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Abstract—The leak of sensitive data on computer systems poses
a serious threat to organizational security. Statistics show that the
lack of proper encryption on files and communications due to hu-
man errors is one of the leading causes of data loss. Organizations
need tools to identify the exposure of sensitive data by screening
the content in storage and transmission, i.e., to detect sensitive
information being stored or transmitted in the clear. However,
detecting the exposure of sensitive information is challenging due
to data transformation in the content. Transformations (such as
insertion, deletion) result in highly unpredictable leak patterns.

In this work, we utilize sequence alignment techniques for
detecting complex data-leak patterns. Our algorithm is designed
for detecting long and inexact sensitive data patterns. This
detection is paired with a comparable sampling algorithm, which
allows one to compare the similarity of two separately sampled
sequences. Our system achieves good detection accuracy in rec-
ognizing transformed leaks. We implement a parallelized version
of our algorithms in graphics processing unit that achieves high
analysis throughput. We demonstrate the high multithreading
scalability of our data leak detection method required by a sizable
organization.

Index Terms—Data leak detection, content inspection, sam-
pling, alignment, dynamic programming, parallelism

I. INTRODUCTION

Reports show that the number of leaked sensitive data

records has grown 10 times in the last 4 years, and it reached a

record high of 1.1 billion in 2014 [3]. A significant portion of

the data leak incidents are due to human errors, for example, a

lost or stolen laptop containing unencrypted sensitive files, or

transmitting sensitive data without using end-to-end encryption

such as PGP. A recent Kaspersky Lab survey shows that

accidental leak by staff is the leading cause for internal data

leaks in corporates [4]. The data-leak risks posed by accidents

exceed the risks posed by vulnerable software.

In order to minimize the exposure of sensitive data and

documents, an organization needs to prevent cleartext sensitive

data from appearing in the storage or communication. A

screening tool can be deployed to scan computer file systems,

server storage, and inspect outbound network traffic. The tool

searches for the occurrences of plaintext sensitive data in

the content of files or network traffic. It alerts users and

administrators of the identified data exposure vulnerabilities.

For example, an organization’s mail server can inspect the
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content of outbound email messages searching for sensitive

data appearing in unencrypted messages.

Data leak detection differs from the anti-virus (AV) scanning

(e.g., scanning file systems for malware signatures) or the

network intrusion detection systems (NIDS) (e.g., scanning

traffic payload for malicious patterns) [5]. AV and NIDS

typically employ automata-based string matching (e.g., Aho-

Corasick [6], Boyer-Moore [7]), which match static or regular

patterns. However, data leak detection imposes new security

requirements and algorithmic challenges:

• Data transformation. The exposed data in the content may

be unpredictably transformed or modified by users or ap-

plications, and it may no longer be identical to the original

sensitive data, e.g., insertions of metadata or formatting

tags, substitutions of characters, and data truncation (partial

data leak). Thus, the detection algorithm needs to recognize

different kinds of sensitive data variations.

• Scalability. The heavy workload of data leak screening is

due to two reasons.

a) Long sensitive data patterns. The sensitive data (e.g.,

customer information, documents, source code) can be

of arbitrary length (e.g., megabytes).

b) Large amount of content. The detection needs to rapidly

screen content (e.g., gigabytes to terabytes). Traffic

scanning is more time sensitive than storage scanning,

because the leak needs to be discovered before the

message is transmitted.

Directly applying automata-based string matching (e.g., [6],

[8], [9]) to data leak detection is inappropriate and inefficient,

because automata are not designed to support unpredictable

and arbitrary pattern variations. In data leak detection sce-

narios, the transformation of leaked data (in the description

of regular expression) is unknown to the detection method.

Creating comprehensive automata models covering all possible

variations of a pattern is infeasible, which leads to O(2n)
space complexity (for deterministic finite automata) or O(2n)
time complexity (for nondeterministic finite automata) where

n is the number of automaton states. Therefore, automata

approaches cannot be used for detecting long and transformed

data leaks.

Existing data leak detection approaches are based on set

intersection. Set intersection is performed on two sets of n-

grams, one from the content and one from sensitive data.

The set intersection gives the amount of sensitive n-grams

appearing in the content. The method has been used to detect

similar documents on the web [10], shared malicious traffic

patterns [11], malware [12], as well as email spam [13]. The

advantage of n-grams is the extraction of local features of a

string, enabling the comparison to tolerate discrepancies. Some
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advanced versions of the set intersection method utilize Bloom

filter, e.g., [14], which trades accuracy for space complexity

and speed. Shu and Yao extended the standard use of n-grams

and introduced data-leak detection as a service. They proposed

the first solution for detecting accidental data leak with semi-

honest providers [15].

However, set intersection is orderless, i.e., the ordering of

shared n-grams is not analyzed. Thus, set-based detection

generates undesirable false alerts, especially when n is set

to a small value to tolerant data transformation. In addition,

set intersection cannot effectively characterize the scenario

when partial data is leaked, which results in false negatives.

Therefore, none of the existing techniques is adequate for

detecting transformed data leaks.

Our solution to the detection of transformed data leaks is

a sequence alignment algorithm, executed on the sampled

sensitive data sequence and the sampled content being in-

spected. The alignment produces scores indicating the amount

of sensitive data contained in the content. Our alignment-

based solution measures the order of n-grams. It also handles

arbitrary variations of patterns without an explicit specification

of all possible variation patterns. Experiments show that our

alignment method substantially outperforms the set intersec-

tion method in terms of detection accuracy in a multitude of

transformed data leak scenarios.

We solve the scalability issue by sampling both the sensitive

data and content sequences before aligning them. We enable

this procedure by providing the pair of a comparable sam-

pling algorithm and a sampling-oblivious alignment algorithm.

The comparable sampling algorithm yields constant samples

of a sequence wherever the sampling starts and ends. The

sampling-oblivious alignment algorithm infers the similarity

between the original unsampled sequences with sophisticated

traceback techniques through dynamic programming. The al-

gorithm infers the lost information (i.e., sampled-out elements)

based on the matching results of their neighboring elements.

Evaluation results show that our design boosts the perfor-

mance, yet only incurs a very small amount of mismatches.

Existing network traffic sampling techniques, e.g., [16], only

sample the content. Our problem differs from existing sam-

pling problems that both sensitive data and content sequences

are sampled. The alignment is performed on the sampled

sequences. Therefore, the samples of similar sequences should

be similar so that they can be aligned. We define a comparable

sampling property, where the similarity of two sequences is

preserved. For example, if x is a substring of y, then x′ should

be a substring of y′, where x′ and y′ are sampled sequences of

x and y, respectively. None of the existing sampling solutions

satisfies this comparable sampling requirement. Deterministic

sampling, e.g., [17], does not imply comparable sampling,

either. The key to our comparable sampling is to consider

the local context of a sequence while selecting items. Sample

items are selected deterministically within a sliding window.

The same sampled items are selected in spite of different

starting/ending points of sampling procedures.

Both of our algorithms are designed to be efficiently paral-

lelized. We parallelize our prototype on a multicore CPU and a

GPU. We demonstrate the strong scalability of our design and

the high performance of our prototypes. Our GPU-accelerated

implementation achieves nearly 50 times of speedup over

the CPU version. Our prototype reaches 400Mbps analysis

throughput. This performance potentially supports the rapid

security scanning of storage and communication required by

a sizable organization.

