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Abstract: Finding the rotational matrix that minimizes the sum of squared deviations between two vectors is an

important problem in bioinformatics and crystallography. Traditional algorithms involve the inversion or decomposi-

tion of a 3 3 3 or 4 3 4 matrix, which can be computationally expensive and numerically unstable in certain cases.

Here, we present a simple and robust algorithm to rapidly determine the optimal rotation using a Newton-Raphson

quaternion-based method and an adjoint matrix. Our method is at least an order of magnitude more efficient than

conventional inversion/decomposition methods, and it should be particularly useful for high-throughput analyses of

molecular conformations.
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Introduction

The root-mean-square distance (RMSD) is a common metric

used to characterize the similarity between two vector sets (e.g.,

protein structures).1 The minimum RMSD is conventionally

determined using the method of least squares in which an opti-

mal translation vector and rotation matrix are found that mini-

mize the sum of the squared distances between corresponding

atoms in two coordinate sets. Determining the optimal rotation

matrix can be a rate-limiting step in several computationally in-

tensive structural bioinformatics algorithms where large numbers

of structures must be compared, such as in aligned-fragment-

pair multiple protein structure alignment,2–4 fragment-assembly

protein structure predictions,5 conformation sampling for struc-

ture-based drug design,6 and high-throughput superpositioning of

analogous and homologous protein domains in the entire PDB

database.7 Hence, more efficient superposition algorithms are

desirable.

Considerable effort has been directed toward developing fast

and robust algorithms for determining the RMSD and the corre-

sponding optimal rotation.8–15 For example, Kabsch calculates

the optimal rotation by solving a least-squares problem with

orthogonality constraints ensured by a Lagrange multiplier. This

method requires the calculation of the eigenvalues and eigenvec-

tors of a 3 3 3 matrix. In addition, improper rotation matrices

may arise when the determinant of a key matrix is negative,11

which requires special handling.16–18 Ferro and Hermans (1977)

approximate the rotational matrix by applying the best rotation

about each Cartesian axis iteratively, which requires expensive

square root operations and matrix multiplications.9 McLachlan

describes a method to calculate the rotational matrix using con-

jugate gradient minimization and a succession of finite rotations

about the conjugate axes.13 The coordinate sets must be updated

in every iteration making this method computationally expensive

for large systems. Lesk reduces the superposition problem to an

unconstrained maximization of a function of a single variable.

However, the evaluation of this function requires dynamically

updating the coefficients of a quartic polynomial and locating its

real roots.12

Horn,10 Diamond,8 Kearsley,15 and Theobald14 represent the

rotations as quaternions and cast the original problem as an

eigenvalue/eigenvector problem for a 4 3 4 matrix. In particu-

lar, Diamond developed a fast iterative method to calculate the

minimum RMSD. However, his method is unstable when the
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required rotation is close to 180o because the matrix to be

inverted becomes singular.8,14 Theobald circumvents the decom-

position and inversion problem by using a Newton-Raphson

(NR) algorithm that solves the characteristic polynomial for the

minimum RMSD. While Theobald’s method does not provide

the optimal rotation matrix, the approach is over an order of

magnitude more efficient when only the RMSD is of interest.14

Based on Horn’s quaternion approach and Theobald’s NR

quaternion-based characteristic polynomial (NR-QCP) method,

we present an extremely efficient algorithm to determine the

optimal rotational matrix in the superposition problem. As in the

previous article,14 the RMSD is first evaluated by solving for the

most positive eigenvalue of the key matrix using the NR-QCP

algorithm. Here, we show how to use this eigenvalue to rapidly

determine the optimal rotation matrix. The best rotation is given

by the corresponding eigenvector, which is calculated via the

adjoint matrix. The present method has several advantages: (i)

the time required to calculate the rotation matrix is independent

of the system size after a special 3 3 3 matrix is constructed

from the coordinates, (ii) no special cases need to be handled

separately, and (iii) the approach is extremely fast, straightfor-

ward, and robust, as there is no expensive matrix inversion or

decomposition. To our knowledge, the algorithm presented here

is by far the fastest method currently available for superposition-

ing macromolecules.

The Weighted Least-Squares

Superposition Problem

The structure of a molecule with N atoms can be conveniently

represented as a N 3 3 matrix in which the i-th row corresponds

to the x,y,z coordinates of the i-th atom. Let A and B be two

structures under consideration, and W be a diagonal weighting

matrix with the i-th diagonal element representing the weight for

the i-th atom. If each structure is translated so that its centroid is

at the origin, the superposition problem is to find an optimal

rotation R that minimizes the following function11,19:

E ¼ 1

N

X
ij

wiiðcij � aijÞ2 ; (1)

where C 5 BR; cij and aij are the elements of the matrices C

and A, respectively, and wii is the i-th diagonal element of the

matrix W.

