Fast Detection of Scanning Worm Infections

Stuart E. Schechter!, Jaeyeon Jung?, and Arthur W. Berger?

! Harvard DEAS,
33 Oxford Street, Cambridge MA 02138, USA,
stuart@eecs.harvard.edu
2 MIT CSAIL,
32 Vassar Street, Cambridge MA 02139, USA,
{jyjung,awberger}@csail.mit.edu

Abstract. Worm detection and response systems must act quickly to
identify and quarantine scanning worms, as when left unchecked such
worms have been able to infect the majority of vulnerable hosts on the
Internet in a matter of minutes [9]. We present a hybrid approach to de-
tecting scanning worms that integrates significant improvements we have
made to two existing techniques: sequential hypothesis testing and con-
nection rate limiting. Our results show that this two-pronged approach
successfully restricts the number of scans that a worm can complete, is
highly effective, and has a low false alarm rate.

1 Introduction

Human reaction times are inadequate for detecting and responding to fast scan-
ning worms, such as Slammer, which can infect the majority of vulnerable sys-
tems in a matter of minutes [18,9]. Thus, today’s worm response proposals focus
on automated responses to worms, such as quarantining infected machines [10],
automatic generation and installation of patches [14, 15], and reducing the rate at
which worms can issue connection requests so that a more carefully constructed
response can be crafted [22,27].

Even an automated response will be of little use if it fails to be triggered
quickly after a host is infected. Infected hosts with high-bandwidth network con-
nections can initiate thousands of connection requests per second, each of which
has the potential to spread the infection. On the other hand, an automated
response that triggers too easily will erroneously identify hosts as infected, in-
terfering with these hosts’ reliable performance and causing significant damage.

Many scan detection mechanisms rely upon the observation that only a small
fraction of addresses are likely to respond to a connection request at any given
port. Many IPv4 addresses are dead ends as they are not assigned to active hosts.
Others are assigned to hosts behind firewalls that block the port addressed by the
scanner. When connection requests do reach active hosts, many will be rejected
as not all hosts will be running the targeted service. Thus, scanners are likely to
have a low rate of successful connections, whereas benign hosts, which only issue
connection requests when there is reason to believe that addressees will respond,
will have a much greater rate of success.

Existing methods for detecting scanning worms within a local network use
fixed thresholds for the number of allowable failed connections over a time pe-
riod [16] or limit the rate at which a host can initiate contact with additional
hosts [27]. However, these threshold based approaches may fail to detect low-rate
scanning. They may also require an excessive number of connection observations
to detect an infection or lead to an unnecessary number of false alarms.

To detect inbound scans initiated by hosts outside the local network, pre-
vious work on which we collaborated [7] used an approach based on sequential
hypothesis testing. This approach automatically adjusts the number of observa-
tions required to detect a scan with the strength of the evidence supporting the
hypothesis that the observed host is, in fact, scanning. The advantage of this
approach is that it can reduce the number of connection requests that must be
observed to detect that a remote host is scanning while maintaining an accept-
able false alarm rate.

While this approach shows promise for quickly detecting scanning by hosts
inside a local network soon after they have been infected by a worm, there
are significant hurdles to overcome. For one, to determine whether a request to
connect to a remote host will fail, one must often wait to see whether a successful
connection response will be returned. Until enough connection requests can be
established to be failures, a sequential hypothesis test will lack the observations
required to conclude that the system is infected. By the time the decision to
quarantine the host is made, a worm with a high scan rate may have already
targeted thousands of other hosts.

This earlier work used a single sequential hypothesis test per host and did
not re-evaluate benign hosts over time. Unlike an intrusion detection system ob-
serving remote hosts, a worm detection system is likely to observe benign traffic
originating from an infected host before it is infected. It is therefore necessary
to adapt this method to continuously monitor hosts for indications of scanning.

Fig.1. A Worm Detection System (WDS) is located to monitor a local network

We introduce an innovative approach that enables a Worm Detection System
(WDS) to continuously monitor a set of local hosts for infection, requiring a small
number of observations to be collected after an infection to detect that the host
is scanning (Figure 1).

To detect infected hosts, the WDS need only process a small fraction of
network events; a subset of connection request observations that we call first-
contact connection requests and the responses to these requests that complete
the connections. A first-contact connection request is a packet (TCP or UDP)
addressed to a host with which the sender has not previously communicated.
These events are monitored because scans are mostly composed of first-contact
connection requests.

In Section 2, we introduce a scan detection algorithm that we call a reverse
sequential hypothesis test (ﬁ), and show how it can reduce the number of first-
contact connections that must be observed to detect scanning®. Unlike previous
methods, the number of observations T requires to detect hosts’ scanning
behavior is not affected by the presence of benign network activity that may be
observed before scanning begins.

In Section 3, we introduce a new credit-based algorithm for limiting the
rate at which a host may issue the first-contact connections that are indica-
tive of scanning activity. This credit-based connection rate limiting (CBCRL)
algorithm results in significantly fewer false positives (unnecessary rate limiting)
than existing approaches.

When combined, this two-pronged approach is effective because these two
algorithms are complementary. Without credit-based connection rate limiting, a
worm could rapidly issue thousands of connection requests before enough con-
nection failures have been observed by Reverse Sequential Hypothesis Testing so
that it can report the worm’s presence. Because Reverse Sequential Hypothesis
Testing processes connection success and failure events in the order that con-
nection requests are issued, false alarms are less likely to occur than if we used
an approach purely based on credit-based connection rate limiting, for which
first-contact connections attempts are assumed to fail until the evidence proves
otherwise.

We demonstrate the utility of these combined algorithms with trace-driven
simulations, described in Section 4, with results presented in Section 5. The
limitations of our approach, including strategies that worms could attempt to
avoid detection, are presented in Section 6. We discuss related work, including
previous approaches to the scanning worm detection problem, in Section 7. Our
plans for future work are presented in Section 8, and we conclude in Section 9.

2 Detecting Scanning Worms by Using
Reverse Sequential Hypothesis Testing

A worm is a form of malware that spreads from host to host without human
intervention. A scanning worm locates vulnerable hosts by generating a list of
addresses to probe and then contacting them. This address list may be gener-
ated sequentially or pseudo-randomly. Local addresses are often preferentially

3 The letters in this abbreviation, ﬁ, stand for Hypothesis Testing and the arrow
indicates the reverse sequential order in which observations are processed.

selected [25] as communication between neighboring hosts will likely encounter
fewer defenses. Scans may take the form of TCP connection requests (SYN pack-
ets) or UDP packets. In the case of the connectionless UDP protocol, it is possible
for the scanning packet to also contain the body of the worm as was the case
with the Slammer worm [9].