We have presented the basic idea and preliminary evaluation

results in our workshop paper [1]. In this paper, we formalize

and expand the description and analysis of our comparable

sampling algorithm and sampling-oblivious alignment algo-

rithm. We conduct new experiments in Section VI to system-

atically understand how sensitive our system is in response

to data transformation in various degrees. We also include the

effectiveness evaluation of our sampling design in Section VII.

Our solution detects inadvertent data leaks, where sensitive

data may be accidentally exposed. It is not designed for

detecting data leaks caused by malicious insiders or attackers.

The detection of data leaks due to malicious insiders remains

a challenging open research problem.

II. RELATED WORK

Existing commercial data leak detection/prevention solu-

tions include Symantec DLP [14], IdentityFinder [18], Glob-

alVelocity [19], and GoCloudDLP [20]. GlobalVelocity uses

FPGA to accelerate the system. All solutions are likely based

on n-gram set intersection. IdentityFinder searches file systems

for short patterns of numbers that may be sensitive (e.g., 16-

digit numbers that might be credit card numbers). It does not

provide any in-depth similarity tests. Symantec DLP is based

on n-grams and Bloom filters. The advantage of Bloom filter

is space saving. However, as explained in the introduction,

Bloom filter membership testing is based on unordered n-

grams, which generates coincidental matches and false alarms.

Bloom filter configured with a small number of hash functions

has collisions, which introduce additional unwanted false

positives.

Network intrusion detection systems (NIDS) such as

Snort [21] and Bro [22] use regular expression to perform

string matching in deep packet inspection [23]. Nondeter-

ministic finite automaton (NFA) with backtracking requires

O(2n) time and O(n) space, where n is the number of

automaton states. Deterministic finite automaton (DFA) has

a time complexity of O(n) and a space complexity of O(2n)

when used with quantification. Quantification is for expressing

optional characters and multiple occurrences in a pattern.

DFA’s space complexity can be reduced by grouping similar

patterns into one automaton [24], reducing the number of

edges [25], [26]. These improvements provide a coefficient

level of speedup.

However, existing string matching approaches based on

DFA or NFA cannot automatically match arbitrary and unpre-

dictable pattern variations. Modified data leak instances cannot

be matched or captured if the variation is not manually speci-

fied as a matching pattern. Enumerating all potential variation

patterns takes exponential time and space with respect to the

length of the pattern. Therefore, it is impractical.

In comparison, our sequence alignment solution covers

all possible pattern variations in long sensitive data without
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explicitly specifying them. Another drawback of automata is

that it yields binary results. In comparison, alignment pro-

vides precise matching scores and allows customized weight

functions. Our alignment gives more accurate detection than

approximate string matching (e.g., [27], [28]).

Alignment algorithms have been widely used in compu-

tational biology applications, and features such as privacy-

preserving sequence matching have been studied [29]. In

security literature, NetDialign based on the well-known Di-

align algorithms is proposed for network privacy [30]. It

performs differential testing among multiple traffic flows.

Kreibich and Crowcroft presented an alignment algorithm for

traffic intrusion detection systems such as Bro [31]. It is a

variant of Jacobson-Vo alignment that calculates the longest

common subsequence with the minimum number of gaps.

Researchers in [32] reported the use of dynamic program-

ming for computing the similarity of network behaviors and

presented a technique to handle behavioral sequences with

differing sampling rates. Masquerade attacks in the context

of user command sequences can be detected with semi-global

sequence alignment techniques [33], [34].

Our data leak detection differs from the above network

privacy and IDS problems, and it has new requirements as we

have explained in the introduction. Our alignment performs

complex inferences needed for aligning sampled sequences,

and our solution is also different from fast non-sample align-

ment in bioinformatics, e.g., BLAST [35].

Another approach to the detection of sensitive data leak is to

track the data/metadata movement. Several tools are developed

for securing sensitive information on mobile platforms [36]–

[38]. Nadkarni and Enck described an approach to control the

sharing of sensitive files among mobile applications [37]. File

descriptors (not the content) are stored, tracked and managed.

The access control on files is enforced through policies. Yang

et al. presented a method aiming at detecting the transmission

of sensitive data that is not intended by smartphone users

via symbolic execution analysis [38]. Hoyle et al. described a

visualization method for informing mobile users of informa-

tion exposure [36]. The information exposure may be caused

by improper setting or configuration of access policies. The

visualization is through an avatar apparel approach. Croft

and Caesar expand the data tracking from a single host to a

network and use shadow packets to distinguish normal traffic

from leaks [39]. The security goals and requirements in all

these studies are very different from ours, leading to different

techniques developed and used.

iLeak is a system for preventing inadvertent information

leaks on a personal computer [40]. It takes advantages of the

keyword searching utility present in many modern operating

systems. iLeak monitors the file access activities of processes

and searches for system call inputs that involve sensitive data.

Unlike our general data leak detection approach, iLeak is

designed to secure personal data on a single machine, and its

detection capability is restricted by the underlying keyword

searching utility, which is not designed for detecting either

transformed data leaks or partial data leaks.

Bertino and Ghinita addressed the issue of data leaks in

database from the perspective of anomaly detection [41].

Normal user behaviors are monitored and modeled in DBMS,

and anomalous activities are identified with respect to potential

data leak activities. Bertino also discussed watermarking and

provenance techniques used in data leak prevention and foren-

sics [41], which is investigated in details by Papadimitriou and

Garcia-Molina in [42].

Privacy is a well-known issue in the cloud. Lin and

Squicciarini proposed a generic data protection framework

to enforce data security in the cloud [43]. A three-tier data

protection framework was proposed by Squicciarini et al. to

deal with the data leak caused by indexing in the cloud [44].

Privacy-preserving data leak detection was proposed and

further developed in [45], [46], where data leak detection

operations are outsourced to a semi-honest third-party. The

solution is a specialized set intersection method. Therefore, it

is different from this paper.

III. MODELS AND OVERVIEW

In our data leak detection model, we analyze two types of

sequences: sensitive data sequence and content sequence.

• Content sequence is the sequence to be examined for leaks.

The content may be data extracted from file systems on

personal computers, workstations, and servers; or payloads

extracted from supervised network channels (details are

discussed below).

• Sensitive data sequence contains the information (e.g., cus-

tomers’ records, proprietary documents) that needs to be

protected and cannot be exposed to unauthorized parties.

The sensitive data sequences are known to the analysis

system.

In this paper, we focus on detecting inadvertent data leaks,

and we assume the content in file system or network traffic

(over supervised network channels) is available to the inspec-

tion system. A supervised network channel could be an unen-

crypted channel or an encrypted channel where the content

in it can be extracted and checked by an authority. Such

a channel is widely used for advanced NIDS where MITM

(man-in-the-middle) SSL sessions are established instead of

normal SSL sessions [47]. We do not aim at detecting stealthy

data leaks that an attacker encrypts the sensitive data secretly

before leaking it. Preventing intentional or malicious data leak,

especially encrypted leaks, requires different approaches and

remains an active research problem [48].

In our current security model, we assume that the analysis

system is secure and trustworthy. Privacy-preserving data-leak

detection can be achieved by leveraging special protocols

and computation steps [49]. It is another functionality of a

detection system, and the discussion is not within the scope

of this paper.

A. Technical Challenges

High detection specificity. In our data-leak detection model,

high specificity refers to the ability to distinguish true leaks

from coincidental matches. Coincidental matches are false

positives, which may lead to false alarms. Existing set-based

detection is orderless, where the order of matched shingles
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(n-grams) is ignored. Orderless detection may generate coin-

cidental matches, and thus having a lower accuracy of the

detection. In comparison, our alignment-based method has

high specificity. For example, a detection system can use 3-

grams to represent the sensitive data.

