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Fast detection of tobacco mosaic 
virus infected tobacco using laser-
induced breakdown spectroscopy
Jiyu Peng1, Kunlin Song1, Hongyan Zhu1, Wenwen Kong1,2, Fei Liu1, Tingting Shen1 & 

Yong He1

Tobacco mosaic virus (TMV) is one of the most devastating viruses to crops, which can cause severe 

production loss and affect the quality of products. In this study, we have proposed a novel approach 
to discriminate TMV-infected tobacco based on laser-induced breakdown spectroscopy (LIBS). Two 
different kinds of tobacco samples (fresh leaves and dried leaf pellets) were collected for spectral 
acquisition, and partial least squared discrimination analysis (PLS-DA) was used to establish 
classification models based on full spectrum and observed emission lines. The influences of moisture 
content on spectral profile, signal stability and plasma parameters (temperature and electron density) 
were also analysed. The results revealed that moisture content in fresh tobacco leaves would worsen 
the stability of analysis, and have a detrimental effect on the classification results. Good classification 
results were achieved based on the data from both full spectrum and observed emission lines of dried 

leaves, approaching 97.2% and 88.9% in the prediction set, respectively. In addition, support vector 
machine (SVM) could improve the classification results and eliminate influences of moisture content. 
The preliminary results indicate that LIBS coupled with chemometrics could provide a fast, efficient and 
low-cost approach for TMV-infected disease detection in tobacco leaves.

Tobacco mosaic virus (TMV) was �rstly discovered in tobacco, and could infect over 350 di�erent species of 
plants, including crops of tobacco, tomato, pepper, cucumber, etc. As one of the most stable viruses, TMV can 
survive outside the plant, and remain in a dormant state to infect growing crops. Once the plant is infected, no 
chemical cure is e�ectively available, and usually all the infected crops should be removed. �en those suspect 
crops should also be further diagnosed. It has been reported that TMV could cause severe production loss and 
a�ect the quality of tobacco products1.

Currently, enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR) are the 
most commonly used methods to detect TMV in plants2. However, the processes of those methods are quite 
time-consuming, complex, and even challenging since the TMV may distribute unevenly in plant tissues at low 
level. �erefore, those undetected plants may continue to infect other plants and cause potential loss.

Laser-induced breakdown spectroscopy (LIBS) is a novel atomic emission spectroscopy technique, which has 
the advantages of fast analysis speed, little sample preparation, and multi-element analysis availability. In the past 
decades, LIBS combined with chemometrics have been proved as an e�cient tool to characterize compounds 
with similar chemical compositions, such as explosive residues3, geochemical materials4, and pesticide residues5. 
It is mainly credited to ‘�ngerprint’ feature of LIBS and ‘data mining’ capability of chemometrics. In previous 
reports, LIBS has been used to detect Huanglongbing disease in citrus leaves6,7. Pereira et al.6 used LIBS and so� 
independent modeling of class analogy (SIMCA) to classify the diseased sample within di�erent inoculation 
times, resulting in the classi�cation accuracy of 82–97%. Sankaran and the co-workers7 applied LIBS to detect 
diseases and nutrient de�ciencies in citrus leaves, with the overall classi�cation accuracy of 97.5% for support 
vector machine (SVM) model. Both of these two studies preferred to use fresh leaves for detection, as the former 
analysed the midrib of leaves, while the latter scanned four di�erent positions in leaves.

However, the moisture content in samples can greatly a�ect the spectral features. With the increase of mois-
ture content, most spectral intensities decrease greatly and some emission lines even disappear. Furthermore, 
high moisture content might worsen the signal stability and lower the signal-to-background rate when analysing 

1College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China. 2School of 

Information Engineering, Zhejiang A&F University, Lin’an, Hangzhou, 311300, China. Correspondence and requests 
for materials should be addressed to F.L. (email: fliu@zju.edu.cn)

received: 13 October 2016

accepted: 10 February 2017

Published: 16 March 2017

OPEN

mailto:fliu@zju.edu.cn


www.nature.com/scientificreports/

2Scientific REPORTS | 7:44551 | DOI: 10.1038/srep44551

coal with LIBS8. In this study, we utilized LIBS to detect TMV-infected tobacco with di�erent symptoms and 
analyse in�uences of moisture content. Two di�erent kinds of samples including fresh leaves and dried leaf pellets 
of tobacco (i.e., by pressing the grinded dried leaves) were prepared to investigate the e�ect of moisture content 
on LIBS detection, and to establish the TMV disease classi�cation models based on full spectrum and observed 
emission lines of LIBS.

