TO SHORTEST EDGE LENGTHS

• MINIMIZE THE RATIO OF LARGEST TO SMALLEST FACE AREAS (pla.na.r graphs)

• DRAW INTERIOR FACE BOUNDARIES CONVEX (pl.n.r gr.phs) [CON 851

• DRAW TRI-CONNECTED COMPONENTS CONVEX (pl.n.r graph.) [CON 85]

• SITUATE VERTICES AT INTEGER LATTICE POINTS [Shi 76, Woo 81, SuR 83]

Note that there may be conflicts between some of the above criteria, so in general it

will not be possible to satisfy all of them in a single drawing. For example, the two
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drawings of K4, in Figure 2 demonstrate a conflict between displaying symmetries

and minimizing edge crossings - the first shows 4 axial and 3 rotational symmetries

but has an edge crossing, while the second has no edge crossing but then shows only

3 axial and 2 rotational symmetries:

Figure 2 Symmetric and Planar drawings 0/ K"

2. Displaying Syuunetry in Graphs

From the results of practical experimentation, the best overall general criteria

appear to be the display of axial symmetry and, to a somewhat lesser extent, the

display of rotational symmetry. These criteria are now studied in more detail, with

particular attention to their computational suitability. In addition, for simplicity all

drawings will use straight line segments to draw edges; this ensures that a drawing

of a graph is fully specified simply by the positions of its vertices, and also does not

conflict with the display of either symmetry or planarity [Fa.r 48].

It should be emphasized at this point that axial. and rotational symmetry are

inherent properties of the abstract graph, independent of any particular drawing.

In fact these properties can be formally defined in a purely algebraic manner in terms

of automorphisms of the graph. However, for the present study it is more convenient

to work with the equivalent geometric concept; an abstract graph is defined to have an

axial (rotational) symmetry if there is some drawing of the graph which displays that

axial (rotational) symmetry. Here, a (straight-edge) drawing of a graph is simply a set

of distinct points in the plane, one point for each vertex, with straight line segments

between points representing adjacent vertices. To avoid ambiguous representations,

a line segment may not intersect a point unless the corresponding edge and vertex

are incident, nor may two collinear segments overlap.

The detection of axial or rotational symmetry in arbitrary graphs appear to be

computationally difficult problems. This is shown by the following propositions,

which reduce the celebrated Graph Isomorphism problem, for which there is no known

general efficient algorithm [CoG 70), to each of these symmetry detection problems:
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PROPOSITION 1: Determining if an arbitrary graph has at least one axial symmetry
is computationally at least as hard as general graph isomorphism.

PROOF: Let GI and G2 be any two graphs whose isomorphism is to be tested. Form

a new composite graph G from Oland G2 , as shown in Figure 3, by adding the

triangle (U,VhV2), joining VI and V2 to each vertex of 0 1 and G2 , respectively:

G, G,

G

Figure 3 : Axial Symmetry detection is as hard as Graph Isomorphism

Then G can have only one possible axial symmetry, which must pass through u and

interchange VI and V2j such a symmetry exists iff G1 and G2 are isomorphic. 0

PROPOSITION 2: Determining il an arbitrary graph has at least one {non-trivial}

rotational symmetry is computationally at loost as hard as general graph isomorphism.

PROOF: Let G1 and G 2 be any two graphs whose isomorphism is to be tested. Form

a new composite graph G from G 1 and G21 as shown in Figure 4, by adding the

path (Vh tt, V2), joining VI and V2 to each vertex of G1 and G2, respectively:

G

Figure 4 : Rotational Symmetry detection is as hard as Graph Isomorphism

Then G can have only one possible (non-trivial) rotational symmetry, which must

be a 1800 rotation about 1.1. and interchange VI and V2; such a symmetry exists iff

G1 and G2 are isomorphic. D

4



For trees, however, the present paper shows that both axial and rotational

symmetries can be detected in a highly efficient manner. Expressions are obtained for

the maximum number of axial symmetries and rotational symmetries which can be

simultaneously displayed. in (separate) single drawings of a given tree. Furthermore,

algorithms are given which actually construct such maximally-symmetric drawings.

These algorithms run in time which is linear in the number of vertices of the tree,

and hence are optimal to within a constant factor.