Sensitive data abcdefg

3-grams abc, bcd, cde, def, efg

Then, consider the content streams 1 and 2 below. Stream

1 contains a true leak, whereas stream 2 does not.

Content stream 1 ....abcdefg...

Content stream 2 ....efg...cde...abc...

However, set intersection between 3-grams of the sensitive

data and the 3-grams of content stream 2 results in a significant

number of matching 3-grams (efg, cde, and abc), even

though they are out of order compared to the sensitive data

pattern. This problem is eliminated in alignment, i.e., the

content stream 2 receives a low sensitivity score when aligned

against the sensitive data.

Pervasive and localized modification. Sensitive data could be

modified before it is leaked out. The modification can occur

throughout a sequence (pervasive modification). The modifi-

cation can also only affect a local region (local modification).

We describe some modification examples:

• Character replacement, e.g., WordPress replaces every

space character with a + in HTTP POST requests.

• String insertion, e.g., HTML tags inserted throughout a

document for formatting or embedding objects.

• Data truncation or partial data leak, e.g., one page of a two-

page sensitive document is transmitted.

B. Overview of Our Approach

Our work presents an efficient sequence comparison tech-

nique needed for analyzing a large amount of content for

sensitive data exposure. Our detection approach consists of

a comparable sampling algorithm and a sampling oblivious

alignment algorithm. The pair of algorithms computes a quan-

titative similarity score between the sensitive data and the

content. Local alignment – as opposed to global alignment [50]

– is used to identify similar sequence segments. The design

enables the detection of partial data leaks.

Our detection runs on continuous sequences of n bytes (n-

grams). n-grams are obtained from the content and sensitive

data, respectively. Local alignment is performed between the

two (sampled) sequences to compute their similarity. The

purpose of our comparable sampling operation is to enhance

the analysis throughput. We discuss the tradeoff between

security and performance related to sampling in our evaluation

sections. Finally, we report the content that bears higher-than-

threshold similarity with respect to sensitive patterns. Given

a threshold T , content with a greater-than-T sensitivity is

reported as a leak.

IV. COMPARABLE SAMPLING

In this section, we define the sampling requirement needed

in data leak detection. Then we present our solution and its

analysis.

A. Definitions

One great challenge in aligning sampled sequences is that

the sensitive data segment can be exposed at an arbitrary

position in a network traffic stream or a file system. The

sampled sequence should be deterministic despite the starting

and ending points of the sequence to be sampled. Moreover,

the leaked sensitive data could be inexact but similar to the

original string due to unpredictable transformations. We first

define substring and subsequence relations in Definition 1

and Definition 2. Then we define the capability of giving

comparable results from similar strings in Definition 3.

Definition 1. (Substring) a substring is a consecutive segment

of the original string.

If x is a substring of y, one can find a prefix string (denoted

by yp) and a suffix string (denoted by ys) of y, so that y equals

to the concatenation of yp, x, and ys. yp and ys could be empty.

Definition 2. (Subsequence) subsequence is a generalization

of substring that a subsequence does not require its items to

be consecutive in the original string.

One can generate a subsequence of a string by removing

items from the original string and keeping the order of the

remaining items. The removed items can be denoted as gaps

in the subsequence, e.g., lo-e is a subsequence of flower

(- indicates a gap).

Definition 3. (Comparable sampling) Given a string x and

another string y that x is similar to a substring of y according

to a similarity measure M , a comparable sampling on x and

y yields two subsequences x′ (the sample of x) and y′ (the

sample of y), so that x′ is similar to a substring of y′ according

to M .

If we restrict the similarity measure M in Definition 3 to

identical relation, we get a specific instance of comparable

sampling in Definition 4.

Definition 4. (Subsequence-preserving sampling) Given x as

a substring of y, a subsequence-preserving sampling on x and

y yields two subsequences x′ (the sample of x) and y′ (the

sample of y), so that x′ is a substring of y′.

Because a subsequence-preserving sampling procedure is a

restricted comparable sampling, so the subsequence-preserving

sampling is deterministic, i.e., the same input always yields the

same output. The vice versa may not be true.

In Example 1 with two sequences of integers, we illustrate

the differences between a comparable sampling algorithm and

a random sampling method, where a biased coin flipping at

each position decides whether to sample or not. The input is a

pair of two similar sequences. There is one modification (9 to

8), two deletions (7) and (3), and suffix padding (1, 4) in the

second sequence. Local patterns are preserved in a comparable

sampling method, whereas the random sampling does not. The

local patterns can then be digested by our sampling-oblivious

alignment algorithm to infer the similarity between the two

original input sequences.

Example 1. Comparable sampling.



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 5

Inputs:

1 1 9 4 5 7 3 5 9 7 6 6 3 3 7 1 6

1 1 9 4 5 7 3 5 8 6 6 3 7 1 6 1 4

Comparable sampling may give:

1 1 - 4 - - 3 5 - - - - 3 3 - 1 -

1 1 - 4 - - 3 - - 6 - 3 - 1 - 1 4

Random sampling may give:

1 - - 4 - - 3 5 - 7 - 6 - - 7 1 -

- 1 9 - 5 - - 5 - 6 - 3 7 - 6 1 -

B. Our Sampling Algorithm

We present our comparable sampling algorithm. The ad-

vantage of our algorithm is its context-aware selection, i.e.,

the selection decision of an item depends on how it compares

with its surrounding items according to a selection function.

As a result, the sampling algorithm is deterministic and

subsequence-preserving.

Our comparable sampling algorithm takes in S , an input list

of items (preprocessed n-grams of sensitive data or content1),

and outputs T , a sampled list of the same length; the sampled

list contains null values, which correspond to items that are

not selected. The null regions in T can be aggregated, and

T can be turned into a compact representation L. Each item

in L contains the value of the sampled item and the length

of the null region between the current sampled item and the

preceding one.

T is initialized as an empty list, i.e., a list of null items.

The algorithm runs a small sliding window w on S . w is

initialized with the first |w| items in S (line 2 in Algorithm 1).

The algorithm then utilizes a selection function to decide

what items in w should be selected for T . The selection

decision is made based on not only the value of that item,

but also the values of its neighboring items in w. Therefore,

unlike a random sampling method where a selection decision

is stochastic, our method satisfies the subsequence-preserving

and comparable sampling requirements.

In Algorithm 1, without loss of generality, we describe

our sampling method with a specific selection function f =
min(w,N). f takes in an array w and returns the N smallest

items (integers) in w. f is deterministic, and it unbias-

edly selects items when items (n-grams) are preprocessed

with the min-wise independent Rabin’s fingerprint [51]. f

can be replaced by other functions that are also min-wise

independent. The selection results at each sliding window

position determine what items are chosen for the sampled

list. The parameters N and |w| determine the sampling rate.

collectionDiff(A,B) in lines 10 and 11 outputs the

collection of all items of collection A that are not in collection

B. The operation is similar to the set difference, except that it

works on collections and does not eliminate duplicates.

1We preprocess n-grams with Rabin’s fingerprint to meet the min-wise
independent requirement of selection function f described next. Each item in
S is a fingerprint/hash value (integer) of an n-gram.

Algorithm 1 A subsequence-preserving sampling algorithm.