In this section, we present an on-line algorithm for detecting the presence of
scanners within a local network by observing network traffic. We use a sequential
hypothesis test for its ability to adjust the number of observations required to
make a decision to match the strength of the evidence it is presented with.

2.1 Sequential Hypothesis Testing

As with existing approaches to scan detection [7,17,22,27], we rely upon the
observation that only a small fraction of addresses are likely to respond to a
connection request at any given port. Benign hosts, which only contact systems
when they have reason to believe that this connection request will be accepted,
are more likely to receive a response to a connection request.

Recall that a first-contact connection request is a packet (TCP or UDP)
addressed to a host with which the sender has not previously communicated.
When a local host [initiates a first-contact connection request to a destination
address, d, we classify the outcome as either a “success” or a “failure”. If the
request was a TCP SYN packet, the connection is said to succeed if a SYN-ACK
is received from d before a timeout expires. If the request is a UDP packet,
any UDP packet from d received before the timeout will do. We let Y; be a
random (indicator) variable that represents the outcome of the it" first-contact
connection request by [, where

v — 0 if the connection succeeds
"7 11 if the connection fails

Detecting scanning by local hosts is a problem that is well suited for the
method of sequential hypothesis testing first developed by Wald [24], and used
in our earlier work to detect remote scanners [7].

We call H; the hypothesis that host [is engaged in scanning (indicating
infection by a worm) and Hy the null hypothesis that the host is not scanning. We
assume that, conditional on the hypothesis H;, the random variables Y;|H; i =
1,2,... are independent and identically distributed (i.i.d.). That is, conditional
on the hypothesis, any two connection attempts will have the same likelihood
of succeeding, and their chances of success are unrelated to each other. We can
express the distribution of the Bernoulli random variable Y; as:

PI‘[Y; = 0|H0] = 9(), PI‘[Y; = 1|H()] =1- 90
PI‘[Y;‘:O|H1]:91, PI‘[Y;:1|H1]11791

Given that connections originating at benign hosts are more likely to succeed
than those initiated by a scanner, 6y > 6.

Sequential hypothesis testing chooses between two hypotheses by comparing
the likelihoods that the model would generate the observed sequence of events,
Y, = (Y1,...,Y,), under each hypothesis. It does this by maintaining the ratio
A(Y,,), the numerator of which is the likelihood that the model would generate
the sequence of events Y, under hypothesis Hi, and the denominator under
hypothesis Hy.

Pr[Y,|H;]
Pr[Y | Ho] @

The i.i.d. assumption in the model enables us to state this ratio in terms of
the likelihoods of the individual events.

A(Yn)

A =1[7?““‘“ (2)

We can write the change to A(Y,,) as a result of the i'?*observation as ¢(Y;):

0 Y. =
Pr[Y; | Hi] oo if Y; =0 (success)
o(Y;) = PrlY;[Ho|
€0 1=0L if ¥; = 1 (failure)
0
This enables us to rewrite A(Y,) inductively, such that A(Y,) = 1, and
A(Y,) may be calculated iteratively as each observation arrives.

One compares the likelihood ratio A(Y,,) to an upper threshold, 7;, above
which we accept hypothesis Hi, and a lower threshold, 79, below which we accept
hypothesis Hy. If ng < A(Y,,) < m then the result will remain inconclusive until
more events in the sequence can be evaluated. This is illustrated in Figure 2.

Fig. 2. A log scale graph of A(Y) as each observation, Y;, is added to the sequence.
Each success (0) observation decreases A(Y), moving it closer to the benign conclusion
threshold no, whereas each failure (1) observation increases A(Y), moving it closer to
the infection conclusion threshold n;

Writing the probability of correctly reporting detection (declaring host is
infected when indeed it is) as Pp and the probability of a false positive (declaring

host is infected when in fact it is not) as Pg, we can define our performance
requirements as bounds « and § on these probabilities.

a>Pr and < Pp

Because every false positive can decrease productivity of both the users of a host
and the security staff who need to inspect it, one would expect to use a values
that are small fractions of a percentage point. Since scanners generate enough
traffic to clearly differentiate their behavior from that of benign systems, a § of
greater than 0.99 should be an achievable requirement.

Wald [24] showed that 77 and 79 can be bounded in terms of Pp and Pr.

Pp
< =
m= Pr (3)
1-P
D < o (4)

1—-Pr

Given our requirement parameters « and (3, we assign the following values
to our thresholds, 79 and 7;:

771<—§ (5)
1-p
=T, (6)

From Equations (3) and (5), we can bound Pr in terms of a and (. Since
0 < Pp < 1, we can replace Pp with 1 in Equation (3) to yield:

Pp 1
< =< 7
m =< Pr < Pr (7)
It follows that:
1 o
Pr< —=— 8
"t ®

Likewise, using Equation (4) and given that 1 — Pp < (1—Pp)/(1 — Pr), we
can bound 1 — Pp:
1-p
11—«

1—Pp<mn = (9)

While 77 may result in a false positive rate above our desired bound by a
factor of %7 this difference is negligible given our use of 3 values in the range of
0.99 and above. Similarly, while our miss rate, 1 — Pp may be off by as much
as a factor of ﬁ, this too will have negligible effect given our requirements for
very small values of .

2.2 Detecting Infection Events

In our earlier work, it was assumed that each remote host was either a scanner or
benign for the duration of the observed period. When a host was determined to be
benign it would no longer be observed. In contrast, in this paper we are concerned
with detecting infection events, in which a local host transitions from a benign
state to an infected state. Should a host become infected while a hypothesis test
is already running, the set of outcomes observed by the sequential hypothesis
test may include those from both the benign and infected states, as shown in
Figure 3. Even if we continue to observe the host and start a new hypothesis
test each time a benign conclusion is reached, the test may take longer than
necessary to conclude that an infection has occurred.

infection 1
0 fectiol 1 B nl

Fig. 3. A log scale graph tracing the value of A(Y) as it is updated for a series of
observations that includes first-contact connection requests before (Y;—1 and Y;_2) and
after (Y; and beyond) the host was infected

The solution to this problem is to run a new sequential hypothesis test as each
connection outcome is observed, evaluating these outcomes in reverse chronolog-
ical order, as illustrated in Figure 4. To detect a host that was infected before it
issued first-contact connection i (event Y;), but after it had issued first-contact
connection i — 1, a reverse sequential hypothesis test (ﬁ) would require the
same number of observations to detect the infection as would a forward sequen-
tial hypothesis that had started observing the sequence at observation . Because
the most recent observations are processed first, the reverse test will terminate
before reaching the observations that were collected before infection.

