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S U M M A R Y

The K-SVD algorithm has been successfully utilized for adaptively learning the sparse dictio-

nary in 2-D seismic denoising. Because of the high computational cost of many singular value

decompositions (SVDs) in the K-SVD algorithm, it is not applicable in practical situations,

especially in 3-D or 5-D problems. In this paper, I extend the dictionary learning based denois-

ing approach from 2-D to 3-D. To address the computational efficiency problem in K-SVD,

I propose a fast dictionary learning approach based on the sequential generalized K-means

(SGK) algorithm for denoising multidimensional seismic data. The SGK algorithm updates

each dictionary atom by taking an arithmetic average of several training signals instead of

calculating an SVD as used in K-SVD algorithm. I summarize the sparse dictionary learning

algorithm using K-SVD, and introduce SGK algorithm together with its detailed mathematical

implications. 3-D synthetic, 2-D and 3-D field data examples are used to demonstrate the

performance of both K-SVD and SGK algorithms. It has been shown that SGK algorithm can

significantly increase the computational efficiency while only slightly degrading the denoising

performance.

Key words: Image processing; Inverse theory; Joint inversion; Time-series analysis; Com-

putational seismology; Seismic noise.

1 I N T RO D U C T I O N

Seismic data are inevitably corrupted by random noise in field ac-

quisition, with important consequences for oil and gas exploration.

Thus, random noise attenuation plays a fundamental role in seismic

data processing and interpretation (Gulunay 2000; Qu et al. 2015;

Zhuang et al. 2015; Gan et al. 2016d; Li et al. 2016a,b). Over the

past few decades, a large number of denoising methods for ran-

dom noise have been developed. Prediction based methods utilize

the predictable property of useful signals to construct prediction

filters for enhancing signals and rejecting noise, for example, t-x

predictive filtering (Abma & Claerbout 1995), f-x deconvolution

(Canales 1984), the forward-backward prediction approach (Wang

1999), the polynomial fitting based approach (Liu et al. 2011), non-

stationary predictive filtering (Liu et al. 2012; Liu & Chen 2013).

Mean and median filters utilize the statistical difference between

signal and noise to reject the Gaussian white noise or impulsive

noise (Liu et al. 2009b; Liu 2013; Gan et al. 2016c). Decompo-

sition based approaches decompose the noisy seismic data into

different components and then select the principal components to

represent the useful signals. Empirical mode decomposition and
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its variations (Huang et al. 1998), singular value decomposition

based approaches (Bekara & van der Baan 2007; Chen & Ma 2014;

Gan et al. (2015a), regularized non-stationary decomposition based

approaches (Fomel 2013) are usually used to extract the useful

components in multidimensional seismic data. Rank-reduction

based approaches assume the seismic data to be low-rank after

some data rearrangement steps, such methods include the Cadzow

filtering (Trickett 2008), principal component analysis (Huang et al.

2016b), singular spectrum analysis (Oropeza & Sacchi 2011; Huang

et al. 2017), damped singular spectrum analysis (Huang et al. 2016a;

Zhang et al. 2016; Chen et al. 2016b,c).

The sparse transform based random noise attenuation is one of

the most widely used approaches (Zhang et al. 2015; Chen 2016).

Not only in seismic data processing, but also in all image process-

ing fields, transformed domain thresholding approach has achieved

very successful performance (Protter & Elad 2009; Cai et al. 2014).

The denoising step can be implemented by simply applying a thresh-

olding operator in the transformed sparse domain, followed by an

inverse sparse transform. Sparse transform can be divided into two

types: analytical transform, which has an exact basis, and learning-

based dictionary, which iteratively updates the basis by learning

(Chen et al. 2016a). I will use transform and dictionary to refer to

these two types of sparse transform, respectively, in this paper.

A lot of transforms have been used in denoising seismic data.

Gao et al. (2006) used the wavelet transform to denoise pre-stack

seismic data. Wang et al. (2008) used the second-generation wavelet
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22 Y. Chen

Figure 1. 3-D synthetic example. (a) Clean data. (b) Denoised data using K-SVD. (c) Denoised data using SGK. (d) Noisy data. (e) Noise using K-SVD.