Input: an array S of items, a size |w| for a sliding window w, a
selection function f(w,N) that selects N smallest items from
a window w, i.e., f = min(w,N)

Output: a sampled array T
1: initialize T as an empty array of size |S|
2: w ← read(S, |w|)
3: let w.head and w.tail be indices in S corresponding to the

higher-indexed end and lower-indexed end of w, respectively
4: collection mc ← min(w,N)
5: while w is within the boundary of S do
6: mp ← mc

7: move w toward high index by 1
8: mc ← min(w,N)
9: if mc 6= mp then

10: item en ← collectionDiff(mc,mp)
11: item eo ← collectionDiff(mp,mc)
12: if en < eo then
13: write value en to T at w.head’s position
14: else
15: write value eo to T at w.tail’s position
16: end if
17: end if
18: end while

T output by Algorithm 1 takes the same space as S does.

Null items can be combined, and T is turned into a com-

pact representation L, which is consumed by our sampling-

oblivious alignment algorithm in the next phase.

We show how our sampling algorithm works in Table I.

We set our sampling procedure with a sliding window of

size 6 (i.e., |w| = 6) and N = 3. The input sequence is

1,5,1,9,8,5,3,2,4,8. The initial sliding window w =
[1,5,1,9,8,5] and collection mc = {1,1,5}.

Sampling Algorithm Analysis

Our sampling algorithm is deterministic, i.e., given a fixed

selection function f : same inputs yield the same sampled

string. However, deterministic sampling (e.g., [17]) does not

necessarily imply subsequence preserving. One can prove

using a counterexample. Consider a sampling method that

selects the first of every 10 items from a sequence, e.g., 1-st,

11-th, 21-st, . . . It is deterministic, but it does not satisfy the

subsequence-preserving requirement. Some sampling methods

such as coresets [52], [53] do not imply determinism.

Our sampling algorithm is not only deterministic, but also

subsequence-preserving as presented in Theorem 1.

Theorem 1. Algorithm 1 (denoted by Ψ) is subsequence-

preserving. Given two strings x and y, where x is a substring

of y, then Ψ(x) is a substring of Ψ(y).

Proof: Let L[m : n] denote the substring of L starting

from the m-th item and ending at the n-th item. Consider

strings L1 and L2 and their sampled sequences S1 and S2,

respectively. We prove that the theorem holds in four cases.

Case 1: L2 equals to L1. Because our comparable sampling

algorithm is deterministic, the same string yields the same

sampled sequence. Thus, S2 is a substring of S1.

Case 2: L2 is a prefix of L1. The sampling of L1 can be

split into two phases.

Phase 1 The head of the sliding moves within
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TABLE I
ILLUSTRATION OUR SAMPLING PROCEDURE.

Step w mc mp en eo Sampled list

0 [1, 5, 1, 9, 8, 5] 1, 1, 5 N/A N/A N/A <-, -, -, -, -, -, -, -, -, ->

1 [5, 1, 9, 8, 5, 3] 1, 3, 5 1, 1, 5 3 1 <1, -, -, -, -, -, -, -, -, ->

2 [1, 9, 8, 5, 3, 2] 1, 2, 3 1, 3, 5 2 5 <1, -, -, -, -, -, -, 2, -, ->

3 [9, 8, 5, 3, 2, 4] 2, 3, 4 1, 2, 3 4 1 <1, -, 1, -, -, -, -, 2, -, ->

4 [8, 5, 3, 2, 4, 8] 2, 3, 4 2, 3, 4 N/A N/A <1, -, 1, -, -, -, -, 2, -, ->

L1[size(win) : size(L2)], i.e., from the start of L1

to the exact position in L1 where L2 ends. Since L2

is a prefix of L1, and the window only moves within

the scope of the prefix, the sample of L1 generated in

this subprocess is the same as S2, the final sample of

L2.

Phase 2 The head of the sliding window moves within

L1[size(L2) + 1 : size(L2) + size(win)]. The tail of

the sample window sweeps L1[size(L2)−size(win)+
1 : size(L2)] and yields zero or more sampled items

on S1[size(L2)− size(win) + 1 : size(L2)].

S1[1 : size(L2)−size(win)] is solely generated in Phase

1. Thus, it is the same as S2[1 : size(L2)− size(win)].
In Phase 2, we know that S1[size(L2) − size(win) +
1 : size(L2)] contains zero or more sample items

than S2[size(L2) − size(win) + 1 : size(L2)]. Thus,

S2[size(L2) − size(win) + 1 : size(L2)] is a substring

of S1[size(L2)− size(win) + 1 : size(L2)]. Thus, S2 is

a substring of S1.

Case 3: L2 is a suffix of L1. The proof is similar to Case 2.

The sampling of L1 can be split into two phases.

Phase 1 The tail of the sliding window moves within

L1[size(L1)− size(L2) + 1 : size(L1)− size(win)].
The generated sampled sequence is the same as S2,

which is the final sample of L2.

Phase 2 The tail of the sliding window moves

within L1[size(L1) − size(L2) − size(win) + 1 :
size(L1)−size(L2)]. The head of the window sweeps

L1[size(L1)− size(L2) + 1 : size(L1)− size(L2) +
size(win)] and yields zero or more sampled items on

L1[size(L1)− size(L2) + 1 : size(L1)− size(L2) +
size(win)].

S1[size(L1) − size(L2) + size(win) + 1 : size(L1) −
size(L2)] is the same as S2[size(L1) − size(L2) +
size(win) + 1 : size(L1) − size(L2)]. In addition,

S2[size(L1) − size(L2) + 1 : size(L1) − size(L2) +
size(win)] is a substring of S1[size(L1)−size(L2)+1 :
size(L1)−size(L2)+size(win)]. Thus, S2 is a substring

of S1.

Case 4: All others. This case is when L2 is a substring of

L1, but not a prefix or suffix, i.e., L2[1 : size(L2)] =
L1[m : n]. We align L1 and L2 and cut the two strings at

a position where they are aligned. Denote the position in

L2 by k. We obtain L2[1 : k] as a suffix of L1[m : m+k]
and L2[k+1 : size(L2)] as a prefix of L1[m+k+1 : n].
Based on the proofs in Case 2 and Case 3, we conclude

that S2[1 : k] is a substring of S1[m : m+k], and S2[k+

1 : size(L2)] is a substring of S1[m + k + 1 : n]. Thus,

S2 is a substring of S1.

In summary, Theorem 1 holds in every case.

Our algorithm is unbiased, meaning that it gives an equal

probability for every unit in the string to be selected. To

achieve bias-free property, we hash inputs using a min-

wise independent function, namely Rabin’s fingerprint [54].

It guarantees that the smallest N items come equally from

any items in the original string. This hashing is performed in

PREPROCESSING operation in our prototypes.

The complexity of sampling using the min(w,N) selection

function is O(n log |w|), or O(n) where n is the size of the

input, |w| is the size of the window, The factor O(log |w|)
comes from maintaining the smallest N items within the

window w.

Sampling rate α ∈ [ N
|w| , 1] approximates N

|w| for random

inputs, where |w| is the size of the sliding window, and N

is the number of items selected within the sliding window.

For arbitrary inputs, the actual sampling rate depends on the

characteristics of the input space and the selection function

used. The sampling rate in our evaluations on common Internet

traffic is around 1.2 N
|w| .

Sufficient number of items need to be sampled from se-

quences in order to warrant an accurate detection. Our em-

pirical result in Section VI-B shows that with 0.25 sampling

rate our alignment method can detect as short as 32-byte-long

sensitive data segments.

V. ALIGNMENT ALGORITHM

In this section, we describe the requirements for a sample-

based alignment algorithm and present our solution.