Fig. 4. A log scale graph tracing the value of A(Yits, Yit4,...), in which the observa-
tions in Y are processed in reverse sequential order. The most recent, or rightmost,
observation is the first one processed

When we used sequential hypothesis testing in our prior work to detect scan-
ning of a local network by remote hosts, the intrusion detection system could
know a priori whether a connection would fail given its knowledge of the net-
work topology and services [7]. Thus, the outcome of a connection request from
host ¢ could immediately be classified as a success or failure observation (¥;) and
A(Y,,) could be evaluated without delay.

When a local host initiates first-contact connection requests to remote hosts,
such as those shown in Figure 5, the worm detection system cannot immediately
determine if the connection will succeed or fail. While some connection failures
will result in a TCP RST packet or an ICMP packet [1, 3], empirical evidence has
shown that most do not [2]. The remaining connection attempts can be classified
as failures only after a timeout expires.

local host WDS

5 dst:r.
l«—v — | ¢

Y,=0i =

Y, =

L

Ya=1

Yo=1

Yg=1

time

Fig. 5. The success of first-contact connection requests by a local host to remote hosts
cannot be established by the Worm Detection System (WDS) until a response is ob-
served or a timeout expires

While a sequential hypothesis test waits for unsuccessful connections to time
out, a worm may send thousands of additional connection requests with which
to infect other systems. To limit the number of outgoing first-contact connec-
tions, a sequential hypothesis testing approach can be paired with a credit-based
connection rate limiter as described in Section 3.

2.3 Algorithmic Implementation

A naive implementation of repeated reverse sequential hypothesis testing re-
quires that we store an arbitrarily large sequence of first-contact connection
observations. A naive implementation must also step through a portion of this
sequence each time a new observation is received in order to run a new test
starting at that observation.

Fortunately, there exists an iterative function:

A(Y,) =max (1, A(Y,—1)6(Yn))

with state variable A(Y,,), that can be calculated in the sequence in which events
are observed, and that has the property that its value will exceed 7 if and only
if a reverse sequential hypothesis test would conclude from this sequence that
the host was infected. This is proved in Appendix A.

Updating A for each observation requires only a single multiplication and two
comparison operations?. Because A is updated in sequence, observations can be
discarded immediately after they are used to update the value of A.

When running this algorithm in a worm detection system, we must maintain
separate state information for each host being monitored. Thus, a state variable
A, is maintained for each local host .

It is also necessary to track which hosts have been previously contacted by I.
We track the set of Previously Contacted Hosts, or PCH set, for each local host.

enum status {PENDING, SUCCESS, FAILURE};
struct FCC_Queue_Entry {

ip4_addr DestAddr;

time WhenInitiated;

status Status;

}

Fig. 6. The structure of entries in the First-Contact Connection (FCC) queue

Finally, each local host [has an associated queue of the first-contact con-
nection attempts that [has issued but that have not yet been processed as
observations. The structure of the records that are pushed on this FCC queue are
shown in Figure 6. The choice of a queue for this data structure ensures that
first-contact connection attempts are processed in the order in which they are
issued, not in the order in which their status is determined.

The algorithm itself is quite simple and is triggered upon one of three events.

1. When the worm detection system observes a packet (TCP SYN or UDP)
sent by local host [, it checks to see if the destination address d is in [’s
previously contacted host (PCH) set. If it isn’t, it adds d to the PCH set and
adds a new entry to the end of the FCC queue with d as the destination
address and status PENDING.

2. When an incoming packet arrives addressed to local host | and the source
address is also the destination address (DestAddr) of a record in I’s FCC
queue, the packet is interpreted as a response to the first-contact connection
request and the status of the FCC record is updated. The status of the FCC
record is set to SUCCESS unless the packet is a TCP RST packet, which
indicates a rejected connection.

3. Whenever the entry on the front of the FCC queue has status PENDING and
has been in the queue longer than the connection timeout period, a timeout
occurs and the entry is assigned the status of FAILURE.

4 In fact, addition and subtraction operations are adequate as the iterative fur}ction is
equivalent to ©(Y,) = max (0, O(Yr-1) + In¢(Y,)) where O(Y,) =In A(Y,).

When any of the above events causes the entry at the front of the FCC queue to
have status other than PENDING, it is dequeued and A; is updated and compared
to mp. If A > 71, we halt testing for host [and immediately conclude that [
is infected. Dequeuing continues so long as A; < 7y, the front entry of the FCC
queue has status other than PENDING, and the queue is not empty.

3 Slowing Worm Propagation by Using Credit-Based
Connection Rate Limiting

It is necessary to limit the rate at which first-contact connections can be initiated
in order to ensure that worms cannot propagate rapidly between the moment
scanning begins and the time at which the scan’s first-contact connections have
timed out and been observed by our reverse sequential hypothesis test (ﬁ)

Twycross and Williamson [27,22] use a technique they call a virus throttle
to limit outgoing first-contact connections. When observing a given host, their
algorithm maintains a working set of up to five hosts previously contacted by the
host they are observing. For the purpose of their work, a first-contact connection
is a connection to a host not in this working set. First-contact connections issued
when the working set is full are not sent out, but instead added to a queue. Once
per second the least recently used entry in the working set is removed and, if
the pending queue of first-contact connection requests is not empty, a request
is pulled off the queue, delivered, and its destination address is added to the
working set. All requests in the queue with the same destination address are
also removed from the queue and delivered.

Virus throttling is likely to interfere with HTTP connection requests for
inlined images, as many Web pages contain ten or more inlined images each of
which is located on a distinct peering server. While a slow but bursty stream
of requests from a Web browser will eventually be released by the throttle,
mail servers, Web crawlers, and other legitimate services that issue first-contact
connections at a rate greater than once per second will overflow the queue. In this
case, the virus throttling algorithm quarantines the host and allows no further
first-contact connections.