(f) Noise using SGK.

transform, which is based on the lifting scheme, to denoise seismic

data with a percentile thresholding strategy. Hennenfent & Her-

rmann (2006) and Neelamani et al. (2008) applied the curvelet

transform to attenuate both random and coherent noise in seismic

data. Zu et al. (2016) applied the curvelet transform to separate

simultaneous sources based on the iterative soft-thresholding al-

gorithm. Fomel & Liu (2010) designed a sparse transform that is

tailored specifically for seismic data, which is called seislet trans-

form, for sparse representation based processing of seismic data,

including seismic denoising (Chen 2016; Wu et al. 2016), seismic

deblending (Chen et al. 2014; Gan et al. 2016b), and data restoration

(Gan et al. 2015b, 2016a; Liu et al. 2016). Chen & Fomel (2015a)

used the adaptive separation properties of empirical mode decom-

position (EMD; Huang et al. 1998) for preparing the stable input

for the non-stationary 1-D seislet transform and proposed a new

EMD-seislet transform to denoise seismic data with strong spatial

heterogeneity. Recently, Kong & Peng (2015) applied the shearlet

transform to seismic random noise attenuation.

The learning-based dictionaries are becoming more and more

popular for seismic data processing in recent years since their supe-

rior performances in adaptively learning the basis that can sparsely

represent the complicated seismic data (Sahoo & Makur 2013).

Kaplan et al. (2009) used a data-driven sparse-coding algorithm to

adaptively learn basis functions in order to sparsely represent seis-

mic data and then perform denoising in the transformed domain.

Based on a variational sparse-representation model, Beckouche &

Ma (2014) proposed a denoising approach by adaptively learning

dictionaries from noisy seismic data. Chen et al. (2016a) combined

the learning based dictionaries and the fixed-basis transforms and

proposed a double-sparsity dictionary to better handle the special

features of seismic data, which can can separate signals and noise

more precisely.

K-SVD is one of the most effective dictionary learning algorithms

(Aharon et al. 2006). However, the computational cost which re-

quires thousands of singular value decomposition (SVD) hinders

its wide application in seismic data processing, especially in prac-

tical 3-D or 5-D problems. In this paper, I propose to apply a fast

dictionary learning algorithm, which is called sequential general-

ized K-means (SGK) algorithm (Sahoo & Makur 2013), to denoise

multidimensional seismic data. Since sparse code is relatively new

to the seismic community, I introduce the basic formulation of a

sparse representation problem and mathematically analyse the prin-

ciple of K-SVD algorithm and clarify its computational bottleneck.

Then, I also introduce the SGK algorithm in detail and apply both

K-SVD and SGK algorithms to denoise multidimensional seismic

data. Three examples show that the SGK algorithm can significantly

accelerate the dictionary learning process and cause no observably

worse denoising performance.

2 M E T H O D

2.1 Problem formulation

Sparse representation via learning based dictionary consists of two

main steps.
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Fast dictionary learning 23

Figure 2. (a,b) Local similarity between denoised data and removed noise

using K-SVD and SGK. (c,d) Amplified local similarity (×2) between de-

noised data and removed noise using K-SVD and SGK.

(i) Sparse coding. Given the observed data d, sparse coding aims

at solving the optimization problem:

mn = arg min
m

‖ d − Fnm ‖2
2, s.t. ‖ m ‖0 ≤ T, (1)

where ‖ · ‖2 and ‖ · ‖0 denote the L2 and L0 norms of an input

vector, respectively. T is the number of non-zero coefficients.

F is the learned dictionary and m is the sparse representation of d.

(ii) Dictionary updating. For the obtained mn , update Fn such

that

Fn+1 = arg min
F

‖ d − Fmn ‖2
2 . (2)

Eqs (1) and (2) are iterated Niter times to learn the optimal

dictionary and the sparest representation.