A. Requirements and Overview

We design a specialized alignment algorithm that runs on

compact sampled sequences La and Lb to infer the similarity

between the original sensitive data sequence Sa and the

original content sequence Sb. It needs to satisfy the require-

ment of sampling oblivion, i.e., the result of a sampling-

oblivious alignment on sampled sequences La and Lb should

be consistent with the alignment result on the original Sa and

Sb.

Conventional alignment may underestimate the similarity

between two substrings of the sampled lists, causing misalign-

ment. Regular local alignment without the sampling oblivion

property may give inaccurate alignment on sampled sequences

as illustrated in Example 2.
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Example 2. Sampling-oblivious alignment vs. regular local

alignment

Original lists:

5627983857432546397824366

5627983966432546395

Sampled sequences need to be aligned as:

--2---3-5---2---3-7-2-3--

--2---3-6---2---3--

However, regular local alignment may give:

23523723

23623

Because values of unselected items are unknown to the

alignment, the decision of match or mismatch cannot be made

solely on them during the alignment. We observe that leaked

data region is usually consecutive, e.g., spans at least dozens

of bytes. Thus, our algorithm achieves sampling oblivion

by inferring the similarity between null regions (consecutive

sampled-out elements) and counts that similarity in the overall

comparison outcomes between the two sampled sequences.

The inference is based on the comparison outcomes between

items surrounding null regions and sizes of null regions. For

example, given two sampled sequences a--b and A--B, if

a == A and b == B, then the two values in the positions

of the null regions are likely to match as well. In case of

mismatch surrounding the null region, penalty is applied. Our

experimental results confirm that this inference mechanism is

effective.

We develop our alignment algorithm using dynamic pro-

gramming. A string alignment problem is divided into three

prefix alignment subproblems: the current two items (from

two sequences) are aligned with each other, or one of them

is aligned with a gap. In our algorithm, not only the sampled

items are compared, but also comparison outcomes between

null regions are inferred based on their non-null neighboring

values and their sizes/lengths. The comparison results include

match, mismatch and gap, and they are rewarded (match) or

penalized (mismatch or gap) differently for sampled items or

null regions according to a weight function fw().

Our alignment runs on sampled out elements. We introduce

i) extra fields of scoring matrix cells in dynamic programming,

ii) extra steps in recurrence relation for bookkeeping the

null region information, and iii) a complex weight function

estimating similarities between null regions.

Security Advantages of Alignment. There are three major

advantages of our alignment-based method for detecting data

leaks: order-aware comparison, high tolerance to pattern vari-

ations, and the capability of partial leak detection. All features

contribute to high detection accuracy.

• Order-aware comparison. Existing data leak filtering meth-

ods based on set intersection are orderless. An orderless

comparison brings undesirable false alarms due to coinci-

dental matches, as explained in Section III. In comparison,

alignment is order-aware, which significantly reduces the

number of false positives.

Algorithm 2 Recurrence relation in dynamic programming.

Input: A weight function fw, visited cells in H matrix that are
adjacent to H(i, j): H(i−1, j−1), H(i, j−1), and H(i−1, j),
and the i-th and j-th items La

i ,L
b
j in two sampled sequences La

and Lb, respectively.
Output: H(i, j)

1: hup.score← fw(L
a
i , -, H(i− 1, j))

2: hleft.score← fw(-,L
b
j , H(i, j − 1))

3: hdia.score← fw(L
a
i ,L

b
j , H(i− 1, j − 1))

4: hup.nullrow ← 0
5: hup.nullcol ← 0
6: hleft.nullrow ← 0
7: hleft.nullcol ← 0

8: hdia.nullrow ←







0, if La
i = Lb

j

H(i− 1, j).nullrow
+ La

i .span+ 1, else

9: hdia.nullcol ←







0, if La
i = Lb

j

H(i, j − 1).nullcol
+ Lb

j .span+ 1, else

10: H(i, j)← arg max
h.score







hup

hleft

hdia

11: H(i, j).score← max

{

0
H(i, j).score

• High tolerance to pattern variations. The optimal align-

ment between the sensitive data sequence and content

sequence ensures high accuracy for data leak detection. The

alignment-based detection tolerates pattern variations in the

comparison, thus can handle transformed data leaks. The

types of data transformation in our model include localized

and pervasive modifications such as insertion, deletion, and

substitution, but exclude strong encryption.

• Capability of detecting partial leaks. Partial data leak is

an extreme case of truncation in transformation. In set-

intersection methods, the size of sensitive data and that

of the inspected content are usually used to diminish the

score of coincidental matches, which incurs false negatives

when only partial sensitive data is leaked. Local alignment

searches for similar substrings in two sequences, thus it can

detect a partial data leak.

B. Recurrence Relation

We present the recurrence relation of our dynamic program

alignment algorithm in Algorithm 2. For the i-th item Li in

a sampled sequence L (the compact form), the field Li.value

denotes the value of the item and a new field Li.span denotes

the size of null region between that item and the preceding

non-null item. Our local alignment algorithm takes in two

sampled sequences La and Lb, computes a non-negative score

matrix H of size |La|-by-|Lb|, and returns the maximum

alignment score with respect to a weight function. Each cell

H(i, j) has a score field H(i, j).score and two extra fields

recording sizes of neighboring null regions, namely nullrow
and nullcol.

The intermediate solutions are stored in matrix H . For each

subproblem, three previous subproblems are investigated: i)

aligning the current elements without a gap, which leads to a

match or mismatch, ii) aligning the current element in La with
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c

h
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y
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c.nr

y
.n
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n
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x

y

j+k+l
l

k+l

c.nc

c.nr x.n

y.n

 (b) Scoring Matrix View(a) Sampled Stream View

sens

traffic

Fig. 1. Illustration of the notation used in the weight function fw() for the match case (i. e., x.value = y.value) in the alignment view (a) and matrix view
(b). The milestone cell in (b) is for inference due to sampling.

a gap, and iii) aligning the current element in Lb with a gap.

A cell candidate h is generated for each situation; its score

h.score is computed via the weight function fw (lines 1 to 3

in Algorithm 2). The other two fields, nullrow and nullcol, are

updated for each candidate cell (lines 4 to 9). This update may

utilize the null region value stored in the span field of an item.

All three cell candidates hup, hleft, and hdia are prepared. The

cell candidate having the highest score is chosen as H(i, j),
and the score is stored in H(i, j).score.

C. Weight Function

A weight function computes the score for a specific align-

ment configuration. Our weight function fw() takes three

inputs: the two items being aligned (e.g., La
i from sensitive

data sequence and Lb
j from content sequence) and a reference

cell c (one of the three visited adjacent cells H(i − 1, j −
1), H(i, j − 1), or H(i − 1, j)). It then outputs a score of

an alignment configuration. One of La
i and Lb

j may be a

gap (−) in the alignment. The computation is based on the

penalty given to mismatch and gap conditions and reward

given to match conditions. Our weight function differs from

the one in Smith-Waterman algorithm [55] in its ability to infer

comparison outcomes for null regions. This inference is done

efficiently accordingly to the values of their adjacent non-null

neighboring items. The inference may trace back to multiple

preceding non-null items up to a constant factor.