To achieve rate limiting with a better false positive rate we once again present
a solution inspired by sequential hypothesis testing and that relies on the obser-
vation that benign first-contact connections are likely to succeed whereas those
issued by scanners are likely to fail. This credit-based approach, however, is
unlike HT in that it assumes that a connection will fail until evidence proves
otherwise. Because it does not wait for a timeouts to act, it can react immedi-
ately to a burst of connections and halt the flow so that HT can then make a
more informed decision as to whether the host is infected. As it does not force
connections to be evaluated in order, CBCRL can also immediately process evi-
dence of connection successes. This will enable it to quickly increase the allowed
first-contact connection rate when these requests are benign.

Credit-based connection rate limiting, as summarized in Figure 7, works by
allocating to each local host, I, a starting balance of ten credits (C; « 10)

which can be used for issuing first-contact connection requests. Whenever a first-
contact connection request is observed, a credit is subtracted from the sending
host’s balance (C; «— C; —1). If the successful acknowledgment of a first-contact
connection is observed, the host that initiated the request is issued two additional
credits (C; « Cj + 2). No action is taken when connections fail, as the cost of
issuing a first-contact connection has already been deducted from the issuing
host’s balance. Finally, first-contact connection requests are blocked if the host
does not have any credit available (C; = 0)°.

Event ‘Change to C)

Starting balance|C; «— 10

FCC issued by [|C; — C; — 1

FCC succeeds |C; «— C; + 2

Every second |Cy « max(10, 2Cy) if C; > 10
Allowance C; «— 11if C; = 0 for 4 seconds

Fig. 7. The underlying equations behind credit-based connection rate limiting. Changes
to a host’s balance are triggered by the first-contact connections (FCCs) it initiates
and by the passing of time

If a first-contact connection succeeds with probability 6, its expected payoff
from issuing that connection is its expected success credit minus its cost, or 26—1.
This payoff is positive for 6 > % and negative otherwise. Hosts that scan with
a low rate of successful connections will quickly consume their credits whereas
benign hosts that issue first-contact connections with high rates of success will
nearly double their credits each time they invest them.

As described so far, the algorithm could result in two undesirable states.
First, a host could acquire a large number of credits while performing a benign
activity (e.g. Web crawling) which could be used later by a scanning worm.
Second, a network outage could cause a benign host to use all of its credits after
which it would starve for a lack of first-contact connection successes.

These problems are addressed by providing each host with a small allowance
and by putting in place a high rate of inflation. If a host has been without credits
for four seconds, we issue the host a single credit (C; « 1 if C; < 0). This not
only ensures that the host does not starve, but enables us to collect another
observation to feed into our hypothesis test (ﬁ) Because m“, as configured in
Section 4, observes all first-contact connection requests as successes or failures
within three seconds, providing a starving process with a credit allowance only
after more than three seconds have passed ensures that HT will have been
executed on all previously issued first-contact connection requests. If HT has
already concluded that the host is a worm, it is expected that the system will
be quarantined and so no requests will reach their destination regardless of the
credit balance.

5 In Section 8, we discuss the alternative of allowing all TCP requests to be transmitted
and queueing responses until credits are available.

For each second that passes, a host that has acquired more than 10 credits
will be forced to surrender up to a third of them, but not so many as to take
its balance below 10 (C; « max(10, 2Cy) if C; > 10). A host that is subject to
the maximum inflation rate, with a first-contact connection rate r, success rate
6 > 0, and credit balance Cj; at time ¢, will see this balance reach an equilibrium
state C' when C = Cri =Cliq1.

2
Criy1 = g(cl,t +7r-(20-1))
.2 4
C:§(C+r~(29—1))
A 2400 2
=20+ S.r(20-1
C 30—1-3 r- (20 —1)
1. 2
ZO=2.r.(20-1
3C’ 3" (20 — 1)
C=2-r-(20-1)

One can now see that we chose the inflation constant % to ensure that, in the
upcoming second, a host that has a perfect first-contact connection success rate
(0 = 1) will have twice as many credits as it could have needed in the previous
second. Also note that the maximum inflation rate, which seems quite steep,
is only fully applied when C > 15, which in turn occurs only when the first-
contact connection rate r is greater than 7.5 requests per second. Twycross and
Williamson’s virus throttle, on the other hand, can only assume that any host
with a first-contact connection rate consistently greater than one request per
second is a worm.

The constant of 10 was chosen for the starting credit balance (and for the
equilibrium minimum credit balance for benign hosts with first-contact connec-
tion rates below 5 requests/second) in order to match the requirements of our
sequential hypothesis test (m“) as currently configured (see parameters in Sec-
tion 4), which itself requires a minimum of 10 observations in order to conclude
that a host is engaged in scanning. Slowing the rate at which the first 10 observa-
tions can be obtained will only delay the time required by HT to conclude that
a host is engaged in scanning. Should the parameters of HT be reconfigured and
the minimum number of observations required to conclude a host is a scanner
change, the starting credit balance for rate-limiting can be changed to match it.

4 Experimental Setup

We evaluated our algorithms using two traces collected at the peering link of a
medium sized ISP; one collected in April 2003 (isp-03) containing 404 active
hosts and the other in January 2004 (isp-04) containing 451 active hosts. These
traces, summarized in Table 1, were collected using tcpdump.

Obtaining usable traces was quite difficult. Due to privacy concerns, network
administrators are particularly loathe to share traces, let alone those that contain

payload data in addition to headers. Yet, we required the payload data in order
to manually determine which, if any, worm was present on a host that was flagged
as infected.

Table 1. Summary of network traces

isp-03 isp-04
Date 2003/04/10(2004/01/28
Duration 627 minutes| 66 minutes
Total outbound 1,402,178| 178,518
connection attempts
Total active local host 404 451

To best simulate use of our algorithm in a worm detection system that is
used to quarantine hosts, we only tested local hosts for infection. Remote hosts
were not tested.

In configuring our reverse sequential hypothesis test (m“), first-contact con-
nection requests were interpreted as failures if they were not acknowledged within
a three second grace period. First-contact connection requests for which TCP
RST packets were received in response were immediately reported as failure
observations. Connection success probability estimates were chosen to be:

0o=0.7 6,=0.1
Confidence requirements were set to:

a=0.00006 B=0.99

Note that these confidence requirements are for each reverse sequential hy-
pothesis test, and that a test is performed for each first-contact connection that
is observed. Therefore, the false positive rate is chosen to be particularly low as
testing will occur many times for each host.