The only other research on producing symmetric drawings of graphs appears to

be tbat of Lipton, North, and Sandberg [LNS 851. Results are obtained for the

restricted class of perfectly drawable graphs, although the drawing algorithm may be

computationally inefficient since it involves finding the graph's automorphism group.

3. Some Basic Properties of Axial and Rotational Symmetry

The following standard results hold for all finite geometrical figures in the plane,

apart from figures composed solely of concentric annular regions - however, such

exceptional cases will never arise in the present context:

AS-l: ALL AXES OF SYMMETRY INTERSECT IN A SINGLE COMMON POINT

this point is the centroid (center of gravity) of the figure.

AS-Ii: THE ANGLES BETWEEN ALL PAIRS OF ADJACENT AXES ARE THE SAME

if there are K axes, this common angle is 3600
/ 2K.

RS-1: THERE CAN BE ONLY ONE CENTER OF ROTATIONAL SYMMETRY

this point is again the centroid of the figure.

RS-Ii: ALL ROTATIONAL SYMMETRJES ARE MULTIPLES OF A SINGLE ROTATION

THROUGH AN ANGLE 0, WHERE KO = 360° FOR SOME INTEGER K
for a rotationally asymmetric figure, 0 = 360 0

.

4. Symmetry and the Center of a Tree

Properties AS-1 and RS-1 show the importance of the centroid of a geometrical

figure when investigating its symmetry. Note in particular that the centroid remains

fixed under all axial and rotational symmetries. Since the geometrical figures of

interest here are drawings of trees, a useful graph-theoretic counterpart of the centroid

is the concept of center.

Let the distance between any two vertices in a tree be the number of edges along

the unique path joining them, and let a leaf be any vertex of degree 1.
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DEFINITION: A center of a tree is any vertex such that the maximum. distance
between it and any leaf is minimized.

It is easily shown that every tree has either one center or two adjacent centers [Jor 69];

examples of each are shown in Figure 5:

Figure 5 : A tree with one center (G), and a tree with two centers (Gl , G2)

To determine the center(s) of a tree, simply delete all leaves from the tree and

keep repeating this process until at the end of a complete phase, exactly one or two

vertices remain - each such vertex is then a center of the original tree. By using a

queue to store the current vertices of degree 1 at every stage, this algorithm is easily

implemented to run in linear time [Mit 77].

Each symmetry of a tree must map centers onto centers, since these vertices

are distinguished. Thus in a one-center tree, the center must always remain fixed,

while in a two-center tree, the centers either remain fixed or are interchanged. Note

however that every two-center tree can be reduced to a corresponding one-center tree

by inserting a new vertex on the edge joining the two centers. Thus from now on,

for simplicity it will be assumed that every tree has a single centerj this center is

at the intersection of all axial symmetries, is the origin of all rotational symmetries,

and remains fixed under all such symmetries. Furthermore, to avoid a trivial special

case, every tree will be assumed to have more than one vertex.

Removing the center and all its incident edges from a tree results in a collection

of disjoint subtrees; these are called c-trees, and for each c-tree the unique vertex

adjacent to the center is called its root. Under any symmetry of the original tree,

every c-tree must clearly map onto an isomorphic c-tree, with roots mapping to roots.

Isomorphism of two rooted trees can be determined efficiently by encoding vertices

as tuples of integers and testing for equality of the sets of tuples from both trees

([AHU 741, §3.2). Using a simple extension of this algorithm, the collection of c-trees

may be partitioned into rooted isomorphism classes; this can be done in time which

is linear in the size of the entire tree.

Let Sl, ... ,St denote these rooted isomorphism classes, let N1, ... ,Nt denote

the numbers of c-trees in the respective classes, and let g = gcd( N I , ••• ,Nt).
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5. Axial Symmetry in Trees

Let K A denote the maximum number of axial symmetries of a given tree which

can be simultaneously displayed in a single drawing. The main result of this section,

Theorem I, gives a computationally efficient expression for finding the value of K A •

The proof of this result is constructive in nature and leads directly to an algorithm

for actually generating such a maximally-symmetric drawing. This algorithm runs

in time which is linear in the size of the tree, and hence is optimal.