The multidimensional seismic data is first reformulated into patch

form D. Each column vector in D is extracted from the multidimen-

sional seismic data matrix. An example is given in Yu et al. (2015)

and Chen et al. (2016a). Eqs (1) and (2) then become

∀i m
n
i = arg min

mi

‖ D − FnM ‖2
F , s.t.∀i ‖ mi ‖0 ≤ T, (3)

Fn+1 = arg min
F

‖ D − FMn ‖2
F , (4)

where ‖ · ‖F denotes the Frobenius norm of an input matrix.

Problem (3) is an NP-hard problem, and directly finding the truly

optimal M is impossible and is usually solved by an approximation

pursuit method, such as the orthogonal matching pursuit (OMP)

algorithm. To solve problem (4) for the adaptive dictionary F, there

are several different algorithms.

2.2 Dictionary learning by K-SVD

The K-SVD method (Aharon et al. 2006) is one approach that

solves eq. (4) with good performance. The dictionaries in F are not

obtained at a time. Instead, K columns in F are updated one by one

while fixing M. In order to update the kth column, one can first

write the objective function in eq. (4) as

‖ D − FM ‖2
F = ‖ D −

K
∑

j=1

f j m
j

T ‖2
F ,

= ‖ D −
∑

j �=k

f j m
j

T − fkmk
T ‖2

F ,

= ‖ Ek − fkmk
T ‖2

F , (5)

where f j is the jth column vector in F, m
j

T is the jth row vector

in M.

Here, [·]T simply indicates a row vector. For simplicity, in

eq. (5) and the following derivations, I omit the superscript n shown

in eq. (4). Ek is the fitting error using all column vectors other than

the kth dictionary and their corresponding coefficients row vectors.

Note that in eq. (5), D and Ek are of size M × N, F is of size M × K,

and M is of size K × N.

Here, M is the length of each training signal, N is the number of

training signals, and K is the number of atoms in the dictionary.

It is now obvious that the kth dictionary in F is updated by

minimizing the misfit between the rank-1 approximation of fkmk
T

and the Ek term. The rank-1 approximation is then solved using

the SVD.

A problem in the direct use of SVD for rank-1 approximation of

Ek is the loss of sparsity in mk
T . After SVD on Ek , mk

T is likely to be

filled. In order to solve such problem, K-SVD restricts minimization

of eq. (5) to a small set of training signals Dk = {di : mk
T (i) �= 0}.

To achieve this goal, one can define a transformation matrix Rk

to shrink Ek and mk
T by rejecting the zero columns in Ek and zero

entries in mk
T . First one can define a set rk = {i |1 ≤ i ≤ N , mk

T (i) �=
0}, which selects the entries in mk

T that are non-zero. One then

constructs Rk as a matrix of size N × N k
r with ones on the (rk(i), i)

entries and zeros otherwise.

Applying Rk to both Ek and mk
T , then the objective function in

eq. (5) becomes

‖ EkRk − fkmk
T Rk ‖2

F=‖ ER
k − fkmk

R ‖2
F (6)

and can be minimized by directly using SVD:

ER
k = U�VT . (7)

fk is then set as the first column in U, the coefficient vector mk
R as

the first column of V multiplied by first diagonal entry σ 1. After K

columns are all updated, one turns to solve eq. (3) for M.

2.3 Fast dictionary learning by SGK

Although K-SVD can obtain very successful performance in a

number of sparse representation based approaches, since there in-

volves many SVD operations in the K-SVD algorithm, it is very
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(a) (b)

(c)

Figure 3. (a) Initial overcomplete DCT dictionary. (b) Learned dictionary using K-SVD. (c) Learned dictionary using SGK. Only the first 16 atoms in the

dictionary are displayed and each dictionary has been reshaped into a 3-D cube. It can see from (a) that the shapes of the atoms in the initial dictionary (discrete

cosine transform) are rigid, which are not optimal to represent the highly non-stationary seismic data. After dictionary learning, the updated dictionaries as

shown in (b) and (c) contain atoms with much varied shapes. These various atoms are more likely to capture the non-stationary features hidden in the seismic

data.

Table 1. Comparison of denoising performances

with different input SNRs between K-SVD and SGK

methods.

