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Abstract

For dictionary-based decompositions of certain typesad heen observed that there might be a link
between sparsity in the dictionary and sparsity in the deguasition. Sparsity in the dictionary has also
been associated with the derivation of fast and efficierttatiary learning algorithms. Therefore, in this
paper we present a greedy adaptive dictionary learningitghgo that sets out to find sparse atoms for
speech signals. The algorithm learns the dictionary atomdada frames taken from a speech signal. It
iteratively extracts the data frame with minimum sparsitglex, and adds this to the dictionary matrix.
The contribution of this atom to the data frames is then reedpwand the process is repeated. The
algorithm is found to yield a sparse signal decompositioppsrting the hypothesis of a link between
sparsity in the decomposition and dictionary.

The algorithm is applied to the problem of speech repretentand speech denoising, and its
performance is compared to other existing methods. The adathshown to find dictionary atoms that
are sparser than their time-domain waveform, and also tdtriesa sparser speech representation. In the
presence of noise, the algorithm is found to have similafgperance to the well established principal

component analysis.
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. INTRODUCTION

Sparse signal representations allow the salient infoonatiithin a signal to be conveyed with only a
few elementary components, callatbms For this reason, they have acquired great popularity dwer t
years, and they have been successfully applied to a varigioblems, including the study of the human
sensory system [1]-[3], blind source separation [4]-[8H aignal denoising [7]. Successful application
of a sparse decomposition depends on the dictionary usedwhsther it matches the signal features
[8].

Two main methods have emerged to determine a dictionanjmdgttsparse decomposition: dictionary
selection and dictionary learning. Dictionary selectioriadls choosing a pre-existing dictionary, such
as the Fourier basis, wavelet basis or modified discretenedsasis, or constructing @dundantor
overcompletalictionary by forming a union of bases (for example the Fauand wavelet bases) so that
different properties of the signal can be represented [@]ti@mary learning, on the other hand, aims at
deducing the dictionary from the training data, so that tteens directly capture the specific features of
the signal or set of signals [7]. Dictionary learning methage often based on an alternating optimization
strategy, in which the dictionary is fixed, and a sparse sigaeomposition is found; then the dictionary

elements are learned, while the signal representationesl.fix

Early dictionary learning methods by Olshausen and Fie]Jdaffl Lewicki and Sejnowski [10] were
based on a probabilistic model of the observed data. Levaoki Sejnowski [10] clarify the relation
between sparse coding methods and independent comporadygiaifl CA), while the connection between
dictionary learning in sparse coding, and the vector qaattin problem was pointed out by Kreutz-
Delgado et al. [11]. The authors also proposed finding speepeesentations using variants of the
focal underdetermined system solver (FOCUSS) [12], and timgating the dictionary based on these
representations. Aharon, Elad and Bruckstein [13] propdke K-SVD algorithm. It involves a sparse
coding stage, based on a pursuit method, followed by an apstap, where the dictionary matrix is
updated one column at the time, while allowing the expansaefficients to change [13]. More recently,
dictionary learning methods for exact sparse representatised ori; minimization [8], [14], and online
learning algorithms [15], have been proposed.

Generally, the methods described above are computatyomgliensive algorithms that look for a sparse
decomposition, for a variety of signal processing applicest. In this paper, we are interested in targeting

speech signals, and deriving a dictionary learning algorithat is computationally fast. The algorithm
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should be able to learn a dictionary from a short speech kigoathat it can potentially be used in

real-time processing applications.

A. Motivation

The aim of this work is to find a dictionary learning methodttigafast and efficient. Rubinstein et
al. have shown that this can be achieved by means of 'doulalssisg [16]. Double sparsity refers to
seeking a sparse decomposition and a dictiodary AB such that the atoms iA are sparse over the
fixed dictionaryB, such as Wavelets or the discrete cosine transform (DCEp,Ah previous results in
[17], it was found that dictionary atoms learned from spesignals with a sparse coding method based
on ICA (SC-ICA) [18], are localized in time and frequency.iFtappears to suggest that for certain
types of signals (e.g. speech and music) there might be ablitween sparsity in decomposition and
sparsity in dictionary. This is further supported by thecass of transforms such as the Wavelet transform
whose basis functions are localized, and are well-suitatig@nalysis of natural signals (audio, images,