Results
Comparison of fresh and dried tobacco leaf samples. Raw spectra analysis. Figure 1 shows aver-
aged spectra of fresh and dried tobacco leaves with varying degrees of infected symptoms. As seen, both fresh 
leaves and dried leaves had similar emission lines, which mainly relates to organic compounds and nutritious ele-
ments. Molecular bands CN (around 388 nm), which usually associates with organic compounds, were observed 
in both fresh and dried samples9. In addition, some atomic emission lines of C I (247.86 nm), Mg II (279.55 nm, 
280.27 nm), Mg I (285.21 nm), Ca II (315. 89 nm, 317.93 nm, 393.37 nm, 396.85 nm), Ca I (422.67 nm), Hα 
(656.28 nm), N I (triplet at 742.36 nm, 744.23 nm, 746.83 nm), K I (766.49 nm, 769.90 nm), O I (unresolved triplet 
at 777 nm) were easily recognized.

However, some di�erences were also observed between fresh and dried samples. Table 1 shows main emission 
lines (the emission intensity higher than 1000 counts) observed in fresh and dried samples. All atomic emis-
sion lines were identi�ed using National Institute of Standards and Technology database (http://physics.nist.gov/
PhysRefData/ASD/lines_form.html). Some low-intensity emission lines, such as Fe I, Fe II, Mn II, Sc II, Sr II, Ba 
I, Li I, disappeared in fresh samples. �is might be credited to the e�ect of moisture content in fresh samples. �e 
humility of sample reduced the emission intensities from the plasma10. However, the emission intensities of Hα 
(656.28 nm) and O I (unresolved triplet at 777 nm) in fresh leaves were higher than those in dried leaves. It has 
been reported that there were positive correlations between moisture content and the signal of Hα and O I11,12. 
�ese two emission lines might be used to quantify the moisture content.

As for the di�erences between healthy and infected samples, it was hard to distinguish from peak positions 
or peak intensities in both fresh and dried samples. �erefore, it was required to use chemometrics to �nd the 
di�erences and achieve a good discrimination.

Signal stability analysis. Signal stability is one of important �gures of merit in analysis, which usually relates to 
the repeatability. In this case, the signal stability of some main emission lines was investigated a�er comparison of 
raw spectra. Relative standard deviation (RSD) was used to measure the signal stability. All spectra from di�erent 
positions were used to calculate the value of RSD, and the RSDs of all healthy samples were calculated. �en the 
values of RSDs were averaged. In order to investigate the stability of raw signal, no preprocessing methods were 
applied.

Figure 2 shows the averaged RSD of main emission lines from healthy tobacco leaves. Obviously, the emission 
lines from plasma of dried samples had lower RSDs, which ranged from 5% to 15%. �e RSDs for fresh samples 
were relatively high, which ranged from 30% to 60%. �ere might be two reasons accounting for this. Firstly, 
dried leaf samples were dried, grinded and pressed, and they had a better micro homogeneity than fresh samples. 
�is might improve the e�ciency of ablation, and reduce the matrix e�ect. In contrast, the moisture content in 
fresh samples might increase the unevenness of sample surface. Secondly, the moisture content in fresh samples 
might increase the instability of the plasma, as the evaporation of water generated might splash melted particles8.

Among all these main emission lines, CN 388.29 nm had the lowest RSD in both fresh and dried samples. 
CN emissions appeared in all carbon materials when analysed in the presence of nitrogen. �e formation of CN 
molecular emissions came from two major pathways, by the direct fragmentation of CN bands from the materials, 
or by recombination of C and N inside the plasma9. No matter which pathway it came from, the elements C, N, 

Figure 1. Averaged spectra for healthy and infected tobacco with varying degrees of symptoms. �e 
wavelength region is 230–880 nm. Spectra from both fresh and dried samples showed the similar pro�le, while 
the intensities of most emission lines were reduced, and some emission lines were disappeared. �ere were 
slight di�erences in peak intensity and peak position among varying degrees of symptoms.

http://physics.nist.gov/PhysRefData/ASD/lines_form.html
http://physics.nist.gov/PhysRefData/ASD/lines_form.html
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and molecular band CN band in samples were relatively stable. �erefore, we used CN emission line 388.29 nm as 
a variable to detect outliers in this experiment.