Input SNR (dB) K-SVD (dB) SGK (dB)

3.18 10.60 10.60

0.68 9.61 9.32

− 2.84 2.17 2.08

− 5.33 1.27 1.11

computationally expensive. Especially when utilized in multidi-

mensional seismic data processing (e.g. 3-D or 5-D processing),

the computational cost is not tolerable. The SGK algorithm was

proposed to increase the computational efficiency (Sahoo & Makur

2013). SGK tries to solve slightly different iterative optimization

problem in sparse coding as eq. (3):

∀i m
n
i = arg min

mi

‖ D − FnM ‖2
F , s.t.∀i mi = et . (8)

Table 2. Comparison of computing time with differ-

ent model sizes between K-SVD and SGK methods.

Model sizes K-SVD (s) SGK (s)

64 × 16 × 16 192.60 9.27

128 × 32 × 32 893.50 48.56

128 × 64 × 64 3059.3 201.34

t indicates that mi has all 0s except 1 in the tth position. The

dictionary updating in SGK algorithm is also different. In SGK,

eq. (6) also holds. Instead of using SVD to minimize the objective

function, which is computationally expensive, SGK turns to use

least-squares method to solve the minimization problem. Taking

the derivative of J = ‖ER
k − fkmk

R ‖2
F with respect to fk and setting

the result to 0 gives the following equation:

∂ J

∂fk

= −2
(

ER
k − fkmk

R

) (

mk
R

)T = 0 (9)
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Figure 4. Noisy 2-D field data.

solving eq. (9) leads to

fk = ER
k

(

mk
R

)T (

mk
R(mk

R)T
)−1

. (10)

It can be derived further that

ER
k

(

mk
R

)T =

⎛

⎝DR −
∑

j �=k

f j m
j

R

⎞

⎠

(

mk
R

)T

= DR

(

mk
R

)T +
∑

j �=k

f j m
j

R

(

mk
R

)

.T (11)

Here, DR has the same meaning as D shown in eq. (5) except for a

smaller size due to the selection set rk that selects the entries in mk
T

that are non-zero.

Since ∀i , ‖ mi ‖0 = 1, as constrained in eq. (8) then

∀ j �=km
j

R

(

mk
R

)T = 0. (12)

Since mk
R is a smaller version of row vector mk

T and all its entries are

all equal to 1, DR(mk
R)T is simply a summation over all the column

vectors in DR . Considering that DR = {di : i ∈ rk},

DR

(

mk
R

)T =
∑

i∈rk

di (13)

Following eq. (13), eq. (11) becomes

ER
k

(

mk
R

)T =
∑

i∈rk

di . (14)

It is simple to derive that mk
R

(

mk
R

)T = N k
r , where N k

r denotes the

number of elements in the set rk, or the number of training signals

associated with the atom fk . The kth atom in F is

fk =
∑

i∈rk
di

N k
r

. (15)

Thus, in SGK, one can avoid the use of SVD. Instead the trained

dictionary can be simply expressed as an average of several training

signals. In this way, SGK can obtain significantly higher efficiency

than K-SVD. In the next section, I will use several examples to show

that the overall denoising performance does not degrade when one

can obtain a much faster implementation.

Figure 5. (a) Initial overcomplete DCT dictionary. (b) Learned dictionar-

ies using K-SVD. (c) Learned dictionaries using SGK. Each atom in the

dictionary has been reshaped into a 2-D matrix. As can be seen in either

(b) or (c) that there are some atoms in the middle part of the dictionary map

containing linear patterns, indicating a better representation of the locally

linear events.

3 E X A M P L E S

I will use three different examples to show the performance of SGK

in denoising multidimensional seismic data. Please note that when

using eqs (3) (or 8) and (4) for dictionary learning, the multidi-

mensional seismic data is first mapped from the original form to a

2-D matrix according to some patching criteria. Some details about

the patching method can be found in Yu et al. (2015) or Chen et al.

(2016a). After iteratively solving eqs (3) (or 8) and (4) several times,

the denoised data are expressed as

D̂ = FNiter MNiter . (16)

An inverse mapping is then applied to D̂ to output the finally de-

noised data.