biomedical signals), often yielding a sparse represemtati

Thus in this paper we propose to learn sparse atoms as inji6Jather than learning atoms that
are sparse over a fixed base dictionary, we directly learrsepgtoms from a speech signal. In order to
build a fast transform, the proposed algorithm seeks tomlaarorthogonal dictionary from a set of local
frames that are obtained by segmenting the speech signat. $8veral iterations, the algorithm ’'grabs’
the sparsest data frame, and uses a Gram-Schmidt-like stephiogonalize the signal away from this

frame.

The advantage of this approach is its computational spegdienplicity, and because of the connection
that we have observed between sparsity in the dictionaryimnie representation, we expect that the

signal representation that is obtained with the learnetiotiary will be also sparse.

B. Contributions

In this paper we consider the formulation of our algorithranfr the point of view of minimizing
the sparsity index on atoms. We seek the sparsity of theod@&ty atoms alone rather than of the

decomposition, and to the authors’ knowledge this persgebias not been considered elsewhere.

1The approach proposed in [16] looks for a sparse dictionsey a base dictionary, as well as a sparse decomposition, and

therefore is quite different to the method proposed here.
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Further, we propose a stopping rule that automaticallycselenly a subset of the atoms. This has the
potential of making the algorithm even faster, and to aid @naising applications by using a subset of

the atoms within the signal reconstruction.

C. Organization of the paper

The structure of the paper is as follows: the problem that @k 4o address is outlined in Section Il,
and our sparse adaptive dictionary algorithm is introduce8ection 1ll, along with the stopping rule.
Experimental results are presented in Section IV, inclgdive investigation of the sparsity of the atoms

and speech representation, and speech denoising. Camdwsie drawn in Section VII.

Il. PROBLEM STATEMENT

Given a one-dimensional speech signél), we divide this into overlapping frames;, each of length

L samples, with an overlap df/ samples. Hence, theth framex, is given by
xg = [#((k = 1)(L — M) +1),...,2(kL — (k — 1)M)]" 1)

wherek € {1,..., K}. Then we construct a new matrX € RX*X whosek-th column corresponds to

the signal blockx;, and whosgl, k)-th element is given by
Xk =zl + (k = 1)(L — M)) (@)

wherel € {1,...,L}, andK > L.

The task is to learn a dictionai consisting ofL atomsy!, that isD = {t'}~_,, providing a sparse

representation for the signal blocks. We seek a dictionary and a decompositionkgf such that [19]

L
xp =Y optp! 3)

=1
whereozﬁC are the expansion coefficients, and

l|akllo < L. (4)

The ¢p-norm ||a||o counts the number of non-zero entries in the veetprand therefore the expression
in equation (4) defines the decomposition as “sparsdlaif||o is small. In the remainder of this paper,

we use the definition of sparsity given later in equation (5).
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The dictionary is learned from the newly constructed ma¥Xix In the case of our algorithm, we
begin with a matrix containindd columns, and we extract the fir&tcolumns according to the criterion

discussed in the next section.

I1l. GREEDY ADAPTIVE DICTIONARY ALGORITHM (GAD)

To find a set of sparse dictionagtomswe consider the sparsity index[20] for each columnk;, of

X, defined as
Il
|2

where||-||; and||- ||2 denote the/;- and{2-norm respectively. The sparsity index measures the gparsi

§

(5)

of a signal, and is such that the smallgrthe sparser the vecter. Our aim is to sequentially extract
new atoms fromX to populate the dictionary matril, and we do this by finding, at each iteration, the
column of X with minimum sparsity index

mkin & (6)

Practical implementation of the algorithm begins with tieimition of a residual matri®! = [, ..., r%],

wherer!, € R¥ is a residual column vector corresponding to kA column ofR!. The residual matrix
changes at each iteratidnand is initialized toX. The dictionary is then built by selecting the residual

vectorr} that has lowest sparsity index, as indicated in Algorithm 1.