Plasma parameters analysis. In order to investigate the plasma property of fresh and dried samples, temperature 
and electron density of plasma were calculated. In this study, temperature was obtained by spectrum simulation 

Elements Wavelength (nm)

C (I) 247.86

Si (I) 251.61, 288.16

Fe (I) 293.69*, 385.99*

Fe (II) 253.54*

Mg (I) 277.98*, 285.21, 382.94*, 383.23*, 383.83*, 389.19, 516.73*, 
517.27*, 518.36*

Mg (II) 279.08, 279.55, 279.80, 280.27

Ca (I)

422.67, 428.30, 428.94, 429.90, 430.25, 430.77, 431.87, 
442.54, 443.57, 457.86*, 458.15*, 458.60*, 487.81, 504.16, 
518.88*, 526.22*, 526.56*, 527.03*, 558.20, 558.87, 559.45, 
559.85, 560.13*, 585.75*, 610.27, 612.22, 616.22, 616.64*, 

643.91*, 644.98*, 646.26*, 647.17*, 649.38*, 671.77*, 714.82*, 
720.22*, 854.21

Ca (II) 315.89, 317.93, 370.60, 373.69, 393.37, 396.85, 849.80, 866.21

Mn (II) 292.87*

Sc (II) 364.38*

CN 387.12, 388.29

Al (I) 394.40, 396.15

K (I) 404.41*, 404.72*, 693.88*, 766.49, 769.90

Sr (I) 460.73

Sr (II) 407.77*, 421.55*

Na (I) 589.00, 589.59

Ba (I) 649.88*

Hα 656.28

Li (I) 670.79*

N (I) 742.36, 744.23, 746.83, 818.49, 821.63, 824.39, 862.92, 868.03

O (I) 777.42, 844.68

Table 1.  Observed emission lines in fresh and dried samples based on NIST database. Note: the 
wavelengths that appeared in dried samples while not in fresh samples were marked with star.

Figure 2. Relative standard deviation of main emission lines from fresh and dried samples (healthy 
tobacco leaves). Main emission lines from dried samples had lower RSDs than those from fresh samples, which 
ranged from 5% to 15%.
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of the CN emissions (around 388 nm) using LIFBASE 2.1 so�ware13. �e electron density was determined from 
Stark broadening of Hα with the following equation14:

α= . × ∆
−N 8 02 10 ( / ) , cm (1)e stark

12
1/2

3/2 3

where Ne is the full width at half maximum (FWHM) of Hα, α 1/2 is a weak function of temperature and electron 
density (in this case, the value was 1.86 ×  1012 Å)15. And the ∆ stark is the Stark broadening of Hα.

Table 2 shows the temperature and electron density of plasma of fresh and dried samples (healthy tobacco 
leaves). �e calculated electron densities in both fresh and dried samples satis�ed the McWhirter criterion which 
suggests the existence of local �ermodynamic Equilibrium (LTE). �is condition was crucial for quantitative 
analysis in LIBS.

In addition, the temperature and electron density in fresh samples were higher than those in dried samples. 
�is was in accordance with previous study, which stated that larger values of temperature and electron density for 
the samples with higher moisture content were observed at the beginning8. Because the fresh tobacco leaves might 
contain more than 70% moisture content, most of the ablated mass was water. In this case, this evaporated water 
contributed the higher value of temperature and electron density, and induced stronger emissions of H and O.

Classification models based on full LIBS spectra. PCA analysis. Because it is di�cult to distinguish 
various degrees of symptoms caused by TMA from raw spectra, we used chemometrics to solve this problem. 
Firstly, principal component analysis (PCA) was applied to qualitatively classify and visualize the distribution of 
di�erent symptoms in principal component (PC) score plot.

Figure 3 shows score plots for the spectral datasets based on fresh and dried samples, and each point in the 
plot represents a sample. Since the �rst three PCs contained the most of spectral information of tobacco samples, 
we de�ned spaces using PC1 and PC2, as well as PC1 and PC3. Compared with fresh samples, dried samples with 
the same symptom tended to cluster together. As shown in Fig. 2, the emissions from dried samples had lower 
RSDs than those from fresh samples. It indicated that moisture content might increase the uncertainty of signal, 
and worsen the performance of clustering. In addition, since the signal from moisture content in fresh samples 
accounted for the most of plasma, the information representing the features of samples might be reduced.