For measuring the denoising performance of synthetic data ex-

amples, where one knows the clean data, I use the signal-to-noise

ratio (SNR; Liu et al. 2009a; Huang et al. 2016a) measurement and

the formula is expressed as follows:

SNR = 10 log10

‖Dtrue‖2
F

‖Dtrue − D̂‖2
F

, (17)

where Dtrue denotes the clean data and D̂ denotes the denoised data.

In addition to the commonly used SNR measurement, one can

also use local similarity (Fomel 2007; Chen & Fomel 2015b) as a

convenient tool to evaluate denoising performance. The abnormal

area in the local similarity map with high similarity indicates the

area that contains significant signal leakage in the removed noise.
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Figure 6. (a) Denoised data using K-SVD. (b) Denoised data using SGK. (c) Denoised data using DDTF. (d) Denoised data using seislet thresholding.

A local similarity map with values that are close to zero, as well

as the observed significant amount of removed noise, provides a

valid support of a successful denoising performance. In addition,

the local similarity measurement can be used in many cases since

the input data of local similarity calculation are just the denoised

data and removed noise. It provides an alternative in the case of

field data processing, where the clean data is unknown and the SNR

based evaluation becomes unavailable. Besides, local similarity is a

local measurement of denoising performance, whereas the SNR is

a global measurement, which cannot guide us to pick out the areas

with poor denoising performances.

3.1 Synthetic example

The first example is a 3-D synthetic example, as shown in Fig. 1.

Fig. 1(a) is the clean data and Fig. 1(d) is the noisy data. Figs 1(b) and

(c) show the denoised results using K-SVD and SGK, respectively.

Figs 1(e) and (f) show the removed noise cubes of two approaches.

It seems that the denoised results using both methods are very

successful while the denoised result using SGK algorithm shows a

little bit more residual noise, which is however negligible. The size

of this example is 64 × 16 × 16. I use a 3-D patch of size 4 × 4 × 4

and the overlap between neighbour patches is 3 points in all time,

inline, xline directions. In this example, the sample signals D is

of size 64 × 10309. The K-SVD takes 192.60 s while SGK takes

only 9.27 s. The SNRs of noisy data, K-SVD result and SGK result

are 0.68, 9.61 and 9.32 dB respectively. While the SNRs using the

K-SVD and SGK are very similar, the SGK method obtains about

20 times acceleration.

To further demonstrate the denoising performance and compare

the two methods regarding the tiny differences, I plot the local sim-

ilarity between denoised data and removed noise in Fig. 2. Figs 2(a)

and (b) show the local similarity cubes without amplification that

correspond to K-SVD and SGK methods, respectively. It can be

seen that both methods cause negligible local similarity, or corre-

lation, between denoised data and removed noise, confirming the

extremely successful performance of the two methods. Figs 2(c)

and (d) show the amplified local similarity cubes (similarity × 2)

corresponding to K-SVD and SGK methods, respectively. It can be

observed that there are some non-zero amplified similarity values

around the events, indicating these tiny damages to the signal caused

by both methods. It can also be observed that the amplified local

similarity of SGK method is slightly higher than K-SVD method.

Considering the slightly low SNR using SGK method, I conclude

that SGK method might cause slightly worse performance than the

K-SVD method while obtaining a huge improvement on computa-

tional efficiency. I also show some learned atoms of this example in

Fig. 3. Figs 3(a)–(c) show the atoms from initial dictionary, K-SVD

learned dictionary, and SGK learned dictionary, respectively. I set

up the initial dictionary using the discrete cosine transform. It can

be seen from Fig. 3(a) that the shapes of the atoms in the initial
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Figure 7. (a) Removed noise using K-SVD. (b) Removed noise using SGK. (c) Removed noise using DDTF. (d) Removed noise using seislet thresholding.

dictionary are rigid, which are not optimal to represent the highly

non-stationary seismic data. After dictionary learning, the updated

dictionaries as shown in Figs 3(b) and (c) contain atoms with much

varied shapes. These various atoms are more likely to capture the

non-stationary features in the seismic data and thus can potentially

improve the sparse representation of the observed noisy seismic

data. Please note that each atom has been reshaped into a 3-D cube

and only 16 atoms are shown here.

