
Fast Digital Image Inpainting

Manuel M. Oliveira Brian Bowen Richard McKenna Yu-Sung Chang

Department of Computer Science

State University of New York at Stony Brook

Stony Brook, NY 11794-4400

{oliveira|bbowen|richard|yusung}@cs.sunysb.edu}

ABSTRACT

We present a very simple inpainting algorithm for

reconstruction of small missing and damaged portions of

images that is two to three orders of magnitude faster than

current methods while producing comparable results.

KEY WORDS: image inpainting, image restoration.

1. INTRODUCTION

Reconstruction of missing or damaged portions of images

is an ancient practice used extensively in artwork

restoration. Also known as inpainting or retouching, this

activity consists of filling in the missing areas or

modifying the damaged ones in a non-detectable way by

an observer not familiar with the original images [2].

Applications of image inpainting range from restoration

of photographs, films and paintings, to removal of

occlusions, such as text, subtitles, stamps and publicity

from images. In addition, inpainting can also be used to

produce special effects.

Traditionally, skilled artists have performed image

inpainting manually. But given its range of applications, it

would be desirable to have image inpainting as a standard

feature of popular image tools such as PhotoShop.

Recently, Bertalmio et al [2] have introduced a technique

for digital inpainting of still images that produces very

impressive results. Their algorithm, however, usually

requires several minutes on current personal computers

for the inpainting of relatively small areas. Such a time is

unacceptable for interactive sessions and motivated us to

design a simpler and faster algorithm capable of

producing similar results in just a few seconds.

The results produced by our algorithm are comparable to

those found in the literature [2, 4, 5], but two to three

orders of magnitude faster. We illustrate the effectiveness

of our approach with examples of restoration of

photographs, vandalized images, and text removal. Figure

1 (left) shows a famous cracked photograph of Abraham

Lincoln taken in 1865. The image to its right shows the

result obtained with our algorithm in 0.61 seconds on a

450 MHz Pentium III PC.

2. PREVIOUS AND RELATED WORK

Bertalmio et al [2] pioneered a digital image-inpainting

algorithm based on partial differential equations (PDEs).

A user-provided mask specifies the portions of the input

image to be retouched and the algorithm treats the input

image as three separate channels (R, G and B). For each

channel, it fills in the areas to be inpainted by propagating

information from the outside of the masked region along

level lines (isophotes). Isophote directions are obtained by

computing at each pixel along the inpainting contour a

Fig. 1. Left: An 1865 Photograph of Abraham Lincoln taken by Alexander Gardner (courtesy of Wing Yung and Ajeet

Shankar from Harvard University). Right: Image restored with our algorithm. The inpainting time took about half of a second.

Appeared in the Proceedings of the International Conference on Visualization, Imaging and Image Processing (VIIP 2001), Marbella, Spain.
September 3-5, 2001

discretized gradient vector (it gives the direction of largest

spatial change) and by rotating the resulting vector by 90

degrees. This intends to propagate information while

preserving edges. A 2-D Laplacian [8] is used to locally

estimate the variation in color smoothness and such

variation is propagated along the isophote direction [2].

After every few step of the inpainting process, the

algorithm runs a few diffusion iterations to smooth the

inpainted region. Anisotropic diffusion [13] is used in

order to preserve boundaries across the inpainted region.

Inspired by the work of Bertalmio et al., Chan and Shen

proposed two image-inpainting algorithms [4, 5]. The

Total Variational (TV) inpainting model [4] uses an

Euler-Lagrange equation and inside the inpainting domain

the model simply employs anisotropic diffusion [13]

based on the contrast of the isophotes. This model was

designed for inpainting small regions and while it does a

good job in removing noise, it does not connect broken

edges (single lines embedded in a uniform background)

[4]. The Curvature-Driven Diffusion (CDD) model [5]

extended the TV algorithm to also take into account

geometric information of isophotes when defining the

“strength” of the diffusion process, thus allowing the

inpainting to proceed over larger areas. CDD can connect

some broken edges, but the resulting interpolated

segments usually look blurry.

While nonlinear PDE-based image restoration methods

have the potential to systematically preserve edges, the

inpainting problem is very ill posed in general and fast

numerical implementations are difficult to achieve [5]. It

is equally hard to find appropriate mathematical models

for inpainting [5]. Despite their high quality, a careful

examination of the results presented in [2] (not

reproduced here) reveals that sharp edges are not always

preserved. For instance, the reconstructed region where

the mask crosses the VW Beetle near the windshield

appears blurred with broken edges (Figure 6 (top) in [2]).

Hirani and Totsuke [11] combine global frequency and

local spatial information for noise removal and use it for

post-production of special effects shots. Such a technique

can produce very nice results, but requires the existence

of sample sub-images whose contents are approximately

translated versions of the regions to be repaired.