By property .It 5-1, all axes of symmetry in a drawing of a tree must pass through

the center point. Let a semi-axis denote that part of an axis of symmetry emanating

from the center in one direction only. Starting at an arbitrary semi-axis, consecutive

semi-axes are termed odd and even respectively. Let a wedge denote that region of the

plane properly between adjacent semi-axes; by property A5-2 all wedges have the

same angle. So in a drawing with K A axes of symmetry, there are 2KA semi-axes

(KA of them odd, K A even), and 2KA wedges, each with angle 3600
/ 2KA •

An isomorphism class of c-trees is called an A-class if a c-tree from that class,

together with the center of the entire tree and the edge joining the center to the root,

has itself got an axial symmetry passing through both center and root. Thus in a

drawing of the tree, (the root of) a c-tree can lie along a semi-axis only if it belongs

to an A-class. To determine if a class Si is in fact an A-class, take any c-tree in SI'

remove its root, and partition the resulting subtrees into rooted isomorphism classesj

then Si is an A-class iff at most one of these latter subclasses has odd cardinality and

is itself an A-class, a fact which may be determined recursively. Again, this can all

be done in time which is linear in the size of the c-tree. It also shows how a c-tree

from an A-class may be laid along a semi-axis: its root is placed on the semi-axis,

and an equal number of subtrees from each subclass are placed symmetrically on

either side of the semi-axis, with a single subtree from the odd-sized subclass, if the

latter exists, laid along the semi-axis by a recursive application of this method.

Let M, = N;/g (1 ::; i ::; t), and define the conditions (a) and (,8) as shown;

note that these two conditions can be evaluated in linear time:

(a) {

(,8) {

at most two of the N/s are odd
AND

Si is an A-class whenever N j is odd

at most two of the ~'s are odd
AND

Sj is an A-class whenever ~ is odd.

The value of K A can then be expressed as follows:
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THEOREM 1: o
g

g/2

if (a) fail.

if (Ii) holds

otherwise.

Proof: This result is an immediate consequence of Lemmas 1, 3, and 4, below. 0

Suppose K A =f:. 0 and consider any drawing of the tree which displays all K A axes.

By symmetry under reflec tien in semi-axes, each class S i must have the same number

of c-trees in every wedge, along every odd semi-axis, and along every even semi-axis;

let Wi, Oj, ei denote these quantities, respectively. Furthermore, all odd semi-axes,

and similarly all even semi-axes, must either be unoccupied, or else be occupied by

c-trees from the same class. In particular, at most two classes can have c-trees lying

along semi-axes, and these must be A-classes.

LEMMA 1: K A # 0 <= (a).

Proof:

===>: Consider any drawing of the tree which displays all K A axes of symmetry.

For those S/B whose c-trees all lie in the 2KA wedges, N j = 2KA Wi which is even.

Thus N, can be odd only for those 81's which have Borne c-trees along semi-axes.

There can be at most two such 81's and these must be A-classes.

<==: Construct a drawing of the tree by choosing any line in the plane, placing the

center of the tree on this line, and laying one c-tree from each odd-sized A-class along

distinct halves of the line. All remaining c-trees can be grouped into isomorphic pairsj

arrange each such pair symmetrically on opposite sides of the line. This completes

the drawing of the tree; the chosen line is an axis of symmetry, so K A 2: 1. 0

Proof: For K A #- 0, in any drawing of the tree which displays K A axes of symmetry:

N i = 2KAWi+KAoi+KAei = (2wi+oi+ei)KA.

Thus K A I N j for each 1 ::; i ::; t , giving K A I g. D

LEMMA 3: KA = g <= (.0).

Proof:

==>: Consider any drawing of the tree which displays K A = 9 axes of symmetry.

For those 8 i 's whose c-trees all lie in the 2g wedges, N i = 2g Wi, giving M i = 2Wi

which is even. Thus M, can be odd only for those 81's which have some c-trees along

semi-axes. There can be at most two such S/s and these must be A-classes.
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<=: Construct a drawing of the tree by choosing 9 axes, subject to A5-1 and A5-2,

and place the center of the tree at their point of intersection. If only one M i is odd,

lay a c-tree from the corresponding Hi along each odd semi-axis; if two M/s are odd,

lay c-trees from the corresponding Si's along odd and even semi-axes, respectively.