For dried samples, four clusters were obviously found in the space de�ned by PC1 and PC2, where healthy sam-
ples had distinguished separation with severe-infected samples, while there were slight overlaps between healthy 
samples and mild-infected samples, mild-infected samples and moderate-infected samples, moderate-infected 
samples and severe-infected samples. In the score plots of PC1 and PC3, although good separation was found 
between healthy samples and severe-infected samples, mild-infected samples and moderate-infected samples 
mixed with each other. �erefore, PC2 might contain more information to separate the mild-infected samples 
and moderate-infected samples. In addition, the loadings of the �rst three PCs for both fresh leaves and dried 
pellets are shown in Supplementary Figure S1. �e variables from main emission lines projected to the three PCs, 
which played an important role in classi�cation.

PLS analysis. Partial least squares discrimination analysis (PLS-DA) was further utilized to quantitatively exam-
ine the separability of full spectrum using full-cross validation strategy. Before modeling, we split 120-sample 
dataset into calibration set (84 for dried pellets, and 82 for fresh leaves) and prediction set (36 for dried pellets, 
and 38 for fresh leaves) using k-Means clustering, with similar proportions of the samples within each degree 
assigned to each set. �e latent variables (LVs) for fresh and dried samples were optimized to ‘7’ and ‘10’, respec-
tively, when the minimal mean squared error of the full-cross validation was obtained.

Symptom discrimination results by PLS-DA are provided in Fig. 4. It was noted that both fresh and dried 
samples achieved acceptable results, and the result of model based on dried samples performed better than that 
of fresh samples. In detail, we obtained the average accuracy for dried samples of 100% in the calibration set, and 
97.2% in the prediction set. Only one moderate-infected sample was misclassi�ed as severe-infected sample in 
the prediction set. �e results obtained in PLS-DA models were in accordance with PCA models, which indicated 
the existence of moisture content in sample might worsen the performance of disease discrimination. Although 
little sample preparation was required when detecting using fresh samples, the classi�cation performance should 
be further improved.

In addition, we calculated the regression coe�cients of PLS (shown in Fig. 5), which could examine the con-
tribution of each variable in PLS model. A variable with large regression coe�cient played an important role in 
PLS regression. In other words, large positive value meant a positive link with the symptom of TMV, and negative 
value showed a negative link, while the variable with little value could be considered as noise or irrelative infor-
mation. As shown in Fig. 5, the variables with large regression coe�cients corresponded to the main observed 
emission lines. Since more emission lines were noted from the spectra based on dried samples, there were more 
variables contributing the PLS regression. In addition, there were several emission lines, such as C I (247.86 nm), 
Si I (251.61 nm), Mg I (279.55 nm), Ca II (393.37 nm, 396.85 nm), Na (589.00 nm, 589.59 nm), etc., which played 

Fresh samples Dried samples

Temperature, K 10807 ±  452 6217 ±  497

Electron density, cm−3 (2.74 ±  0.08) ×  1017 (2.52 ±  0.04) ×  1017

Table 2.  Temperature and electron density of plasma of fresh and dried samples (healthy tobacco leaves).
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important roles in both fresh and dried samples. �e variance of these elements might relate to the degrees of 
symptoms of infected plants.

Classification based on observed emission lines. As mentioned before, LIBS spectra usually contain 
thousands of variables, and lots of them are noise or irrelative signal for disease detection. In order to eliminate 
the irrelative signal, as well as increasing the calculation speed, we wanted to search for the discriminating emis-
sion lines. Since the variables that actually worked in PLS models were mainly observed emission lines, in this 
case, we further established PLS models using the observed emission lines. In addition, SVM models were also 

Figure 3. PC score plots for spectral datasets based on fresh samples (a) PC1 vs. PC2; (b) PC1 vs. PC3; (c) PC1, 
PC2 and PC3) and dried samples (d) PC1 vs. PC2; (e) PC1 vs. PC3; (f) PC1, PC2, and PC3). �e �rst three PCs 
for fresh and dried samples contributed to 92.1% and 88.7% of the total explained variations, respectively. Better 
separations could be observed for dried samples.