For each local host we maintained a Previously Contacted Host (PCH) set of
only the last 64 destination addresses that each local host had communicated
with (LRU replacement). For the sake of the experiment, a first-contact connec-
tion request was any TCP SYN packet or UDP packet addressed to a host that
was not in the local host’s PCH set. While using a fixed sized PCH set demonstrates
the efficacy of our test under the memory constraints that are likely to occur
when observing large (e.g. class B) networks, this fixed memory usage comes at
a cost. As described in Section 6, it is possible for a worm to exploit limitations
in the PCH set size in order to avoid having its scans detected.

For sake of comparison, we also implemented Twycross and Williamson’s
‘virus throttle’ as described in [22]. Since our traces contain only those packets
seen at the peering point, our results may differ from a virus throttle imple-
mented at each local host as Twycross and Williamson recommend. However,
because observing connections farther from the host results in a reduction in

the number of connections observed, it should only act to reduce the reported
number of false positives in which benign behavior is throttled.

All algorithms were implemented in Perl, and used traces that had been
pre-processed by the Bro Network Intrusion Detection System [13,12].

We did not observe FTP-DATA, finger, and IDENT connections as these con-
nections are the result of local hosts responding to remote hosts, and are not
likely to be accepted by a host that has not issued a request for such a connection.
These connections are thus unlikely to be useful for worm propagation.

5 Results

Table 2. Alarms reported by reverse sequential hypothesis testing combined with
credit-based rate limiting. The cause of each alarm was later identified manually by
comparing observed traffic to signature behaviors described at online virus libraries

isp-03|isp-04

‘Worms/Scanners detected
CodeRed II 2 0
Blaster 0 1
MyDoom 0 3
Minmail. j 0 1
HTTP (other) 3 1
Total 5 6

False alarms

HTTP 0 3
SMTP 0 3
Total 0 6
P2P detected ‘ 6‘ 11
Total identified \ 1 23

Table 3. Alarms reported by virus throttling

isp-03|isp-04

‘Worms/Scanners detected
CodeRed II 2 0
MyDoom 0 1
HTTP (other) 1 1
Total 3 2
False alarms [O[0
P2P detected [2[3
Total identified \ 5 5

Our reverse sequential hypothesis test detected two hosts infected with CodeRed
II [4,20] from the April, 2003 trace (isp-03). Our test detected one host infected

Table 4. Composite results for both traces. A total of 7 HTTP scanning worms and
5 email worms were present

| Alarms|Detection|Efficiency |Effectiveness
34 1] 0.324 0.917

HT

virus-throttling 10 5 0.500 0.417

Table 5. Comparison of rate limiting by credit-based connection rate limiting
(CBCRL) vs. a virus throttle. Unnecessary rate limiting means that CBCRL dropped
at least one packet from a host. For virus throttling, we only classify a host as rate
limited if the delay queue reaches a length greater than five

CBCRL
isp-03|isp-04

Virus Throttling
isp-03| isp-04

Worms/Scanners 5 1 3 4
P2pP 4 8 3 7
Unnecessary rate limiting 0 0 84 59

with Blaster/Lovsan [5], three hosts infected with MyDoom/Novarg [11,21], and
one host infected with Minmail. j [6] from the January, 2004 trace (isp-04). The
worms were conclusively identified by painstakingly comparing the logged traf-
fic with the cited worm descriptions at various online virus/worm information
libraries. Our test also identified four additional hosts that we classify as HT' TP
scanners because each sent SYN packets to port 80 of at least 290 addresses
within a single class B network. These results are summarized in Table 2.

While peer-to-peer applications are not necessarily malicious, many network
administrators would be loathe to classify them as benign. Peer-to-peer file shar-
ing applications also exhibit ambiguous network behavior, as they attempt to
contact a large number of transient peers that are often unwilling or unavailable
to respond to connection requests. While peer-to-peer clients are deemed unde-
sirable on most of the corporate networks that we envision our approach being
used to protect, it would be unfair to classify these hosts as infected. For this
reason we place hosts that we detect running peer-to-peer applications into their
own category. Even if detections of these hosts are classified as false alarms, the
number of alarms is manageable.

Three additional false alarms were reported for three of the 60 (isp-04) total
hosts transmitting SMTP traffic. We suspect the false alarms are the result of
bulk retransmission of those emails that have previously failed when the recipi-
ents’ mail servers were unreachable. We suggest that organizations may want to
white-list their SMTP servers, or significantly increase the detection thresholds
for this protocol.

The remaining three false alarms are specific to the 1sp-04 trace, and resulted
from HTTP traffic. It appears that these false alarms were raised because of
a temporary outage at a destination network at which multiple remote hosts
became unresponsive. These may have included servers used to serve inlined
images.

Table 6. The number of first-contact connections permitted before hosts were reported
as infected. The value pairs represent individual results for two different CodeRed II
infections and two different HT'TP scanners

‘m“ with CBCRL‘ViruS Throttling
CodeRed II 10,10 6,7
Other HTTP scanners 10,10 102,526

Upon discovering these failures, we came to realize that it would be possible
for an adversary to create Web sites that served pages with large numbers of
inlined image tags linked to non-responsive addresses. If embedded with scripts,
these sites might even be designed to perform scanning of the client’s network
from the server. Regardless, any client visiting such a site would appear to be
engaged in HTTP scanning. To prevent such denial of service attacks from ren-
dering a worm detection system unusable, we require a mechanism for enabling
users to deactivate quarantines triggered by HTTP requests. We propose that
HTTP requests from such hosts be redirected to a site that uses a CAPTCHA
(Completely Automated Public Turing Test to Tell Computers and Humans
Apart [23]), to confirm that a user is present and was using a Web browser at
the time of quarantine.

Results for our implementation of Twycross and Williamson’s virus throt-
tle [22] are summarized in Table 3. Their algorithm blocked both instances of
CodeRed II, but failed to detect Blaster, three instances of MyDoom (which is
admittedly an email worm and not an IP scanning worm), and two low rate
HTTP scanners. It did, however, detect one host infected with MyDoom that HT
failed to detect. The virus throttle also detected fewer hosts running peer-to-peer
applications, which for fairness we classify as a reduction in false alarms in virus
throttling’s favor in our composite results summarized in Table 4.