Algorithm 1 Greedy adaptive dictionary (GAD) algorithm
1. Initialize: I = 0, DY = [ ] {empty matriy, R? = X

2. repeat
3. Find residual column oR' with lowest/;- to ¢s-norm ratio:
k' = arg minggr {|[x) [l1/x} 12}
4. Set thel-th atom equal to normalizes, :
P! =2, /115 )12
5. Add to the dictionary:
Dl — [Dl—l‘wl}, _'Z'l — _'Z'l—l U {kl}
6. Compute the new residual™ = r} — (!, rl) for all columnsk

7. until “termination” (see Section IlI-A)

We call our method thgreedy adaptive dictionar{GAD) algorithm [21].
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Aside from the advantage of producing atoms that are dyreetevant to the data, the GAD algorithm
results in an orthogonal transform. To see this, considewritng the update equation in step 6 in
Algorithm 1 as the projection of the current residur@lonto the atom space, in the style of Matching

Pursuit [22], [23]:

Plop!” Pl (gl vl
_W%J%:%_aﬁiw' )

It follows from step 4 in Algorithm 1, that the denominatorthe right-hand-side of equation (7) is equal

%“:P@¢=<I

to 1, and therefore the equation corresponds to the resighaiite in step 6. Orthogonal dictionaries have
the advantage being easily invertible, since if the maBiis orthogonal, theBB” = I, and evaluation

of the inverse simply requires the use of the matrix transpos

A. Termination rules

We consider two possible termination rules:

1) The number of atomkto be extracted is pre-determined, so that uf.tatoms are learned. Then,

the termination rule is:
« Repeat from step 2, untll= N, whereN < L.
2) The reconstruction error at the current iteratibris defined, and the rule is:

« Repeat from step 2 until

) —at)], <o (8)

where i!(t) is the approximation of the speech signdl), obtained at thd-th iteration from
X T
X! = D! (Dl) X, by reversing the framing procesB) is the dictionary learned so far, as

defined in step 5 of Algorithm 1.

IV. EXPERIMENTS

We compared the GAD method to PCA [24], and K-SVD [13]. K-SVRsxchosen because it learns
data-determined dictionaries, and looks for a sparse septation. PCA was chosen because it is a
well-established technique, commonly used in speech gaalinl therefore it sets the benchmark for the
speech denoising application.

We used the three algorithms to learn 512 dictionary atorms fa segment of speech lasting 1.25
sec. A short data segment was used because this way thettalgazan be used within real-time
speech processing applications. The data was taken froniethale speech signal “supernova.wav”

by “Corsica S”, downloaded from The Freesound Project database [28],dawnsampled to 16 kHz.
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Fig. 1. Examples of the frames of the original speech sigrais of the atoms learned with the PCA, K-SVD and GAD
algorithms.

We also used the male speech signal “Henry5.mp3” by “ad¢glivdlownloaded from the same database,
and downsampled to 16 kHz.

The K-SVD Matlab Toolbox [26] was used to implement the K-S¥Igorithm. K-SVD requires the
selection of several parameters. We set the number ofigasato 50, as recommended in [13], and the
number of nonzero entri€k, in the coefficient update stage to 10, which we found empiyita give a
more accurate, although not as sparse, signal representaéin7, = 3, as used in [13]. The dictionary

size was set to 512 and the memory usage to “high”.
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Method Average Computation Time (sec)
PCA 7
K-SVD (Matlab only) 6710
K-SVD (v2) 163
GAD 167
TABLE |

COMPARING THE COMPUTATIONAL COMPLEXITY FOR THEPCA, K-SVDAND GAD ALGORITHMS. THE TABLE SHOWS THE

AVERAGE COMPUTATIONAL TIME FOR EACH ALGORITHM, OBTAINED OVER 100 TRIALS.

A. Computational Complexity

In Table | we report the computational times of the algorishmhen learning a dictionary from speech
segment of 1.25 sec, and averaged over 100 trials. Two vergibthe K-SVD were also compared: the
original version which is fully based on Matlab M-code, ahd second version, which combines M-code
with optimized MEX functions written in C. The experimentem conducted on a Quad-Core Intel Xeon
Mac at 2.66 GHz, using Matlab Version 7.6.0.324 (R2008a) amdeer the Mac OS X Version 10.5.8

operating system.