Figure 4. Y-predicted plot for PLS-DA classi�cation of di�erent symptoms of infected plants based on full 
spectrum of (a) fresh samples and (b) dried samples. Red squares, blue circles, magenta up triangles, violet 
stars indicate healthy, mild-infected, moderate-infected, severe-infected tobacco samples, respectively. Hollow 
markers indicate calibration set while solid markers indicate prediction set. �e classi�cation performance 
based on dried samples were higher than that based on fresh samples, with the accuracy of 97.2% in the 
prediction set.
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established to compare the modeling capability of nonlinear and linear algorithm. In total, 93 emission lines for 
dried pellets and 56 emission lines for fresh leaves were used for modeling. �e number of samples used for cali-
bration, cross-validation and prediction in the classi�cation based on observed emission lines was as the same as 
the number used in full spectrum classi�cation. Detailed information of these emission lines has been stated in 
Table 1.

As shown in Table 3, the PLS classi�cation based on observed emissions obtained acceptable results. However, 
the classi�cation accuracy was reduced in some extent, which was likely due to the loss of some useful informa-
tion. �is useful information could be the pro�le of the peaks or some little peaks ignored in this case. Similar to 
the previous results when all the variables of the spectra were involved, PLS model based on the spectra of dried 
samples obtained better classi�cation than that based on fresh samples. �e Y-predicted values for the dried sam-
ples were much closer to the ideal values of group labels. In detail, the classi�cation accuracy for dried samples 
was 91.7% in the calibration set and 88.9% in the prediction set, while for fresh samples the classi�cation accuracy 
was 67.1% and 63.2%, respectively.

In addition, the results of SVM models outperformed those of PLS-DA models (see Table 3). �e models of 
both fresh and dried samples had good classi�cation results, achieving the accuracy in the prediction set higher 
than 90%. In fresh samples, only two samples were misclassi�ed, one in mild-infected samples was misclassi�ed 
as severe-infected samples, and one in severe-infected samples was misclassi�ed as moderate-infected sample. 
In dried samples, two in severe-infected samples were misclassi�ed as moderate-infected samples. Besides, all 
healthy tobaccos were correctly classi�ed. It was mainly credited to the capability of SVM to deal with nonlinear 
classi�cation case, which has also been proven by Cisewski et al. and Dingari et al.16,17. �e nonlinear relationship 
in this case might be due to the ‘matrix e�ect’ and complex ablation process. Besides, the classi�cation accuracy 
in the cross-validation set decreased in both PLS-DA and SVM models when using the spectral data from fresh 
leaves. It indicated that moisture content worsened the classi�cation performance in both linear and nonlinear 
model, while the in�uences might be alleviated in nonlinear model.

Discussion
�e results demonstrated that LIBS combined with chemometrics could provide a novel approach to detect 
TMV-infected tobacco. Compared with other detection methods, this approach had the advantages of fast anal-
ysis speed, simple sample preparation and low cost. By ablating the sample simply with a laser, the elemental 
information represented features of sample could be acquired. Since the infected tobacco might show elemental 
variations in leaves, this approach provided an opportunity to characterize the features of symptoms, and classify 
the symptoms.

Figure 5. Regression coe�cients for PLS models based on (a) fresh samples and (b) dried samples. A variable 
with large absolute value of regression coe�cient plays an important role in PLS regression. �e variables that 
actually worked in PLS models were main observed emission lines.

Methods Samples Parameters

Accuracy

Calibration Cross-validation Prediction

PLS-DA
Fresh leaves LVs =  7 67.1% 62.2% 63.2%

Dried leaf pellets LVs =  6 91.7% 82.1% 88.9%

SVM
Fresh leaves C =  31.62; G =  0.001778 100% 87.8% 94.7%

Dried leaf pellets C =  17.78; G =  0.0004642 100% 97.6% 94.4%

Table 3.  Classi�cation results based on observed emission lines. Abbreviations: LVs, latent variables; C, 
capacity factor; G, gamma.
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Herein, we explored the e�ect of moisture content in samples using di�erent sample preparations (fresh leaves 
and died leaf pellets). It was proved that the existence of moisture content would worsen the repeatability of LIBS 
analysis and reduce important features in ‘�ngerprint’. In addition, the evaporation of water might be the origin 
of large value of temperature and electron density observed in fresh samples. �e in�uences of moisture content 
could also be re�ected in classi�cation models, the accuracy of which were all reduced.