In our fw(), r is the reward for a single unit match, m is

the penalty for a mismatch, and g is the penalty for a single

unit aligned with a gap. As presented in Section V-B, the

field value is the value of a sampled item (e.g., x.value or

y.value in fw() below), and the field span stores the length

of the null region preceding the item. For the input cell c, the

fields nr (short for nullrow) and nc (short for nullcol) record

the size of the accumulated null regions in terms of row and

column from the nearest milestone cell (explained next in our

traceback strategy) to the current cell. diff(m,n) = |m − n|.
Values p, q, l, k, and j serve as weight coefficients in our

penalty and reward mechanisms. We detail our weight function

fw() below and illustrate the lengths l, k and j for the match

case in Figure 1.

1) (Gap) hup

fw(x,−, c) = c.score+m× p+ g × q

where

p = min(c.nr + x.span+ 1, c.nc)

q = diff(c.nr + x.span+ 1, c.nc)

2) (Gap) hleft

fw(−, y, c) = c.score+m× p+ g × q

where

p = min(c.nr, c.nc + y.span+ 1)

q = diff(c.nr, c.nc + y.span+ 1)

3) (Mismatch) hdia|x.value 6= y.value

fw(x, y, c) = cell.score

4) (Match) hdia|x.value = y.value

fw(x, y, c) = cell.score

+ r × l

+m× k

+ g × j

where

l = min(x.span, y.span) + 1,

k = min(c.nr, c.nc)− l,

j = diff(c.nr, c.nc) + diff(x.span, y.span) + l

Traceback in our weight function is for inferring matching

outcomes based on preceding null regions, including the

adjacent one. Our traceback operation is efficient. It extends

to a constant number of preceding null regions. To achieve

this property, we define a special type of cells (referred

to as milestone cells) in matrix H with zero nullrow and

nullcol fields. These milestone cells mark the boundary for

the traceback inference; the subproblems (upper left cells) of

a milestone cell are not visited. A milestone cell is introduced

in either match or gap cases in fw.
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TABLE II
DATASETS IN ACCURACY & SCALABILITY EXPERIMENTS

Dataset Size Details

A. Enron [56] 2.6 GB 517,424 email (with full headers and bodies) of 150 users
B. Source-code 3.8 MB 288 source files in projects tar, net-tools, gzip, procps, and rsync

C. Outbound HTTP requests 12 MB HTTP requests of 20 users (30-minute Internet activities recorded for each user)
D. Outbound/inbound MiscNet 500MB Miscellaneous web traffic containing text and multimedia content

D. Algorithm Analysis

The complexity of our alignment algorithm is O(|La||Lb|),
where |La| and |Lb| are lengths of compact representations of

the two sampled sequences. The alignment complexity for a

single piece of sensitive data of size l is the same as that of a

set of shorter pieces with a total size l, as the total amounts

of matrix cells to compute are the same.

In a real-world deployment, the overall sensitive data se-

quence Sa is usually close to a fixed length, and more attention

is commonly paid to the length of the content sequence Sb. In

this case, the complexity of our alignment is O(|Lb|) where

Lb is the sampled list of Sb. We experimentally evaluate the

throughput of our prototype in Section VII, which confirms

the O(|Lb|) complexity in the analysis.

The correctness of our alignment is ensured by dynamic pro-

gramming and the recurrence relation among the subproblems

of string alignment. The preciseness of similarity inference

between sampled-out elements is achieved by our specifically

designed weight function. Empirical results show that the

alignment of sampled sequences La and Lb is very close to

the alignment of original sequences Sa and Sb, confirming the

sampling oblivion property.

Our alignment of two sampled sequences achieves a

speedup in the order of O(α2), where α ∈ (0, 1) is the

sampling rate. There is a constant damping factor due to the

overhead introduced by sampling. The expected value is 0.33

because of the extra two fields, besides the score field, to

maintain for each cell in H . We experimentally verify the

damping factor in our evaluation.

Permutation-based data transformation (e.g., position

swaps) affects the alignment precision and reduces the overall

detection accuracy.

VI. EVALUATION ON DETECTION ACCURACY

We extensively evaluate the accuracy of our solution with

several types of datasets under a multitude of real-world data

leak scenarios. Our experiments in this section aim to answer

the following questions.

1) Can our method detect leaks with pervasive modifications,

e.g., character substitution throughout a sensitive docu-

ment?

2) Can our method detect localized modifications, especially

partial data leaks?

3) How specific is our detection, that is, the evaluation of false

positives?

4) How does our method compare to the state-of-the-art col-

lection intersection method in terms of detection accuracy?

TABLE III
SEMANTICS OF TRUE AND FALSE POSITIVES AND TRUE AND FALSE

NEGATIVES IN OUR MODEL.

True Leak No Leak

Leak detected TP FP

No leak detected FN TN

A. Implementation and Experiment Setup

We implement a single-threaded prototype (referred to as

AlignDLD system) and a collection intersection method (re-

ferred to as Coll-Inter system), which is a baseline. Both

systems are written in C++, compiled using g++ 4.7.1 with

flag -O3. We also provide two parallel versions of our

prototype in Section VII for performance demonstration.

• AlignDLD: our sample-and-align data leak detection method

with sampling parameters N = 10 and |w| = 100. 3-grams

and 32-bit Rabin’s fingerprints2 are used.

• Coll-Inter: a data leak detection system based on collection

intersection3, which is widely adopted by commercial tools

such as GlobalVelocity [19] and GoCloudDLP [20]. 8-grams

and 64-bit Rabin’s fingerprints are used, which is standard

with collection intersection.

We use four datasets (Table II) in our experiments. A. Enron

and B. Source-code are used either as the sensitive data or

the content to be inspected. C. Outbound HTTP requests and

D. MiscNet are used as the content. Detailed usages of these

datasets are specified in each experiment.

We report the detection rate in Equation (1) with respect to

a certain threshold for both AlignDLD and Coll-Inter systems.

The detection rate gives the percentage of leak incidents that

are successfully detected. We also compute standard false

positive rate defined in Equation (2). We detail the semantic

meaning for primary cases, true positive (TP), false positive

(FP), true negative (TN), and false negative (FN), in Table III.

Detection rate (Recall) =
TP

TP + FN
(1)

False positive rate =
FP

FP + TP
(2)

We define the sensitivity S ∈ [0, 1] of a content sequence in

Equation (3). It indicates the similarity of sensitive data D and

content CD′ with respect to their sequences Sa and Sb after

PREPROCESS. ξ is the maximum score in the alignment, i.e.,

the maximum score calculated in the scoring matrix of our

2Rabin’s fingerprint is used for unbiased sampling discussed in Sec-
tion IV-B.

3Set and collection intersections are used interchangeably.
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dynamic programming alignment. r is the reward for one-unit

match in the alignment (details in Section V-C).

S =
ξ

r ×min (|Sa|, |Sb|)
(3)

We reproduce four leaking scenarios in a virtual network

environment using VirtualBox. We build a virtual network and

deploy the detection systems at the gateway of the virtual net-

work. The detection systems intercept the outbound network

traffic, perform deep packet inspection, and extract the content

at the highest known network layer4. Then the detection

systems compare the content with predefined sensitive data

to search for any leak.

1) Web leak: a user publishes sensitive data on the Internet

via typical publishing services, e.g., WordPress,

2) FTP: a user transfers unencrypted sensitive files to an FTP

server on the Internet,

3) Backdoor: a malicious program, i.e., Glacier, on the

user’s machine exfiltrates sensitive data,

4) Spyware: a Firefox extension FFsniFF [57] exfiltrates

sensitive information via web forms.

It is not a challenge to detect intact data leaks. Our

AlignDLD system successfully detects intact leaks in all these

leaking scenarios with a small sampling rate between 5% and

20%. In the following subsections, we analyze the detection

accuracy to answer the questions at the beginning of this

section.