If eq. (1) is expressed in matrix format and expanded, it can

be seen that:

E ¼ 1

N
trððBR� AÞ�WðBR� AÞÞ

¼ 1

N
ðGA þ GB � 2trðMRÞÞ;

(2)

where tr(X) is the trace of the matrix X, X* represents the trans-

pose of X, GA is the weighted inner product of structure A,

GA ¼ trðA�WAÞ ¼
XN
i

wiðx2A;i þ y2A;i þ z2A;iÞ (3)

and the matrix M is the inner product of two structures A

and B,

M ¼ A�WB ¼
Sxx Sxy Sxz
Syx Syy Syz
Szx Szy Szz

0
@

1
A (4)

and Sxy ¼
PN

i wixA;iyB;i:

Determination of the Optimal Rotation Matrix

Horn has shown that the optimal rotational matrix in the unit

quaternion representation is the eigenvector associated with the

most positive eigenvalue of the following symmetric 4 3 4

matrix K10:

SxxþSyyþSzz Syz�Szy Szx�Sxz Sxy�Syx
Syz�Szy Sxx�Syy�Szz SxyþSyx SxzþSzx
Szx�Sxz SxyþSyx �SxxþSyy�Szz SyzþSzy
Sxy�Syx SxzþSzx SyzþSzy �Sxx�SyyþSzz

0
BB@

1
CCA

The eigenvalues can be determined by locating the roots of

the characteristic polynomial det(K 2 kI), where I is the identity

matrix, k is one of the eigenvalues, and det(X) represents the

determinant of the matrix X. As shown by Theobald,14 the coef-

ficients of the quartic polynomial for the key matrix K can be

Table 1. Comparison of the Average Computational Time Required to Determine One Optimal Rotational

Matrix for the Current Method (QCP) and the Traditional Household Reduction and QL Decomposition

Approach (H-QL).

Protein PDB Id

Number

of residues

Number

of structures

Time (ls)
QCP

Time (ls)
H-QL

D-Galactose/Glucose binding protein 2GBP 309 297 0.185 3.57

Human CDC25B catalytic domain 1QB0 177 400 0.200 3.54

Barstar 1A19 89 191 0.201 4.11

Alpha-Amylase inhibitor 1HOE 74 129 0.200 4.37

Calmodulin 1CFD 72 196 0.195 3.96

Ferredoxin II 1FXD 58 141 0.196 3.92
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determined with at most 66 floating point operations (FLOPs).

For this 4 3 4 matrix, the most positive root is bounded from

above by the average of two self inner products, (GA 1 GB)/2.

The use of this upper bound as the initial guess leads to quick

and stable location of the most positive root with the NR

method.14 This method only takes about five iterations for con-

vergence to a relative precision of 1026.14 Because there are

only 11 FLOPs involved in every iteration,14 this method is

extremely efficient in calculating the most positive root from

which the RMSD is given by ððGA þ GB � 2kmaxÞ=NÞ1=2.
The optimal rotation matrix corresponds to the eigenvector

associated with the largest eigenvalue of the key matrix K. As
the eigenvalue has been determined as stated earlier, one may

solve for the eigenvector using standard iterative eigen-decom-

position methods to solve the homogeneous equation (K 2 kI)e
5 0. However, because K is a small 4 3 4 matrix, one may effi-

ciently determine the eigenvector analytically from the adjoint

matrix. From basic linear algebra, it can be shown that X adj(X)
5 det(X)I, where adj(X) is the adjoint matrix for any matrix

X.20 If X 5 K 2 kI and k is an eigenvalue (i.e., det(K 2 kI) 5
0), then any nonzero column of the adjoint of the matrix (K 2
kI) is an eigenvector associated with the eigenvalue k.20 Calcu-

lating the first column of the adjoint matrix requires only 28

multiplications and 26 subtractions/additions. If the first column

of the adjoint matrix is zero or very small, then calculation of

the eigenvector may suffer from floating point error, and the cal-

culation of one or more columns is necessary. However, for all

the [109 superposition operations we performed, we have found

that the first column is sufficient. Even in the worst case, where

the entire adjoint matrix needs to be constructed, only an addi-

tional 60 multiplications and 39 subtractions/additions are

required. The optimal rotational matrix is then uniquely deter-

mined by the resulting unit quaternion.

To explore the robustness and efficiency of this method, we

performed [109 superpositions for short protein fragments. Pair-

wise RMSDs were also calculated for protein conformations

from the publicly accessible ‘‘ensemble protein database.’’21

Table 1 compares the times for determining the optimal rotation

determination using our approach QCP versus the traditional

Householder reduction method followed by QL decomposition

with implicit shift (H-QL).22,23 The time spent for the construc-

tion of the matrix M is not included in timing because it is a

prerequisite for all the methods. For accurate timing, the rota-

tional matrix was calculated repeatedly 500,000 and 50,000

times for the QCP and H-QL approaches, respectively. All cal-

culations were performed on an IBM Thinkpad T61 laptop com-

puter equipped with a single dual-core 2GHz mobile Intel proc-

essor and 1.96 GB 667MHz DRAM. Our QCP method is about

20 times faster than the H-QL method, while giving identical

rotational matrices within floating point error. Many widely used

programs rely on extensive superpositioning. For example, FAT-

CAT4 and Matt2 were proven to be able to align multiple protein

structures and identify homologous residues efficiently. Rosetta5

has widely used in ab initio protein prediction and protein

design.24,25 These programs could all potentially benefit from

the algorithm presented herein. For the convenience of the audi-

ence, ANSI C source code of the present algorithm is organized

to be integrated into existing packages straightforwardly with

minimal effort. The code and the instruction are publicly avail-

able without charge under the BSD license from http://theobald.

brandeis.edu/QCP/. For questions regarding to the code, please

contact pliu24@its.jnj.com or dtheobald@brandeis.edu.
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Zanghellini, A.; Gallaher, J.; Betker, J.; Tanaka, F.; Barbas, C.;

Hilvert, D.; Houk, K.; Stoddard, B.; Baker, D. Science 2008, 318, 1387.

25. Qian, B.; Raman, S.; Das, R.; Bradley, P.; McCoy, A.; Read, R.;

Baker, D. Nature 2007, 450, 259.

1563Fast Determination of the Optimal Rotational Matrix for Macromolecular Superpositions

Journal of Computational Chemistry DOI 10.1002/jcc