GAD and K-SVD (v2) only need about 2 minutes, and PCA needstths &s 7sec. However, note
how the K-SVD version based exclusively on M-code requiresiiad 1 hour and 45 minutes to learn the
dictionary. Therefore, we expect that optimizing the caoleGAD will lead to even faster computational

complexity.

B. Learned Atoms

We begin by visually inspecting some examples of the atomséd with the three algorithms, and
then considering the sparsity of the atoms and signal reptagon.
Figure 1(a) shows examples of the overlapping data blodksdan the columns of the matriX, from
which each dictionary is learned, while the remaining plotgshe figure show examples of the atoms
learned with PCA, K-SVD and GAD. The sparsity index relatbogeach atom is also given.

The atoms extracted with PCA (Fig. 1(b)) are not localizedmparing them with Figure 1(a), they

do not appear to be capturing any particular features of peech signal.
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Fig. 2. Sparsity index for atoms GAD, PCA and K-SVD algorithnearned from a female speech signal, and averaged over
100 trials.

The K-SVD atoms (Fig. 1(c)) exhibit some structure that gelte seems to correspond to that of the
original data blocks. The atoms obtained with the GAD altoni are illustrated in Figure 1(d). Those
atoms extracted earlier, shown on the first two lines, aréecgimilar to the original data, and are also
the sparsest atoms, as indicated by the low sparsity indemg extracted later, shown on the last two

lines in the figure, capture mostly “noise”-like charactéds, or less meaningful features of the signal.

C. Sparsity of Atoms and Representation

We have seen in Figure 1 how the GAD algorithm yields atomsdhainitially quite sparse and then
become more “noise”-like. To investigate this further, Heg@ments were taken from the original speech
data, each lasting 1.25 sec. PCA, K-SVD and GAD were usedatm ldictionaries from each segment.

The sparsity index;, for each atom was then evaluated, and the average acros8Qhedls was taken.

Figure 2 shows the atom sparsity index for the framed speathid the columns oK, and for the
atoms learned with PCA, K-SVD and GAD. Recall that a sparemas characterized by a low sparsity
index. The plot shows that the atoms learned by GAD in thermégg are the sparsest, and after around
200 atoms have been extracted, the sparsity index is cloge ieaximum value. The behavior observed
here is in agreement with what was observed in Figure 1. & al®ws that the atoms obtained with
the other algorithms are not as sparse as those extractedABy The original data blocks that are
considered in the figure correspond to the columnXithat are extracted by GAD, and therefore they

are the sparsest within the speech segment.
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Method Mean and Standard Deviation of Sparsity Index

Atom Sparsity Index Representation Sparsity |ndex

Female Male Female Male

Mean | Std | Mean | Std | Mean | Std | Mean Std

Original 175 | 044 171 | 048 | 175 | 044 | 171 0.48
PCA 182 | 0.18| 18.1 | 0.23| 16.0 | 0.15| 155 0.19
K-SvD 18.1 | 0.04| 17.9 | 0.09 21 020| 26 0.18

GAD-FULL | 16.2 | 0.29| 16.8 | 0.29 | 105 | 0.62| 123 0.51

GAD-TR 12.6 14.9 6.0 6.9

TABLE I
MEAN VALUE AND STANDARD DEVIATION (STD) FOR THE SPARSITY INDEX OF THE ATOMS AND THE SIGNAL
REPRESENTATION OBTAINED WITH THEPCA, K-SVDAND GAD ALGORITHMS COMPARED TO THAT OF THE ORIGINAL
SIGNAL BLOCKS. THE VALUES FOR THE ORIGINAL DATA BLOCKS AND FORPCA, K-SVDAND GAD WERE AVERAGED

ACROSS100TRIALS, AND 512 ATOMS.

The results are shown in the first column of Table II, and thaljdate our expectations: GAD yields
atoms that are sparser than the original signal blocks, ad &ll the algorithms. However, when we
used the termination rule in equation (8) (shown in TablesIGAD-TR), witho = 5 x 1073, the average
sparsity index for the GAD atoms decreased from 16.2 to Xrbaverage, GAD-TR was found to learn
less than 110 atoms, which from Figure 2 can be seen to comdsjp those atoms that are sparsest.