These composite results for both traces report the number of hosts that
resulted in alarms and the number of those alarms that were detections of the 12
worms located in our traces. We also include the efficiency, which is the number
of detections over the total number of alarms, and the effectiveness, which is
the total number of detections over the total number of infected hosts we have
found in these traces. While HT is somewhat less efficient than virus throttling,
the more than two-fold increase in effectiveness is well worth the trade-off. In
addition, corporate networks that forbid peer-to-peer file sharing applications
will see a two-fold increase in efficiency.

Table 5 shows the number of hosts that had connection requests blocked by
our credit-based algorithm and the number of hosts that were rate limited by
Twycross and Williamson’s algorithm. For credit-based connection rate limiting,
we say that a machine has been rate limited if a single packet is dropped. For
the virus throttle, we say that a machine has been rate limited if the outgoing
delay queue length is greater than five, giving Twycross and Williamson the
benefit of the doubt that users won’t notice unless connections are severely
throttled. Our credit-based algorithm only limited the rates of hosts that our

reverse sequential hypothesis test reported as infected. In contrast, even given
our generous definition, more than 10% of the hosts in both traces were rate
limited by Twycross and Williamson’s algorithm.

Table 6 reports the number of first-contact connections permitted by the two
approaches for those scanners that both detected. CodeRed II is a fast scanner,
and so virus throttling excels in blocking it after 6 to 7 connection requests.
This speed is expected to come at the price of detecting any service, malicious
or benign, that issues high-rate first-contact connections.

Reverse Sequential Hypothesis Testing with credit-based connection rate lim-
iting detects worms after a somewhat higher number of first-contact connections
are permitted (10), but does so regardless of the scanning rate. Whereas our ap-
proach detects a slow HTTP scanner after 10 first-contact connection requests,
the virus throttle requires as many as 526.

6 Limitations

Credit-based connection rate limiting is resilient to network uplink outages as
hosts starved for credits will receive an allowance credit seconds after the network
is repaired. Unfortunately, this will be of little consolation as Reverse Sequential
Hypothesis Testing(m“) may have already concluded that all hosts are scanners.
This may not be a problem if network administrators are given the power to
invalidate observations made during the outage period, and to automatically
reverse any quarantining decisions that would not have been taken without these
invalid observations.

Of greater concern is that both Reverse Sequential Hypothesis Testing and
credit-based connection rate limiting rely exclusively on the observation that
hosts engaged in scanning will have lower first-contact connection success rates
than benign hosts. New hypotheses and tests are required to detect worms for
which this statistical relationship does not hold.

In particular, our approach is not likely to detect a topological worm, which
scans for new victim hosts by generating a list of addresses that the infected host
has already contacted. Nor is our approach likely to detect flash worms, which
contain hit-lists of susceptible host addresses identified by earlier scans.

Also problematic is that two instances of a worm on different networks could
collaborate to ensure that none of their first-contact connections will appear
to fail. For example, if worm A does not receive a response to a first-contact
connection request after half the timeout period, it could send a message to
worm B asking it to forge a connection response. This forged response attack
prevents our system from detecting connection failures. To thwart this attack
for TCP connections, a worm detection system implemented on a router can
modify the TCP sequence numbers of traffic as it enters and leaves the network.
For example, the result of a hash function h(IP}y a1, IPremote, salt) may be added
to all sequence numbers on outgoing traffic and subtracted from all incoming
sequence numbers. The use of the secret salt prevents the infected hosts from
calculating the sequence number used to respond to a connection request which

they have sent, but not received. By storing the correct sequence number in the
FCC queue, responses can then be validated by the worm detection system.

Another concern is the possibility that a worm could arrive at its target al-
ready in possession of a list of known repliers — hosts that are known to reply
to connection requests at a given port. This known-replier attack could em-
ploy lists that are programmed into the worm at creation, or accumulated by
the worm as it spreads through the network. First-contact connections to these
known-repliers will be very likely to succeed and can be interleaved with scans
to raise the first-contact connection success rate. A one to one interleaving is
likely to ensure that more than half of all connections succeed. This success rate
would enable the scanner to bypass credit-based connection rate limiting, and
delay detection by Reverse Sequential Hypothesis Testing until the scanner had
contacted all of its known-repliers. What’s worse, a worm could avoid detection
altogether if the detection system defines a first-contact connection with respect
to a fixed sized previously contact host (PCH) set. If the PCH set tracks only the n
previously visited hosts, the scanner can cycle through (n/2)+ 1 known-repliers,
interleaved with as many new addresses, and never be detected®. To prevent a
worm from scanning your local network by interleaving connections to known-
repliers outside of your network, Weaver et al. [26] propose that one hypothesis
test be run for local connections (i.e. those within the same IP block) and an-
other for connections to remote hosts. If hosts in your local network are widely
and randomly dispersed through a large IP space”, then a worm will have a low
probability of finding another host to infect before being quarantined.

A worm might also avoid detection by interleaving scanning with other ap-
parently benign behavior, such as Web crawling. A subset of these benign inter-
leaving attacks can be prevented by detecting scanners based on the destination
port they target in addition to the source IP of the local host. While it is still
fairly easy to create benign looking traffic for ports such as HTTP, for which
one connection can lead to information about other active hosts receptive to new
connections, this is not the case for ports such as those used by SSH. Running
separate scan detection tests for each destination port that a local host addresses
can ensure that connections to one service aren’t used to mask scans to other
services.

Finally, if an infected host can impersonate other hosts, the host could es-
cape quarantine and cause other (benign) hosts to be quarantined. To address
these address impersonation attacks, it is important that a complete system for
network quarantining include strong methods for preventing IP masquerading
by its local hosts, such as switch level egress filtering. Host quarantining should
also be enforced as close to the host as is possible without relying on the host
to quarantine itself. If these boundaries cannot be enforced between each host,

S For detecting such a worm, a random replacement policy will be superior to an LRU
replacement policy, but will still not be effective enough for long known-replier lists.

7 Randomly dispersing local hosts through a large IP space can be achieved by using
a network address translation (NAT) switch.

one must assume that when one machine is infected, all of the machines within
the same boundary will also be infected.

7 Related Work

We were motivated by the work of Moore et al. [10], who model attempts at con-
taining worms using quarantining. They perform theoretical simulations, many
of which use parameters principally from the CodeRed II [4,20] outbreak. They
argue that it is impossible to prevent systems from being vulnerable to worms
and that treatment cannot be performed fast enough to prevent worms from
spreading, leaving containment (quarantining) as the most viable way to pre-
vent worm outbreaks from becoming epidemics.