Digital techniques have also been used for automatic

restoration of scratched films [10], and commercial

products are available for scratch removal of digitized

films [1], photo retouching [7] and wire-and-rig removal

[6, 14].

3. THE INPAINTING ALGORITHM

Images may contain textures with arbitrary spatial

discontinuities, but the sampling theorem [8] constraints

the spatial frequency content that can be automatically

restored. Thus, for the case of missing or damaged areas,

one can only hope to produce a plausible rather than an

exact reconstruction. Therefore, in order for an inpainting

model to be reasonably successful for a large class of

images the regions to be inpainted must be locally small.

As the regions become smaller, simpler models can be

used to locally approximate the results produced by more

sophisticated ones. Another important observation used in

the design of our algorithm is that the human visual

system can tolerate some amount of blurring in areas not

associated to high contrast edges [9].

Thus, let Ω be a small area to be inpainted and let ∂Ω be

its boundary. Since Ω is small, the inpainting procedure

can be approximated by an isotropic diffusion process that

propagates information from ∂Ω into Ω. A slightly

improved algorithm reconnects edges reaching ∂Ω (for

instance, using an approach similar to the one described in

[12]), removes the new edge pixels from Ω (thus splitting

Ω into a number of smaller sub-regions), and then

performs the diffusion process as before.

The simplest version of the algorithm consists of

initializing Ω by clearing its color information and

repeatedly convolving the region to be inpainted with a

diffusion kernel. ∂Ω is a one-pixel thick boundary and the

number of iterations is independently controlled for each

inpainting domain by checking if none of the pixels

belonging to the domain had their values changed by

more than a certain threshold during the previous

iteration. Alternatively, the user can specify the number of

iterations. As the diffusion process is iterated, the

inpainting progresses from ∂Ω into Ω.

Convolving an image with a Gaussian kernel (i.e.,

computing weighted averages of pixels’ neighborhoods)

is equivalent to isotropic diffusion (linear heat equation).

Our algorithm uses a weighted average kernel that only

considers contributions from the neighbor pixels (i.e., it

has a zero weight at the center of the kernel). Figure 2

shows the pseudocode of the algorithm and two diffusion

kernels. All reconstructed images shown in this paper

were obtained with this algorithm or with a minor

variation of it explained in section 3.1.

3.1. Preserving Edges

The simplest version of the algorithm can introduce

artifacts (noticeable blurring) when Ω crosses the

boundaries of high contrast edges (Figure 3 (front left)).

In practice, intersections between Ω and high contrast

edges are the only places where anisotropic diffusion is

c c c

c 0 c

c c c

a b a

b 0 b

a b a

initialize Ω;
for (iter =0; iter < num_iteration; iter++)
 convolve masked regions with kernel;

Fig 2. (top) Pseudocode for the fast inpainting algorithm. (bottom)

Two diffusion kernels used with the algorithm. a = 0.073235,

b = 0.176765, c = 0.125.

required and such regions usually account for a small

percentage of the total area.

Creating the mask used to specify the regions to be

inpainted is the most time-consuming step of the

inpainting process, requiring user intervention. Since our

algorithm can inpaint an image in just a few seconds, it

can be used for interactive construction of tight masks.

We exploit this interactivity to implement edge

reconnection by defining diffusion barriers, which are

boundaries for the diffusion process inside Ω. This

accomplishes a result similar to boundary reconstruction

and anisotropic diffusion, but without the associated

overheads. In practice, a diffusion barrier is a two-pixel

wide line segment. As the diffusion process reaches a

barrier, the reached pixel has its color set, but the process

stops. Figure 3 illustrates the idea, with the clear crossing

lines in Figure 3 (back left) representing the inpainting

domain. The simple diffusion-based inpainting algorithm

produces blurred spots at the intersections between Ω and

high contrast edges (see the small circles in Figure 3

(front left)). By appropriately adding diffusion barriers

(line segments across the mask in Figure 3 (back right)),

the user stops the diffusion process from mixing

information from both sides of the mask. The resulting

straight lines are shown in Figure 3 (front right).

4. RESULTS

We have implemented the algorithm described in Figure 2

in C++ and tried the two different diffusion kernels. In

both cases the results were similar. All images shown in

the paper were generated using a 450 MHz Pentium III

PC with 128 MB of memory running Windows98 and

using the leftmost kernel shown in Figure 2. Results

shown in Figures 5, 8, 9 and 10 were produced with the

simplest version of the algorithm without diffusion

barriers. For Figure 1, a mask and two diffusion barriers

were used (Figure 4). For the three girls example, four

diffusion barriers associated with regions of the mask

crossing high contrast edges were used (Figure 6 (right)).

In all cases, 100 diffusion iterations were used.

