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ABSTRACT 

We present a very simple inpainting algorithm for 

reconstruction of small missing and damaged portions of 

images that is two to three orders of magnitude faster than 

current methods while producing comparable results.  
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1. INTRODUCTION 

Reconstruction of missing or damaged portions of images 

is an ancient practice used extensively in artwork 

restoration. Also known as inpainting or retouching, this 

activity consists of filling in the missing areas or 

modifying the damaged ones in a non-detectable way by 

an observer not familiar with the original images [2]. 

Applications of image inpainting range from restoration 

of photographs, films and paintings, to removal of 

occlusions, such as text, subtitles, stamps and publicity 

from images. In addition, inpainting can also be used to 

produce special effects.  

Traditionally, skilled artists have performed image 

inpainting manually. But given its range of applications, it 

would be desirable to have image inpainting as a standard 

feature of popular image tools such as PhotoShop. 

Recently, Bertalmio et al [2] have introduced a technique 

for digital inpainting of still images that produces very 

impressive results. Their algorithm, however, usually 

requires several minutes on current personal computers 

for the inpainting of relatively small areas. Such a time is 

unacceptable for interactive sessions and motivated us to 

design a simpler and faster algorithm capable of 

producing similar results in just a few seconds.  

The results produced by our algorithm are comparable to 

those found in the literature [2, 4, 5], but two to three 

orders of magnitude faster. We illustrate the effectiveness 

of our approach with examples of restoration of 

photographs, vandalized images, and text removal. Figure 

1 (left) shows a famous cracked photograph of Abraham 

Lincoln taken in 1865. The image to its right shows the 

result obtained with our algorithm in 0.61 seconds on a 

450 MHz Pentium III PC. 
 

2. PREVIOUS AND RELATED WORK 
 

Bertalmio et al [2] pioneered a digital image-inpainting 

algorithm based on partial differential equations (PDEs). 

A user-provided mask specifies the portions of the input 

image to be retouched and the algorithm treats the input 

image as three separate channels (R, G and B). For each 

channel, it fills in the areas to be inpainted by propagating 

information from the outside of the masked region along 

level lines (isophotes). Isophote directions are obtained by 

computing at each pixel along the inpainting contour a 

Fig. 1. Left: An 1865 Photograph of Abraham Lincoln taken by Alexander Gardner (courtesy of Wing Yung and Ajeet

Shankar from Harvard University). Right: Image restored with our algorithm. The inpainting time took about half of a second. 
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discretized gradient vector (it gives the direction of largest 

spatial change) and by rotating the resulting vector by 90 

degrees. This intends to propagate information while 

preserving edges. A 2-D Laplacian [8] is used to locally 

estimate the variation in color smoothness and such 

variation is propagated along the isophote direction [2]. 

After every few step of the inpainting process, the 

algorithm runs a few diffusion iterations to smooth the 

inpainted region. Anisotropic diffusion [13] is used in 

order to preserve boundaries across the inpainted region.  

Inspired by the work of Bertalmio et al., Chan and Shen 

proposed two image-inpainting algorithms [4, 5]. The 

Total Variational (TV) inpainting model [4] uses an 

Euler-Lagrange equation and inside the inpainting domain 

the model simply employs anisotropic diffusion [13] 

based on the contrast of the isophotes. This model was 

designed for inpainting small regions and while it does a 

good job in removing noise, it does not connect broken 

edges (single lines embedded in a uniform background) 

[4]. The Curvature-Driven Diffusion (CDD) model [5] 

extended the TV algorithm to also take into account 

geometric information of isophotes when defining the 

“strength” of the diffusion process, thus allowing the 

inpainting to proceed over larger areas. CDD can connect 

some broken edges, but the resulting interpolated 

segments usually look blurry.    

While nonlinear PDE-based image restoration methods 

have the potential to systematically preserve edges, the 

inpainting problem is very ill posed in general and fast 

numerical implementations are difficult to achieve [5]. It 

is equally hard to find appropriate mathematical models 

for inpainting [5]. Despite their high quality, a careful 

examination of the results presented in [2] (not 

reproduced here) reveals that sharp edges are not always 

preserved. For instance, the reconstructed region where 

the mask crosses the VW Beetle near the windshield 

appears blurred with broken edges (Figure 6 (top) in [2]).  