For full spectrum, good classi�cation accuracy 97.2% for dried samples and 76.3% for fresh samples were 
obtained by PLS-DA method. �e full spectrum contained thousands of variables, most of which were noise or 
irrelevant information18. As shown in regression coe�cient plot, the variables that actually worked in PLS-DA 
were the main emission lines. As for the observed emission lines, we obtained acceptable results for both fresh 
and dried samples. However, the classi�cation accuracy was reduced in some extent compared with full spectrum. 
In addition, we found that nonlinear method (i.e. SVM) could alleviate the in�uences of moisture, and improve 
classi�cation accuracy. Using SVM method, the accuracy in cross-validation for fresh samples was increased from 
62.2% to 87.8%, and it was increased from 82.1% to 97.6% for dried samples. Actually, the interaction between 
laser and samples was complex, and it was hard to explain the relationship with linear models19. Hence, nonlinear 
method might be more suitable to this kind of classi�cation, especially when facing complex situations (the in�u-
ence of ‘matrix e�ect’ and moisture content were involved).

Although observed emission lines coupled with SVM achieved good classi�cation results for both fresh and 
dried samples, fresh samples without preparation was preferred for practical application. Because of the high 
analysis speed and the capability of �eldable application, thousands of fresh leaves could be analysed for prelim-
inary diagnosis and those suspicious samples could be further determined by traditional methods (e.g., PCR). It 
might reduce the cost in traditional analysis, and also improve the detection accuracy by globe screening.

In addition, the method used here was based on chemometrics, more samples including various symptoms 
and varieties of plants should be involved in future work. It might help to develop a more robust model, as well as 
to improve the classi�cation accuracy. Since this experiment was carried out with laboratory instrument, devel-
oping �eldable LIBS devices for TMV-infected disease detection had potential and practical meaning for further 
work. As the development of instruments and analytical methods, LIBS would play an important role in plants 
disease detection.

Methods
Experimental setup. A self-assembled LIBS system was used in this experiment (shown in Fig. 6). A 
Q-switch pulsed laser (Vlite 200, Beamtech, Beijing, China) was used to ablate samples with the maximal energy 
of 300 mJ @1064 nm, pulse duration of 8 ns. Since great absorption might occur within �uid medium specimens 
in the near infrared region, it might be unsuitable to use infrared laser for fresh leaves20. In this case, the laser was 
operated at the second harmonics wavelength with 60 mJ pulse energy and 1 Hz repetition rate. With the help 
of plano-convex lens (f =  100 mm), the laser beam was focused 2 mm below the sample. Emission spectra were 
dispersed by an Echelle spectrograph (ME5000, Andor, Belfast, UK) and collected by a ICCD detector (DH334-
18F-03, Andor, Belfast, UK). �e delay time used in presented experiment was 1.5 µ s with the integrated time of 
10 µ s, and the gain of detector was set at 1500. Before the experiment, wavelength of spectrograph and spectral 
intensity of detector were calibrated by a mercury argon lamp (HG-1, Ocean optics, USA) and a deuterium tung-
sten halogen source (DH-2000-BAL-CAL, Ocean optics, USA), respectively.

Sample preparation. Tobacco seeds MS 87 (provided by Yuxi Zhong Yan Seed Co., Ltd) were used in this 
experiment. A�er cultivating on a Murashige and Skoog medium (MS0) containing cell culture vessel for two 
weeks, the seedlings were transplanted to soil. During the period of vigorous growth, we infected healthy plant 
with TMV. Mechanical inoculation was used to infect the plants using the method mentioned in Ref. 21. Two in 
three tobacco plants were inoculated with TMV, and symptom development was monitored daily in the green-
house. Since the symptom development might vary among di�erent plants, representative tobacco leaves with 

Figure 6. Schematic diagram of experimental LIBS setup. �e LIBS setup mainly consists of an Q-switch 
pulsed laser, optics (mirrors, lens, and �ber, etc.) for guiding the laser pulses onto the samples and transferring 
the light into a light disperse system, spectrograph for producing the spectra and detection for recoding the 
signal.
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di�erent symptoms were identi�ed with the help of TMV specialist. For the mild-infected samples, there was a 
light green coloration between the veins of young leaves, and it was hard to identify with simple visual inspection. 
For moderate infected samples, the leaves began to appear light-green and dark green area, followed with slight 
rugosity. For severe-infected samples, the symptom of necrosis appeared in leaves, and the leaves curled severely. 
In this case, a total of 120 samples with four degrees of symptoms (healthy =  30, mild infected =  30, moderate 
infected =  30, and severe infected =  30) were collected for LIBS analysis.