In order to test the denoising performances of the two methods in

different noise levels, I calculate the SNRs of two methods in four

different cases with increasing noise levels (or decreasing input

SNRs). The denoising performances of different input SNRs are

compared in Table 1. The SNR of input noisy data drops from

3.18 to −5.33 dB. Correspondingly, the SNRs of the best results

using two methods drop from above 10 to around 1 dB. Besides, the

K-SVD method consistently obtains a slightly higher SNR than

SGK method.

In order to effectively compare the computational efficiency of

two methods, I measure the computing time of two methods in dif-

ferent cases with increasing model sizes. The detailed comparison

of computing time with different model sizes is shown in Table 2.

The results show that the SGK method can consistently maintain

a speedup of more than 15 times for different model sizes. In this

paper, I compare the speed of SGK with the classic version of

K-SVD algorithm (exact SVD calculation). Recently, there are a

lot of new algorithms proposed to approximate SVD instead of

exactly computing it, for example, Rubinstein et al. (2008), Fos-

ter et al. (2012) and Menon & Elkan (2011). These methods can

hopefully improve the efficiency of K-SVD algorithm, but at the

expense of slightly degrading the performance. Both K-SVD and

SGK use the fast OMP algorithm for sparse coding in the whole

dictionary learning process. In order to compare the computing time

fairly, I repeat the same calculation three times for each model size

and calculate the average time as the final measured computing

time.

3.2 Field data example

I first use a 2-D field data example to compare the difference be-

tween K-SVD and SGK methods, as shown in Fig. 4. The data

size of this example is 512 × 512. In this example, I choose a

patch size of 8 × 8. The overlap between different patches is 7

points in both vertical and horizontal directions. Thus the atom

size M = 8 × 8 = 64, and the number of sample signals is thus

N = (512 − 7) × (512 − 7) = 255 025. The size of D is 64 × 255 025.

For K-SVD, the dictionary updating process takes about 1590.2 s,

while for SGK, the dictionary updating process takes only 87.23 s,

which shows a great speedup. Fig. 5(a) shows the initial input dictio-

nary. Figs 5(b) and (c) show the learned dictionaries using K-SVD
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Figure 8. Local similarity between denoised data and removed noise using (a) K-SVD, (b) SGK, (c) DDTF and (d) seislet thresholding.

and SGK, respectively. The two learned dictionaries show some

similarities but are not exactly the same. As can be seen in ei-

ther Fig. 5(b) or (c) that there are some atoms in the middle part

of the dictionary map containing linear patterns, indicating a bet-

ter representation of the locally linear events. In this example, I

also compare the K-SVD and SGK methods with two other widely

known methods, i.e. the DDTF method (Cai et al. 2014) and the

seislet transform method (Fomel & Liu 2010). The denoised re-

sults using four methods are shown in Fig. 6. The corresponding

noise sections are shown in Fig. 7. Comparing the results in both

Figs 6 and 7, I can roughly get some conclusions that K-SVD,

SGK, and DDTF methods all seem to obtain successful denoised

results while the result from seislet transform is a bit over-smoothed,

which causes some observable low-frequency coherent energy in

the noise section (Fig. 7d). A better evaluation of denoising perfor-

mance can be obtained using the local similarity measurement and

is shown in Fig. 8. The local similarity confirms my observation

in that the local similarity corresponding to seislet method is very

high, which is followed by the DDTF method. The DDTF method

obtains a successful performance in most part of the data but causes

some damages to the highly curved signals around the 2s near the

left boundary, as indicated from the local similarity map (Fig. 8c).

The K-SVD and SGK methods obtain very close results but SGK

results in a slightly higher local similarity in right part of the

data.

I next use a 3-D field data example to demonstrate the perfor-

mance, as shown in Fig. 9. Figs 9(a)–(c) show noisy data, K-SVD

denoised data and SGK denoised data, respectively. Figs 9(d) and

(e) show the noise sections of two approaches. It is clear that both

approaches obtain approximate performance. It is computationally

expensive to use K-SVD to learn the dictionary for this example.