The algorithms perform in a similar way on the male speech.

Next, we seek to determine how sparse is tbpresentationobtained with the GAD method. We
do this by considering the transform coefficients obtainéith wll methods, for each block, and across
the 100 speech segments taken from the speech signal, esitty 14.25 sec. The sparsity index of
the transform coefficients is found each time. We then awesgoss the 100 segments and across all
blocks to obtain a single figure for each method, and for bbéhfemale and male speech signals, as
shown in the second column of Table II. This also includesi@slfor the sparsity index for the original

signal blocks inX. The lowest representation sparsity index value is obtawigh K-SVD, thanks to
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Fig. 3. Reconstruction error for the GAD, PCA, and K-SVD altfons, averaged over 100 trials.

the strong sparsity constraint imposed by the algorithmhensignal decomposition. This entails limiting
the number of non-zero elements in the signal representadi@ small number (we usg) = 10). The

signal transformed with the GAD algorithm is sparser thathintime domain, and than the coefficients
obtained with PCA when all atoms are used in the signal rdoact®on, for both signals. Moreover, the

representation becomes even sparser when GAD is used wittetmination rule.

Thus, as well as a dictionary whose atoms are sparse GAD Ieadssparse decomposition. This

confirms the concepts discussed in Section I-A.

D. Representation Accuracy

The accuracy of the signal approximation given by each dlgorcan be assessed with the recon-

struction errore, as defined in equation (8), after the dictionary has beemdeh

e = [2(t) —x(t)ll, ©)
wherei(t) is the signal approximation obtained frak = D! (Dl)Jr X, and (Dl)T is the right pseudo-
inverse of D!, This is plotted in Figure 3 for each algorithm, as the numtieatoms omitted in the
signal reconstruction goes from 0 to 462 (or, the total nunatb@toms used goes from 512 down to 50).
K-SVD has a non-zero reconstruction error even when all atara included in the signal approximation,

because the transform is not complete, and therefore it doegesult in an exact reconstruction.
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In general, the results show that all algorithms perforntequiell when few atoms are omitted in the
reconstruction. As more and more atoms are omitted, thensbaation error increases. PCA performs
best, because the transform arranges the signal compaetiitat most energy is concentrated in a small
number of components, corresponding to those extractdikredthe GAD transform also gives good
signal approximations as more atoms are excluded from tbenstruction, although its performance
seems to worsen as the number of omitted atoms becomes nzore8@® (or less than 200 atoms are
used in the reconstruction). This corresponds to the nundestified in Figure 2, below which the GAD
atoms are sparsest, and above which the sparsity indexag#shmaximum value. K-SVD yields signal
approximations that suffer most from the reduction in thenbar of atoms.

The dictionary constructed by GAD separates the coherempoaents from the incoherent compo-
nents. The latter can be discarded from the representatioaduce incoherent background noise. This
suggests that the GAD algorithm might be suitable for dengiapplications. Hence, we will consider

this problem in the following section.

V. APPLICATION TO SPEECHDENOISING

The term denoising refers to the removal of noise from a sigdarse transforms have been found
to be among the most successful methods for denoising [Bd]dationary learning methods have been

used for this application [13].

Table Il shows the tolerance of the PCA, K-SVD and GAD altguris to a noise level changing
from 20 dB to -10 dB, as the number of atoms in the reconstrndt reduced from 512 to 50. This is

evaluated with the improvement in signal to noise ratio (RSN

E{(z(t) — z,(t))?
ISNR = 10log E{ix((?) — (SQ}} (10)

wherex(t) is the original signaly,,(t) is the observed distorted (noisy) signal, aid) is the source
approximated by the transform. As the signal approximatiecomes closer to the original source, ISNR
increases.

When all atoms are used in the reconstruction, the completsforms PCA and GAD, yield an ISNR
of 0 dB, while K-SVD gives a non-zero ISNR, since the appraion is not exact. Generally, K-SVD
has been shown to perform well for tasks such as image degdig], and the results in Table lll show
that this is also true for speech: the algorithm yields thghbst ISNR values across all experiments.