All inpainting and wire-and-rig removal systems require a

step of manual masking. Given a painting system with a

set of features, the time required to create a mask only

depends on the available features and is independent of

the inpainting algorithm used. For interactive

applications, it is desirable to have the masking

capabilities and the inpainting algorithm in the same

system to avoid switching between different

environments. In our current prototype, we have

implemented a simple painting system and the ability to

import and export JPEG files.

The masks used for restoring Lincoln’s portrait and the

picture of the three girls (Figures 4 and 6 (right),

respectively), were created with our painting system. The

mask used in the New Orleans example (Figure 5) was

instantly obtained by selecting “red” using the select color

range feature of Photoshop. The resulting image was

saved and imported into our system. The masks used with

Figures 8, 9 and 10 were JPEG images containing the

corresponding text and scribble shown in these images.

The cost of inpainting is linear on the size of the inpainted

region and algorithms are cache intensive. For the

example of Lincoln’s portrait, the inpainting time of our

algorithm was 0.61 seconds. Figures 5 and 6 (left) were

used in [2] and obtained from Bertalmio’s web site [3].

For the example shown in Figure 6, Bertalmio et al.

reported an inpainting time (for one color channel) of

approximately 7 minutes, or 2 minutes when a two-level

multiresolution approach is used [2]. These times were

measured on a 300 MHz Pentium II PC (128 MB of

memory running Linux). The image shown in Figure 8

(left) was produced with our algorithm in 1.21 seconds.

Figures 8, 9 and 10 illustrate different kinds of features

found in actual photographs. Figure 8 shows a 640x480-

pixel photograph exhibiting uncorrelated high frequencies

represented by the leaves of the trees. It was

superimposed with a textual mask (18 pt font size)

covering 18.77% of its original area. The restored image,

obtained in 6.37 seconds, essentially recovers all details

of the original picture. Notice, for instance, the children

playing in the back. Figure 9 shows a 640x480-pixel

image containing very few high contrast edges, but with

14.54% of its area scratched. The image shown on its

right was recovered in 5.87 seconds. Finally, Figure 10

shows an underwater scene (512x384 pixels) containing a

large number of high contrast edges and superimposed

with a mask covering 16.19% of its area. Figure 10

(right) was reconstructed in 4.06 seconds. Notice that

such a reconstruction is mostly fine, except for some

disconnected branches on the top right. Due to the

relatively small scale of some of the masked branches,

other inpainting techniques are also likely to fail to

connect these edges. Table 1 summarizes the inpainting

times obtained on two different systems.

The quality of an inpainting is a subjective issue. Error

measurements should take into account a perceptual

metric, such as the S-CIELAB metric [16]. Unfortunately,

Fig. 3. The crossing lines define the inpainting domain (back

left). Result of the isotropic diffusion introduces some blurring

along high contrast edges (top left). User-added diffusion barriers

(back right). Result produced with diffusion barriers (front right).

we were unable to use S-

CIELAB this time, and,

instead, we used the mean-

square error (MSE) of the

reconstructed region

computed for the R, G and

B channels as a measure of

the quality of the

reconstruction. MSE is

frequently used in image

processing to assess error.

For the case of Figures 5

and 6, the MSE was

computed against images

restored by Bertalmio et

al. and available at their

web site [3]. The errors associated with the reconstruction

of the images shown in Figures 8, 9 and 10 were

computed using the original photographs as reference.

The results are summarized in Table 2, sorted by

increasing error. Notice that for the case of images not

containing sharp color or intensity discontinuity (e.g,

three girls and baby Lu) the error is small. In particular,

for the case of the three girls, our result is virtually

indistinguishable from the Bertalmio’s.

As expected, images containing large amounts of high

frequencies (yard and underwater), present larger

reconstruction errors. Despite the error values, the

reconstructed images still look good (Figures 8 (right) and

10 (right)). For the yard, most high frequency regions

correspond to tree leaves, which due to its stochastic

nature help to mask the error. In the case of the

underwater image, the error is again distributed across all

high frequency regions. However, it only seems to be

noticeable in areas containing predictable high contrast

edges, such as the branches on the top right.

5. CONCLUSION AND FUTURE WORK

We have presented a simple and fast inpainting algorithm

based on an isotropic diffusion model extended with the

notion of user-provided diffusion barriers. The results

produced by this simple model are, in many cases,

comparable to previously known non-linear inpainting

models, but two to three orders of magnitude faster, thus

making inpainting practical for interactive applications.

Ideally, the mask Ω should include exactly the region to

be retouched. If smaller, ∂Ω will contain spurious

information, which will be carried into the restored area.

If bigger, some possibly important information might be

discarded. Being able to create and refine Ω interactively

can greatly improve the quality of the reconstruction.

The presented algorithm is intended for filling in locally

small areas. For larger inpainting domains, a scale-space

approach [15] can be used to preserve the algorithm’s

speed at the expense of reconstruction quality.