Early work on containment includes Staniford et al.’s work on the GrIDS
Intrusion Detection System [19], which advocates the detection of worms and
viruses by tracing their paths through the departments of an organization. More
recently, Staniford [16] has worked to generalize these concepts by extending
models for the spread of infinite-speed, random scanning worms through ho-
mogenous networks divided up into ‘cells’. Simulating networks with 2'7 hosts
(two class B networks), Staniford limits the number of first-contact connections
that a local host initiates to a given destination port to a threshold, 7. While
he claims that for most ports, a threshold of 7' = 10 is achievable in practice,
HTTP and KaZaA are exceptions. In comparison, reverse sequential hypothesis
testing reliably identifies HTTP scanning in as few as 10 observations.

The TRAFEN |2, 3] system also observed failed connections for the purpose
of identifying worms. The system was able to observe larger networks, without
access to end-points, by inferring connection failures from ICMP messages. One
problem with acting on information at this level is that an attacker could spoof
source IP addresses to cause other hosts to be quarantined.

Our use of rate limiting in order to buy time to observe worm behavior was
inspired by the virus throttle presented by Twycross and Williamson [22], which
we described in detail in Section 3. Worms can evade a throttle by scanning at
rates below one connection per second, allowing epidemics to double in size as
quickly as once every two seconds.

An approach quite similar to our own has been simultaneously developed by
Weaver, Staniford, and Paxson [26]. Their approach combines the rate limiting
and hypothesis testing steps by using a reverse sequential hypothesis test that
(like our CBCRL algorithm) assumes that connections fail until they are proven
to succeed. As with CBCRL, out-of-order processing could cause a slight increase
in detection delay, as the successes of connections sent before an infection event
may be processed after connections are initiated after the infection event. In the
context of their work, in which the high-performance required to monitor large
networks is a key goal, the performance benefits are likely to outweigh the slight
cost in detection speed.

For a history and recent trends in worm evolution, we recommend the work
of Kienzle and Elder [8]. For a taxonomy of worms and a review of worm termi-
nology, see Weaver et al. [25].

8 Future Work

As worm authors become aware of the limitations discussed in Section 6, it will
be necessary to revise our algorithms to detect scanning at the resolution of
the local host (source address) and targeted service (destination port), rather
than looking at the source host alone. Solutions for managing the added memory
requirements imposed by this approach have been explored by Weaver, Staniford,
and Paxson [26].

The intrusiveness of credit-based connection rate limiting, which currently
drops outgoing connection requests when credit balances reach zero, can be fur-
ther reduced. Instead of halting outgoing TCP first-contact connection requests
from hosts that do not maintain a positive credit balance, the requests can be sent
immediately and the responses held until a positive credit balance is achieved.
This improvement has the combined benefits of reducing the delays caused by
false rate limiting while simultaneously ensuring that fewer connections are al-
lowed to complete when a high-speed scanning worm issues a burst of connection
requests. As a result, the remaining gap in response speed between credit-based
connection rate limiting and Twycross and Williamson’s virus throttle can be
closed while further decreasing the risk of acting on false positives.

Finally, we would like to employ additional indicators of infection to further
reduce the number of first-contact connection observations required to detect a
worm. For example, it is reasonable to conclude that, when a host is deemed
to be infected, those hosts to which it has most recently initiated successful
connections are themselves more likely to be infected (as was the premise behind
GrIDS [19]). We propose that this be accomplished by adding an event type, the
report of an infection of a host that has recently contacted the current host, to
our existing hypothesis test.

9 Conclusion

When combined, credit-based connection rate limiting and reverse sequential
hypothesis testing ensure that worms are quickly identified with an attractively
low false alarm rate. While no system can detect all possible worms, our new
approach is a significant improvement over prior methods, which detect a smaller
range of scanners and unnecessarily delay network traffic. What’s more, the
techniques introduced in this paper lend themselves to efficient implementation,
as they need only be activated to observe a small subset of network events and
require little calculation for the common case that traffic is benign.

10 Acknowledgments

This paper could not have been completed without the continued support of Vern
Paxson and Hari Balakrishnan. We are indebted to Dave Andersen and Noah
Case for the network logs used for our analysis. We would also like to thank the
anonymous reviewers as well as Nick Feamster, David Molnar, Rodrigo Miragaia
Rodrigues, David Savitt, Matt Williamson, and especially Glenn Holloway for
taking the time to review and comment on earlier drafts of this paper. Stuart
Schechter would like to thank the National Science Foundation for support under
grant CCR-0310877.

References

1.

Noo

10.

11.

12.

13.

14.

15.

George Bakos and Vincent Berk. Early detection of internet worm activity by
metering ICMP destination unreachable messages. In Proceedings of the SPIE
Aerosense, 2002.

. Vincent Berk, George Bakos, and Robert Morris. Designing a framework for active

worm detection on global networks. In Proceedings of the IEEE International
Workshop on Information Assurance, March 2003.

Vincent H. Berk, Robert S. Gray, and George Bakos. Using sensor networks
and data fusion for early detection of active worms. In Proceedings of the SPIE
Aerosense Conference, April 2003.

CERT. ”Code Red II:” another worm exploiting buffer overflow in IIS indexing
service DLL. http://tinyurl.com/2lzgb.

F-Secure. Computer virus information pages: Lovsan. http://tinyurl.com/jozm.
F-Secure. Computer virus information pages: Mimail.j. http://tinyurl.com/3ybsp.
Jaeyeon Jung, Vern Paxson, Arthur W. Berger, and Hari Balakrishnan. Fast
portscan detection using sequential hypothesis testing. In Proceedings of the IEEE
Symposium on Security and Privacy, May 9-12, 2004.

Darrell M. Kienzle and Matthew C. Elder. Recent worms: a survey and trends.
In Proceedings of the 2008 ACM Workshop on Rapid Malcode, pages 1-10. ACM
Press, October 27, 2003.

David Moore, Vern Paxson, Stefan Savage, Colleen Shannon, Stuart Staniford, and
Nicholas Weaver. Inside the Slammer worm. IEEE Security and Privacy, 1:33-39,
July 2003.

David Moore, Colleen Shannon, Geoffrey M. Voelker, and Stefan Savage. Internet
quarantine: Requirements for containing self-propagating code. In Proceedings of
IEEE INFOCOM, April 1-3 2003.