B. Detecting Modified Leaks

We evaluate three types of modifications: i) real-world

pervasive substitution by WordPress, ii) random pervasive

substitution, and iii) truncated data (localized modifications).

1) Pervasive Substitution: We test AlignDLD and Coll-Inter

on content extracted from three kinds of network traffic.

1) Content without any leak, i.e., the content does not contain

any sensitive data.

2) Content with unmodified leak, i.e., sensitive data appearing

in the content is not modified.

3) Content with modified leaks caused by WordPress,

which substitutes every space with a “+” in the content.

The sensitive dataset in this experiment is English text, 50

randomly chosen email messages from the Enron dataset5. The

content without leak consists of other 950 randomly chosen

Enron email messages. We compute the sensitivities of the

content according to Equation (3).

We evaluate and compare our AlignDLD method with the

Coll-Inter method. The distributions of sensitivity values in all

6 experiments are shown in Figure 2. The table to the right of

each figure summarizes the detection accuracy under a chosen

threshold. The dotted lines in both Figure 2 (a) and (b) (on

the left) represent the content without leak. Low sensitivities

are observed in them by both systems as expected. The dashed

lines (on the right) represent the content with unmodified leak.

High sensitivities are reported by both systems as expected.

4The content is obtained at the TCP layer when unknown protocols are
used at higher network layers.

5Headers are included.
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Fig. 2. Detection comparison of leak through WordPress in AlignDLD (a)
and collection intersection (b). In each subfigure, each of the 3 curves shows
the distribution of sensitivity values under one of 3 scenarios: leak without
transformation, leak with WordPress transformation, or content without leak.
With a threshold of 0.2, AlignDLD detects all the leaks. In comparison,
collection intersection performs worse as shown in the table on the right.

The solid lines in Figure 2 represent the detection results of

leaks with WordPress modifications. Our AlignDLD method

(in Figure 2 (a)) gives much higher sensitivity scores to the

transformed data leak than the Coll-Inter method. AlignDLD

detects all transformed email leaks with a threshold of 0.2,

i.e., it achieves 100% recall. The false positive rate is low.

In contrast, Coll-Inter in Figure 2 (b) results in a significant

overlap of sensitivity values between messages with no leak

and messages with transformed leaks. Its accuracy is much

lower than that of AlignDLD, e.g., 63.8% recall and a 10 times

higher false positive rate. Further analysis of false positives

caused by coincidental matches (dotted lines on the left) is

given in Section VI-C.

2) Random and Pervasive Substitution: The sensitive data

in this experiment is the same as above, i.e., randomly

chosen 50 Enron emails (including headers). For the content

sequences, we randomize one byte out of every m bytes, where

m ∈ {8, 12, 16}. The smaller m is, the harder the detection

is, as the similarity between the content and sensitive data

becomes lower. The detection results with respect to various

thresholds are shown in Figure 3.

The recall values decrease as the substitution frequency

increases for both the alignment and collection intersection

methods as expected. Our alignment method degrades more

gracefully under the pervasive substitution scenario. For

example, under threshold 0.3, the detection rate is over 80%

even when one out of every 8 bytes is substituted. The

collection intersection cannot detect the leak (0% detection

rate) in the same scenario.

3) Data Truncation: In data truncation or partial data leak

scenarios, consecutive portions of the sensitive data are leaked.
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Fig. 3. Sensitivity values of the content under various transformation ratios
with A. Enron dataset. Transformation ratio (X-axis) denotes the fraction of
leaked sensitive data that is randomized.
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Fig. 4. The detection success rate of AlignDLD in partial data leaks under
various detection thresholds. Each content sequence contains a consecutive
portion of a 1KB sensitive text, ranging from 32 bytes to 1KB. AlignDLD
achieves 100% detection rates when the threshold is equal or smaller than
0.6.

In this experiment, a content sequence contains a portion of

sensitive text. The total length of the sensitive text is 1KB. The

size of the leaked portion appearing in the content sequence

ranges from 32 bytes to 1KB. Each content sequence is 1KB

long with random padding if needed.

We measure the unit sensitivity S̃ ∈ [0, 1] on segments

of content sequences. Unit sensitivity S̃ is the normalized

per-element sensitivity value for the aligned portion of two

sequences. It is defined in Equation (4), where ξ̃ is the

maximum local alignment score obtained between aligned

segments S̃a and S̃b, which are sequence segments of sensitive

data D and content CD′ . The higher S̃ is, the better the

detection is. Threshold l is a predefined length describing

the shortest segment to invoke the measure. l = 16 in our

TABLE IV
SAMPLING RATES OF ALIANDLD ON A.ENRON AND B.SOURCE-CODE

DATA SETS. |w| = 100

N 2 3 5 10 20 40

Enron 2.83% 4.14% 6.67% 12.32% 22.78% 43.1%
S.Code 2.81% 4.01% 6.30% 11.81% 22.33% 43.04%

experiments.

S̃ =
ξ̃

r ×min (|S̃a|, |S̃b|)
where min (|S̃a|, |S̃b|) ≥ l (4)

The detection results are shown in Figure 4, where X-axis

shows the threshold of sensitivity, and Y-axis shows the recall

rates of AlignDLD. Content with longer sensitive text is easier

to detection as expected. Nevertheless, our method detects

content with short truncated leaks as small as 32 bytes

with high accuracy. The detection rate decreases with higher

thresholds. We observe that high thresholds (e.g., higher than

0.6) are not necessary for detection when 8-byte shingles are

used; false positives caused by coincidental matches are low

in this setup. These experiments show that our detection is

resilient to data truncation.

C. Low False Positive Rate

The purpose of this experiment is to evaluate how specific

our alignment-based data leak detection is, i.e., reporting leaks

and only leaks. We compute and compare the amount of coin-

cidental matches (defined in Section III) found by our method

and the collection intersection method. We conduct two sets

of experiments using A. Enron and B. Source-code datasets.

In A. Enron, we use 50 random email messages (including

headers) as the sensitive data and other 950 messages as the

content. In B. Source-code, we use 5 random files as the

sensitive data and other 283 files as the content. None of

the contents contain any intentional leaks. Sensitivity scores

are computed for each email message and source code file.

Small amounts of coincidental matches are expected in these

two datasets, because of shared message structures and C/C++

code structures.

We test the impact of sampling in this experiment. We

chose screen size N = 2, 3, 5, 10, 20, 40 and window size

|w| = 100. The sampling rates (Table IV) on the two datasets

are similar when rounded to percentages. This is because

Rabin’s fingerprint maps any n-gram uniformly to the item

space before sampling.

We measure the signal-to-noise ratios (SNRdB) between

sensitive scores of real leaks and sensitive scores of non-leak

traffic. We calculate SNRdB as in Equation 5, where the signal

value is the averaged sensitivity score of traffic containing

leaks, and the noise value is the averaged sensitivity score of

regular traffic with no leaks.

SNRdB = 10 log
10

Signal

Noise
(5)

Our results in Figure 5 show that the sensitivities are equal

or less than 0.1 for almost all detection using our AlignDLD
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Fig. 5. Capability of differentiating real leak from coincidental matches of our AlignDLD approach with different sampling rates and Coll-Inter.

system. With a reasonable threshold (e.g., 0.2), none of these

coincidental matches triggers a false alarm. The detection

capability of our approach is generally stable with respect to

different sampling rates. We observe that sampling rates have

a noticeable but insignificant impact on the results. SNRdB

slightly increases when the sampling rate is small, e.g., 3%.