Although diffusion barriers could be used to reconnect

edges in Figures 5 and 11, an automatic procedure similar

to the one described by Nitzberg et al [12] is preferable.

Finally, we intend to evaluate the quality of the restored

images using the S-CIELAB metric for perceptual color

fidelity [16].

 Table 1 Inpainting time measured using two systems

Image Time PIII

450 MHz

Time Athlon

1 GHz

Lincoln 0.61 sec. 0.30 sec.

New Orleans 2.53 sec. 0.71 sec.

Three girls 1.21 sec. 0.49 sec.

Yard 6.37 sec. 1.90 sec.

Baby Lu 5.87 sec. 1.70 sec.

Underwater 4.06 sec. 1.11 sec.

Table 2 MSE for the RGB channels of the restored images

REFERENCES

[1] Applied Science Fiction. DIGITAL ICE Technology

(http://www.appliedsciencefiction.com).

[2] Bertalmio, M, Sapiro, G., Caselles, V., Ballester, C. Image

Inpainting. SIGGRAPH 2000, pages 417-424.

[3] Bertalmio, M. Marcelo Bertamio’s web site:

http://www.ece.umn.edu/users/marcelo/restoration.html

[4] Chan, T., Shen, J. Mathematical Models for Local Deterministic

Inpaintings. UCLA CAM TR 00-11, March 2000.

[5] Chan, T., Shen, J. Non-Texture Inpainting by Curvature-Driven

Diffusions (CCD). UCLA CAM TR 00-35, Sept. 2000.

[6] Discreet. Revival. (http://www.discreet.com)

[7] Eismann, K. and Simmons, S. Photoshop Restoration and

Retouching. Que. ISBN: 0789723182.

[8] Gomes, J., Velho, L. Image processing for computer graphics (New

York, NY, Springer-Verlag, 1997. ISBN: 0387948546)

[9] Kanizsa, G. Organization in vision: essays on gestalt perception.

Praeger Publishers, 1979.

[10] Kokaram, A. Morris, R., Fitzgerald, W., Rayner, P. Interpolation of

Missing Data in Image Sequences. IEEE Transactions on Image

Processing, 11(4), pages 1509-1519, 1995.

[11] Hirani, A., Totsuka, T. Combining Frequency and Spatial Domain

Information for Fast Interactive Image Noise Removal.

SIGGRAPH 1996, pages 269-276.

[12] Nitzberg, M., Mumford, D., Shiota, T. Filtering, Segmentation and

Depth. Lecture Notes in Computer Science Number 62, Springer-

Verlag, 1993. ISBN: 0387564845.

[13] Perona, P. Malik, J. Scale-space and edge detection using

anisotropic diffusion. IEEE-PAMI 12, pp. 629-639, 1990.

[14] PuffinDesigns. Commotion (http://www.puffindesigns.com/

products/commotion.html)

[15] Witkin, A. P. Scale-space filtering. Proceedings International Joint

Conference on Artificial Inteligence, pages 1019 - 1022, 1983.

[16] Zhang, X. M. and Wandell, B. A. A spatial extension to CIELAB

for digital color image reproduction. Journal of the Society for

Information Display, 5, No. 1, pp. 61-63, 1997.

Image MSE r MSE g MSE b # Masked

pixels

Three Girls 33.88 33.88 33.88 9,264

Baby Lu 61.32 66.9 72.40 42,061

New Orleans 347.53 269.57 290.59 20,795

Yard 729.76 725.73 732.90 57,688

Underwater 802.10 589.26 510.06 31,831

Fig. 4: Lincoln portrait

showing mask and two

diffusion barriers (at the

boundaries of Lincoln’s hair).

Fig. 6. Left: Old photograph (courtesy of Marcelo Bertalmio [4]). Right: Mask and diffusion barriers superimposed. Diffusion barriers:

one between the left white border and the gray background, one between the background and the left side of each of the two bigger girls’

faces, and one between the “left” arm of the girl in the center and the background.

Fig. 7. Three girls. Left: Restored image obtained with our algorithm. Right: Result produced with Bertalmio’s algorithm (courtesy

of Marcelo Bertalmio [4]). Different masks were used for the two images.

Fig. 5: New Orleans: (left) Picture with superimposed text (courtesy of Marcelo Bertalmio [4]). (right) Restored image obtained with

our algorithm.

Fig. 9. Baby Lu: Image containing few high contrast edges. Mask covers 14.54% of its area. Right: restored image.

Fig. 10. Underwater. Left: Image containing many high contrast edges, with text covering 16.19% of its area. Right: restored image.

Although the error is distributed across all high frequency regions, it is noticeable at the broken and blurred white edges on the top right.

Fig. 8. Yard: Image containing uncorrelated high frequency with text covering 18.77% of its area. Right: restored image obtained with

our algorithm. Notice the children playing in the back, and the details of the doors, windows and columns.