For the remaining algorithms, when the noise is low (10 dBfjucing the number of atoms in the
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Noise | Method Number of Atoms

Level

512 | 400 | 300 | 200 | 100 50

10dB | PCA 0.00| 052 | 1.32| 261 | 474 | 5.69
K-SvD | 5.10| 6.01| 6.83| 745| 7.00 | 5.85

GAD 0.00| 1.40| 297 | 471 | 510 | 2.53

0dB | PCA 000 | 050|130 | 269 | 542 | 8.33

K-SVD | 4.89| 598 | 7.10| 852 | 10.17 | 10.97

GAD 000 | 150| 3.29 | 565 | 7.20 | 7.27

-10 dB | PCA 0.00| 049|128 | 265| 534 | 8.28
K-SVD | 470 | 5.75| 6.96 | 8.53 | 10.64 | 12.07

GAD 0.00 | 1.47| 3.27 | 580 | 8.86 | 10.21

TABLE Il
ISNRFOR THEGAD, PCAAND K-SVD ALGORITHMS. ALL ISNR VALUES ARE EXPRESSED IN DECIBELEDB).

reconstruction leads to distortion in the signal approtiom As the level of noise increases, the high
ISNR values for PCA and GAD indicate that there are benefiteducing the number of atoms used
in the signal approximation. It is well-known that PCA camluee the level of noise present, because
it decomposes the space into signal and noise subspacesfizBthe results in Table Il show that the

performance of GAD is similar.

It should be emphasized that the advantage of using the GAbritim over PCA is that methods
based on sparse representations do not enforce decametettithe data. This results in greater flexibility
in adapting the representation to the data, and uncoveriegqusly unobserved structure in the data.

Moreover, sparse representations allow the use of powarfdlefficient tools for signal analysis.

VI. DISCUSSION

GAD is a computationally fast algorithm that finds atoms that sparse. It is motivated by the
observation that sparsity in the dictionary and sparsithédecomposition appear to be linked, for certain

types of signals. This notion is supported by the resulthim paper: whilst looking for sparse atoms and
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making no assumptions on the decomposition, the GAD alguoriyields a signal decomposition that is

sparse.

Although the only sparsity measure considered here is tlagsigp index, we have compared the
results to other measures of sparsity including the Ginexpadvhich was found to outperform several
other sparsity measures [29]. Our experimental resultsabed that the performance of the algorithm is

not noticeably different. However, we are considering tadgtthis further in future work.

In its present form, the GAD method looks for onsets, and ghhibe argued that it does not take
advantage of all the possible redundancy in the speechlslgnaot exploiting the pitch structure of the
signal. In future work we are considering searching for spgain the frequency domain, and perhaps
in prototype waveform domain [30]. On the other hand, in itssent form GAD is a general algorithm

that can be used with a variety of data because it does not amakassumptions on its characteristics.

Although the GAD algorithm is currently at the theoreticge, it is a fast method that might in future
be used in real practical applications such as speech cdditfys case, like with PCA, this method would
require the transmission of the signal-adaptive dictipn@ther applications to which we are particularly
interested in applying the GAD method include image prdogsand biomedical signal processing.
Biomedical applications typically give rise to large dagdss for instance, in microarray experiments the
expression values of thousands of genes are generateckfditeerin this case the algorithm would have
to be extended to deal with large data sets. We are also @virgjcthe application of this approach to

the problem of source separation.

VIl. CONCLUSIONS

In this paper we have presented a greedy adaptive dictioleamning algorithm, that finds new
dictionary elements that are sparse. The algorithm cottstra signal-adaptive orthogonal dictionary,
whose atoms encode local properties of the signal.

The algorithm has been shown to yield sparse atoms and aesgigral representation. Its performance
was compared to that of PCA and K-SVD methods, and it was feomggve good signal approximations,
even as the number of atoms in the reconstructions decreassilerably.

It results in better signal reconstruction than K-SVD andhds good tolerance to noise and does not
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exhibit distortion when noise reduction is performed at logise levels.
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