For dried leaf pellets, the samples were �rstly dried at 80 °C for 4 h in an oven, and grinded by a grinding 
machine. �en 100 mg of grinded tobacco powders were placed in a square die set, and pressed with 10 tons of 
pressure for 1 min. Finally, square pellets with side length of 10 mm and thickness of 2 mm were used for analysis. 
With the help of X-Y-Z stage, ten successive shots each at twenty-�ve positions were performed for pellets. For 
fresh leaves, the laser beam ablated one side of the leaves about 5 mm away from the middle of the midribs, and 
100 single pulses at di�erent positions were used. In this experiment, the laser beam might pass through fresh 
leaves, but we didn’t detect extraneous signal from X-Y-Z stage (veri�ed by analysing the spectra when fresh 
leaves were placed onto a pure copper metal). In order to compare the performance of di�erent sample prepara-
tions, the experimental parameters were the same.

Data analysis. Prior to classi�cation, several data pre-processing procedures were applied for the collected 
spectra. In order to eliminate the shot-to-shot �uctuation (which may origin from the di�erent ablation e�ciency 
and slight variations of experimental parameters), each spectrum was normalized to the total emission integrated 
intensity. In addition, a self-developed routine based on median absolute deviation (MAD) method was used 
to detect outliers22. In general, signal variations in LIBS are large compared with other spectral methods (e.g., 
infrared spectroscopy). It may be credited to the “matrix e�ect”, and it has been demonstrated that removing 
the abnormal spectra could help to improve the precision and repeatability of LIBS measurement23. MAD is a 
traditional outlier detection method, and it has the capability to deal with non-normal data in small samples. In 
this case, we used the peak intensity of emission line CN 388.29 nm as the variable to detect outliers, since CN 
molecule lines o�en appear in organic sample and are relatively stable. �en the median and median absolute 
deviation of the peak intensity (CN 388.29 nm) within spectra from di�erent positions were calculated. A spec-
trum was considered as outlier when the di�erence value between its intensity of CN 388.29 nm and median was 
beyond 2.5 times the MAD. Once the outliers were detected, the spectra were removed from original spectra. We 
performed this procedure until no outliers were found or the number of remaining spectra was less than 75% of 
the total number. A�er outlier detection, all those remaining spectra were averaged to reduce the e�ect of sample 
inhomogeneity and the random noise. All the pre-processing operations were performed in Matlab 2014b (�e 
Mathworks Inc., Natick, USA).

In order to investigate the classi�cation of healthy and infected tobacco, PCA was applied to visualize the dis-
tribution of symptoms, and PLS-DA and SVM were utilized to quantitatively examine the classi�cation results. 
PCA24 is a traditional multivariate analytical method that reduce the dimensionality of the data by projecting the 
variables into some principal components with the maximal variations. �e main idea of PLS is similar with PCA, 
which mainly decompresses the independent variables (X), and also projects them into new variables (they are 
called as latent variables in PLS). However, since the dependent variable (Y) is also considered in PLS, the loading 
vectors are related in predicted value25. In this experiment, the independent variables were the pre-processed 
spectra, and the dependent variable was the categorization of each sample (healthy, mild infected, moderate 
infected, and severe infected). Di�erent from PLS, SVM is a nonlinear algorithm, which is good at dealing with 
nonlinear classi�cation cases. �e basic for SVM is to map the inputs into high-dimensional spaces, and to �nd 
a maximum-margin hyperplane that separates the data into two classes16. In this study, we used RBF kernel to 
nonlinearly map samples into higher dimensional space, and two important parameters in RBF kernel (capacity 
factor, gamma) were determined by performing a grid search. In order to avoid the risk of over�tting, the grid 
search was performed in a 10-folds cross validation.

All these three chemometrics were performed in the Unscambler X (CAMO AS, Oslo, Norway). Before mod-
elling, original spectra were divided into calibration set and prediction set using k-Means cluster. k-Means cluster 
is a widely used clustering algorithm, and it was also applied as training set selection method in previous report26. 
Since all samples were categorized as four di�erent groups according to their symptoms, the degree of infection 
varied slightly even in a single group. �erefore, k-Means can help to pre-cluster in a single categorization, and 
to improve the classi�cation accuracy. In this case, 11 and 9 clusters were selected for fresh leaves and pellets, 
respectively. �e clustering was performed 100 times to have a robust result.

In addition, LIBS spectra usually contain thousands of variables, while lots of them are usually noise or irrel-
evant signal for disease detection. �erefore, the classi�cation models based on observed peaks of spectra were 
also established.
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