In either case, let Ni denote the number of unplaced trees remaining in each class S i,

and let Mi = Nilg; each Mi is even. Complete the drawing by placing Md2 = Ni /2g
c-trees from each class 8 i in each of the 2g wedges, arranged symmetrically around

semi-axes. This drawing shows that K A 2: g, so by Lemma 2, K A = g. 0

LEMMA 4: (a) AND NOT (11) =* K A = 9/2.

Proof: Note first that if 9 is odd, then N j (= g.M,,) is odd whenever M j is odd,

and so (aJ =* (11). Thus if (a) AND NOT (11) hold" 9 must be even.

Construct a drawing of the tree by choosing gl2 axes, subject to A5-1 and A5-2,
and place the center of the tree at their point of intersection. Then place Nil9 c-trees

from each class Hi in each of the 9 wedges, arranged symmetrically around semi-axes.

This drawing shows that K A 2: 912, so by Lemmas 2 and 3, K A = 9/2. 0

The proofs of Lemmas 3 and 4 provide an efficient algorithm for constructing a

maximally-symmetric drawing of any given tree. An example is shown in Figure 6.

Here, (NI , N 2,Ns) = (4,6,6) so g = 2 and (MI , M 2 , M s) = (2,3,3), and since both

82 and 8 3 are A-classes, condition (.8) holds, giving K A = 9 = 2:

Figure 6 : Drawing of a tree, showing vertical and horizontal Axial Symmetries
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6. Rotational Symmetry in Trees

Recall from property RS-2 that all rotational symmetries are multiples of a single

rotation through an angle tJ, where KtJ = 360 0 for some integer K. Let K R denote

the largest such K for any drawing of a given tree. Then K R is in fact the maximum

number of rotational symmetries of the tree which can be simultaneously displayed.

The value of K R is given by:

THEOREM 2: K R = g.

Proof: Consider any drawing of the tree which displays all K R rotational symmetries.

Partition the plane into K R similar conical-shaped wedges, having a common angle

tJ = 360 0 IK R and a common apex at the location of the center of the tree, oriented

so that the roots of all c-trees lie properly within wedges. By symmetry under a

rotation through tJ, each wedge must be identically occupied. Thus for each class S j

the Ni c-tree roots must be distributed equally among the K R wedges, so K R IN j

for each 1 < i < t, giving K R I g.

Construct a drawing of the tree by again partitioning the plane into g similar

conical-shaped wedges, having a common angle 0 = 360 DIg and a common apex.

Place the center of the tree at thls apex, and place Nilg c-trees from each class Sj

in each of the g wedges, arranged in the same configuration within each wedge.

The resulting clxawing is symmetric about the center under a rotation through O.

It follows that K R ~ 360 0 /8 = g, giving K R = g. D

The proof of Theorem 2 provides an efficient algorithm for constructing a clxawing

of the tree which displays all K R rotational symmetries. This algorithm runs in time

which is linear in the size of the tree, and hence is optimal.

7. Remarks

The two symmetry algorithms have been successfully implemented on a computer.

The programs take as input the adjacency lists of an arbitrary tree and produce

as output a device-independent coordinate specification for a symmetric drawing.

These coordinates can then be used to display the tree on either a high-resolution

graphics terminal or a laser printer. As seen above, the theoretical running time

of both algorithms is linear in the size of the tree; in actual practice, the response

of the programs is almost instantaneous, for trees with up to one hundred vertices.

The programs are written in the language Modula-2, and further details are available

upon request from the first author.
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Many trees possess very little symmetry. Nevertheless, the methods described

here may still be applied to prod uce good drawings, by relaxing the definition of the

classes 8i - instead of requiring that c-trees in the same class be strictly isomorphic,

some weaker criteria may be used, such as c-trees having the same number of vertices,

the same height, or the same degree at the root.

Recent work has extended the above results to the case of outerplanar graphs.

Using the present algorithms as a foundation, and adding some substantially different

techniques, [MaA 86} obtains linear-time algorithms for the detection and display

of both axial and rotational symmetries in arbitrary outerplanar graphs.
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