Network Associates Inc. Security threat report for W32/MydoomMM.
http://tinyurl.com/2asgc.

Vern Paxson. Bro: A system for detecting network intruders in real-time.
http://www.icir.org/vern/bro-info.html.

Vern Paxson. Bro: a system for detecting network intruders in real-time. Computer
Networks, 31(23-24):2435-2463, 1999.

Stelios Sidiroglou and Angelos D. Keromytis. Countering network worms through
automatic patch generation. Technical Report CUCS-029-03, 2003.

Stelios Sidiroglou and Angelos D. Keromytis. A network worm vaccine architecture.
In Proceedings of the IEEE International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises (WETICE), Workshop on Enterprise
Security, June 2003.

16.

17.

18.

19.

20.
21.
22.

23.

24.
25.

26.

27.

Stuart Staniford. Containment of scanning worms in enterprise networks. Journal
of Computer Security, Forthcoming.

Stuart Staniford, James Hoagland, and Joseph McAlerney. Practical automated
detection of stealthy portscans. Journal of Computer Security, 10(1):105-136, 2002.
Stuart Staniford, Vern Paxson, and Nicholas Weaver. How to Own the Internet in
your spare time. In Proceedings of the 11th USENIX Security Symposium, August
7-9, 2002.

S. Staniford-Chen, S. Cheung, R. Crawford, M. Dilger, J. Frank, J. Hoagland,
K. Levitt, C. Wee, R. Yip, and D. Zerkle. GrIDS — A graph-based intrusion de-
tection system for large networks. In Proceedings of the 19th National Information
Systems Security Conference, volume 1, pages 361-370, October 1996.

Symantec. Security response — CodeRed II. http://tinyurl.com/89t0.

Symantec. Security response — W32.Novarg. A@mm. http://tinyurl.com/2qgbaj.
Jamie Twycross and Matthew M. Williamson. Implementing and testing a virus
throttle. In Proceedings of the 12th USENIX Security Symposium, August 4-8
2003.

Luis von Ahn, Manuel Blum, and John Langford. Telling humans and computers
apart (automatically) or how lazy cryptographers do Al. Technical Report CMU-
CS-02-117, February 2002.

Abraham Wald. Sequential Analysis. J. Wiley & Sons, New York, 1947.

Nicholas Weaver, Vern Paxson, Stuart Staniford, and Robert Cunningham. A
taxonomy of computer worms. In Proceedings of the 2003 ACM Workshop on
Rapid Malcode, pages 11-18. ACM Press, October 27, 2003.

Nicholas Weaver, Stuart Staniford, and Vern Paxson. Very fast containment of
scanning worms. In Proceedings of the 13th USENIX Security Symposium, Au-
gust 9-13 2004.

Matthew M. Williamson. Throttling viruses: Restricting propagation to defeat
malicious mobile code. In Proceedings of The 18th Annual Computer Security
Applications Conference (ACSAC 2002), December 9-13, 2002.

A Optimizing the Computation of Repeated Reverse
Sequential Hypothesis Tests

It is unnecessarily expensive to repeatedly recompute A in reverse sequence
each time a new first-contact connection is observed. A significant optimization
requires that we maintain single state variable A, calculated iteratively in the
order in which events are observed.

AY,) = max (1, A(Ya 1)s(Yn) A(Yo) = 1. (1)

We will prove that A(Y,,) > n; if and only if a reverse sequential hypothesis
test starting backward from observation n would lead to infection conclusion.

We first prove the following lemma stating that if a reverse sequential hy-
pothesis test reports an infection, our optimized algorithm will also report an
infection.

Lemma 1. For ny > 1 and for mutually independent random variables Y;,
Vm € [1,’[1] ZA(Yn,Yn_l,...,Ym) 2?’]1 ﬁ/I(Yn) 27’]1 (2)

Proof. We begin by replacing the A term with its equivalent expression in terms

of ¢:
m SA(}/’rHKL—l)"'aYm) (3)

< [T o0 (4)

We can place a lower bound on the value of A(Y,,) by exploiting the fact
that, in any iteration, A cannot return a value less than 1.

A(Y)

AL, Ya, ..., Yy)
1 A, Yiit, -5 Ya)

v

v

H o(Yi) >m

where the last inequality follows the steps taken in Equations (3) and (4).
Thus, A(Yn,Yn,h R Ym) 2 m = A(Yn) Z -

‘We must also prove that our optimized algorithm will only report an infection
when a reverse sequential hypothesis test would also report an infection. Recall
that a reverse sequential hypothesis test will only report an infection if A exceeds
11 before falling below 7.

Lemma 2. For thresholds ng < 1 < m1 and for mutually independent random
variables Y;, if A(Y;) > n for some i =mn, but A(Y;) <ny for alli € [1,n—1],
then there exists a subsequence of observations starting at observation m and
moving backward to observation m € [1,n] for which A(Yy,Yp—1,...,Ym) > m
and such that there exists no k in [m,n] such that A(Y,,Yn-1,...,Yk) < mno

Proof. Choose m as the largest observation index for which it held that:
AY 1 2) (Y1) < 1

We know that m < n because A(Y,_1)¢(Y,) is greater than n; which is
in turn greater than 1. Let m = 1 if the above relation does not hold for any
observation with index greater than 1. It follows that A(Y,,—1) = 1 and thus:

/I(Ym) = oY)
Because we chose m such that A(Y;_2)¢(Y;-1) > 1 for all j > m:

Thus, A(Y,) >m =AY, Yuo1,...,Ym) > n1.
To prove that there exists no k in [m, n] such that A(Y,, Yn-1,...,Y%) < no,
suppose that such a k exists. It follows that:

n

[Te0) <m<1 (5)

Jj=k

Recall that we chose m to ensure that:
m < I %)) (6)
Jj=m

The product on the right hand side can be separated into factors from before
and after observation k.

k—1 n
m < H o(Yy) - [[0(v5): (7)

Jj=k

We then use Equation (5) to substitute an upper bound of 1 on the latter prod-
uct.

m < A(Yg-1)
This contradicts the hypothesis that A(Y;) < n; for all i € [1,n — 1].

If we were concerned with being notified when the test came to the ‘benign’
conclusion we could create an analogous function A:

A(Y,) = min (1, A(Yn-1)0(Yn))

The lemmas required to show equivalence and proof are also analogous.