While it takes about half an hour to learn the dictionary using SGK

algorithm, it takes more than half a day to learn the dictionary using

the K-SVD algorithm. The local similarity cubes between denoised

data cubes and removed noise cubes using two methods are shown

in Fig. 10, which confirms the successful and comparable perfor-

mance of both methods in that most part of the data is close to

zero.

4 C O N C LU S I O N S

In this paper, I proposed a fast dictionary-learning based seis-

mic denoising approach using the SGK algorithm. In the SGK

algorithm, each atom in the dictionary is updated by an aver-

age of several sample signals while K-SVD uses computationally

expensive SVD to update each atom. Thus, the SGK algorithm

can be much faster than K-SVD algorithm for adaptively learn-

ing the dictionary. I applied both K-SVD and SGK to dictionary

learning of seismic data for random noise attenuation. The results
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Figure 9. (a) Noisy 3-D field data. (b) & (c) Denoised data using K-SVD and SGK. (d) & (e) Noise cubes using K-SVD and SGK.

from three different examples show that SGK is much faster than

K-SVD without sacrificing much denoising performance. I suggest

substituting the K-SVD with SGK in any applications that require

sparse coding. Future research direction may include applying the

SGK based dictionary learning for multidimensional seismic data

reconstruction.
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Figure 10. (a) Local similarity between denoised data using K-SVD and

the corresponding noise cube. (b) Local similarity between denoised data

using SGK and the corresponding noise cube.
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A P P E N D I X A : L O C A L S I M I L A R I T Y

Let x1 and x2 denote the two signal vectors that are reshaped from

a 2-D matrix or 3-D tensor. In the case of evaluating denoising

performance, x1 and x2 simply means signal and noise. The simplest

way to measure the similarity between two signals is to calculate

the correlation coefficient,

c =
xT

1 x2

‖ x1 ‖2‖ x2 ‖2

, (A1)

where c is the correlation coefficient, xT
1 x2 denotes the dot product

between x1 and x2. ‖ · ‖2 denotes the L2 norm of the input vector.

A locally calculated correlation coefficient can be used to measure

the local similarity between two signals,

c(i) =
∑Nw/2

iw=−Nw/2 x1(i + iw)x2(i + iw)
√

∑Nw/2

iw=−Nw/2 x1(i + iw)2

√

∑Nw/2

iw=−Nw/2 x2(i + iw)2

, (A2)

where x1(i) and x2(i) denote the ith entries of vectors x1 and x2,

respectively. iw denotes the index in a local window. Nw + 1 de-

notes the length of each local window. The windowing is sometime

troublesome, since the measured similarity is largely dependent on

the windowing length and the measured local similarity might be

discontinuous because of the separate calculations in windows. To

avoid the negative performance caused by local windowing calcula-

tions, Fomel (2007) proposed an elegant way for calculating smooth

local similarity via solving two inverse problems. The local similar-

ity I use to evaluate denoising performance in this paper is defined

as

s =
√

s1 ◦ s2, (A3)

where s is the calculated local similarity, ◦ denotes Hadamard (or

Schur) product, and s1 and s2 come from two least-squares inverse

problem:

s1 = arg min
s̃1

‖x1 − X2s̃1‖2
2, (A4)

s2 = arg min
s̃2

‖x2 − X1s̃2‖2
2, (A5)

where X1 is a diagonal operator composed from the elements of x1:

X1 = diag(x1) and X2 is a diagonal operator composed from the

elements of x2: X2 = diag(x2). Eqs (A4) and (A5) are solved via

shaping regularization

s1 =
[

λ2
1I + T

(

XT
2 X2 − λ2

1I
)]−1

T XT
2 x1, (A6)

s2 =
[

λ2
2I + T

(

XT
1 X1 − λ2

2I
)]−1

T XT
1 x2, (A7)

where T is a smoothing operator, and λ1 and λ2 are two parameters

controlling the physical dimensionality and enabling fast conver-

gence when inversion is implemented iteratively. These two param-

eters can be chosen as λ1 = ‖XT
2 X2‖2 and λ2 = ‖XT

1 X1‖2 (Fomel

2007).
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