Our previous experiments in Section VI-B show that thresh-

olds ≥ 0.2 give a strong separation between true leaks

and coincidental matches. Thus, the evidence shows that our

method achieves high recall with zero or low false positive

rate. In comparison, the collection intersection method reports

higher sensitivity scores for the content without any leak, e.g.,

62% for Enron emails. High sensitivity scores in coincidental

matches lead to a high false positive rate for the collection

intersection method as illustrated in Figure 2.

Summary. The experimental results provide strong evi-

dences supporting that our method is resilience against various

types of modifications evaluated. Our alignment algorithm

provides a high specificity (i.e., low number of coincidental

matches), compared to the collection intersection method. Our

approach is capable of detecting leaks of various sizes, ranging

from tens of bytes to megabytes.

VII. PARALLELIZATION AND EVALUATION

In order to achieve high analysis throughput, we parallelize

our algorithms on CPU as well as on general-purpose GPU

platforms. In this section, we aim to answer the following

questions:

1) How well does our detection scale? (Sections VII-B

and VII-C)

2) What is the speedup of sampling? (Section VII-D)

A. Parallel Detection Realization

We implement two parallel versions of our prototype on

a hybrid CPU-GPU machine equipped with an Intel Core i5

2400 (Sandy-Bridge micro-architecture) and an NVIDIA Tesla

C2050 GPU (Fermi architecture with 448 GPU cores):

a

iL
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iL
1
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2
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iL
2

b

jL
1

b

jL

b

jL
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Concurrent 

Diagonal

b

jL
2

Fig. 6. Parallel realization of our alignment algorithm. La
i and Lb

j are the

current items to be aligned. All cells on the concurrent diagonal of (La
i ,L

b
j)

can be computed simultaneously.
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Fig. 7. High scalability of parallel sampling and alignment algorithms.

1) a multithreading AlignDLD program on CPU 6,

2) a parallel AlignDLD program on GPU 7.

6The multithreaded CPU version is written in C, compiled using gcc 4.4.5
with flag -O2.

7The GPU version is written in CUDA compiled using CUDA 4.2 with
flag -O2 -arch sm 20 and NVIDIA driver v295.41.
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Fig. 8. Speedup of multithreading alignment and GPU-accelerated alignment over the single thread version on different combinations of sensitive data and
traffic data.

Smith-Waterman alignment was parallelized in OpenGL [58]

and CUDA [59]. Our parallel alignment algorithms differ from

the existing ones, as we address several implementation issues

in parallel computing due to our complex weight function.

In the multithreading CPU version, we parallelize both the

SAMPLING and ALIGNMENT procedures with the pthread

library. We parallelize the SAMPLING operation by loading

different strings onto different threads. Long streams are split

into multiple substrings. Substrings are sampled in parallel by

different threads and then assembled for output. ALIGNMENT

is the most time-consuming procedure and is made parallel on

both CPU and GPU.

We use a parallelized score matrix filling method to compute

a diagonal of cells at the same time. Our parallel matrix filling

strategy is illustrated in Figure 6. The scoring matrix is filled

from the top left corner to the bottom right corner. At any stage

of the process, cells on the concurrent diagonal (dashed lines

in Figure 6) can be computed simultaneously. Our strategy is

a variant of the standard Smith-Waterman parallelism [60].

Dependent cells in our algorithm include traditional three

adjacent cells as well as all previous cells on the diagonal

that is orthogonal to the concurrent diagonal.

The alignment between a sampled sensitive data sequence

and a sampled content sequence is assigned to a block of

threads on the GPU, and every thread in the block is respon-

sible for an element on the moving diagonal. This method

consumes linear space and is efficient. It allows us to fully

utilize the memory bandwidth, putting reusable data into fast

but small (32KB in our case) shared memory on GPU.

B. Scalability

In this experiment, we parallelize SAMPLING and ALIGN-

MENT in AlignDLD through various numbers of threads. The

times of speedup in analyzing A. Enron dataset are reported

in Figure 7. The results show the close-to-ideal scalability

for SAMPLING when parallelized onto an increasing number

of threads. Our unoptimized multithreaded CPU ALIGNMENT

scales up less well in comparison, which we attribute to poor

memory cache utilization. The score matrices are too large

to fit into the cache for some alignments. The interaction

between threads may evict reusable data from the cache. These

operations in turn may cause cache misses. An optimized

program should possess better data locality to minimize cache

misses, and the optimization can be achieved in real-world

detection products.

C. GPU Acceleration

We evaluate the performance of the most time-consuming

ALIGNMENT procedure on a GPU with 448 cores grouped

in 14 stream multiprocessors and a quad-core CPU. Times

of speedup in detecting sensitive data of types txt, png, or

pdf8 against A. Enron or D. MiscNet traffic, respectively, are

shown in Figure 8. The result shows that the GPU-accelerated

ALIGNMENT achieves over 40 times of speedup over the

CPU version on large content datasets (for both A. Enron and

D. MiscNet). GPU speedup with A. Enron data is nearly 50

times of the CPU version.

Due to the limited bandwidth between CPU and GPU, data

transfer is the bottleneck of our GPU implementation and

dominates the execution time. A common strategy to solve

the issue is to overlap data transfer and kernel execution or to

batch the GPU input [61]. Another possible approach from

the hardware perspective is to use a CPU-GPU integrated

platform, such as AMD APU or Intel MIC, which benefits

from the shared memory between CPU and GPU [62].

We report the throughput of ALIGNMENT in our GPU

implementation under various parameters. Other procedures –

that are faster than alignment – can be carried out in parallel

with ALIGNMENT in real-world deployment. We randomly

generate sensitive data pieces, 500 bytes for each, and run the

detection against 500MB misc network traffic (D. MiscNet).

The results in Table V show that we can achieve over 400Mbps

throughput on a single GPU. This throughput is comparable

to that of a moderate commercial firewall. More optimizations

on data locality and memory usage can be performed in real-

world detection products.

843KB txt data, 21KB png data, and 633KB pdf data.
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TABLE V
THROUGHPUT (IN MBPS) OF THE ALIGNMENT OPERATION ON GPU

Sensitive data size (KB) 250 500 1000 2500

Sampling rate

0.03 426 218 110 44
0.12 23 11 5 2
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Fig. 9. Alignment speedup through sampling.

D. Sampling Speedup

We measure the performance gain brought by sampling and

compare the empirical results with the theoretical expectation.

Measurements are performed on A. Enron, C. HTTP, and D.

MiscNet datasets. Figure 9 shows the speedup of ALIGNMENT

through different sampling rates α (0.5, 0.25, 0.125, . . . ).

− log
2
α is shown on the X-axis. The well fitted lines (R2

at 0.9988, 0.9977 and 0.9987) from the results have slope

coefficients between 1.90 and 2.00, which confirms the α2

speedup by our sampling design. We calculate the damping

factor 0.33 from intercept coefficients of fitted lines.

VIII. CONCLUSIONS AND FUTURE WORK

We presented a content inspection technique for detecting

leaks of sensitive information in the content of files or network

traffic. Our detection approach is based on aligning two

sampled sequences for similarity comparison. Our experimen-

tal results suggest that our alignment method is useful for

detecting multiple common data leak scenarios. The parallel

versions of our prototype provide substantial speedup and

indicate high scalability of our design. For future work, we

plan to explore data-movement tracking approaches for data

leak prevention on a host.
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