Hirani and Totsuke [11] combine global frequency and 

local spatial information for noise removal and use it for 

post-production of special effects shots. Such a technique 

can produce very nice results, but requires the existence 

of sample sub-images whose contents are approximately 

translated versions of the regions to be repaired.  

Digital techniques have also been used for automatic 

restoration of scratched films [10], and commercial 

products are available for scratch removal of digitized 

films [1], photo retouching [7] and wire-and-rig removal 

[6, 14].   
 

3. THE INPAINTING ALGORITHM 
 

Images may contain textures with arbitrary spatial 

discontinuities, but the sampling theorem [8] constraints 

the spatial frequency content that can be automatically 

restored. Thus, for the case of missing or damaged areas, 

one can only hope to produce a plausible rather than an 

exact reconstruction. Therefore, in order for an inpainting 

model to be reasonably successful for a large class of 

images the regions to be inpainted must be locally small. 

As the regions become smaller, simpler models can be 

used to locally approximate the results produced by more 

sophisticated ones. Another important observation used in 

the design of our algorithm is that the human visual 

system can tolerate some amount of blurring in areas not 

associated to high contrast edges [9]. 

Thus, let Ω be a small area to be inpainted and let ∂Ω be 

its boundary. Since Ω is small, the inpainting procedure 

can be approximated by an isotropic diffusion process that 

propagates information from ∂Ω into Ω. A slightly 

improved algorithm reconnects edges reaching ∂Ω (for 

instance, using an approach similar to the one described in 

[12]), removes the new edge pixels from Ω (thus splitting 

Ω into a number of smaller sub-regions), and then 

performs the diffusion process as before.  

The simplest version of the algorithm consists of 

initializing Ω by clearing its color information and 

repeatedly convolving the region to be inpainted with a 

diffusion kernel. ∂Ω is a one-pixel thick boundary and the 

number of iterations is independently controlled for each 

inpainting domain by checking if none of the pixels 

belonging to the domain had their values changed by 

more than a certain threshold during the previous 

iteration. Alternatively, the user can specify the number of 

iterations. As the diffusion process is iterated, the 

inpainting progresses from ∂Ω into Ω.  

Convolving an image with a Gaussian kernel (i.e., 

computing weighted averages of pixels’ neighborhoods) 

is equivalent to isotropic diffusion (linear heat equation). 

Our algorithm uses a weighted average kernel that only 

considers contributions from the neighbor pixels (i.e., it 

has a zero weight at the center of the kernel). Figure 2 

shows the pseudocode of the algorithm and two diffusion 

kernels. All reconstructed images shown in this paper 

were obtained with this algorithm or with a minor 

variation of it explained in section 3.1. 

3.1. Preserving Edges 

The simplest version of the algorithm can introduce 

artifacts (noticeable blurring) when Ω crosses the 

boundaries of high contrast edges (Figure 3 (front left)). 

In practice, intersections between Ω and high contrast 

edges are the only places where anisotropic diffusion is 
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initialize Ω;  
for (iter =0; iter < num_iteration; iter++)
     convolve masked regions with kernel; 

Fig 2. (top) Pseudocode for the fast inpainting algorithm. (bottom) 

Two diffusion kernels used with the algorithm. a = 0.073235, 

b = 0.176765, c = 0.125. 



required and such regions usually account for a small 

percentage of the total area.  

Creating the mask used to specify the regions to be 

inpainted is the most time-consuming step of the 

inpainting process, requiring user intervention. Since our 

algorithm can inpaint an image in just a few seconds, it 

can be used for interactive construction of tight masks. 

We exploit this interactivity to implement edge 

reconnection by defining diffusion barriers, which are 

boundaries for the diffusion process inside Ω. This 

accomplishes a result similar to boundary reconstruction 

and anisotropic diffusion, but without the associated 

overheads. In practice, a diffusion barrier is a two-pixel 

wide line segment. As the diffusion process reaches a 

barrier, the reached pixel has its color set, but the process 

stops. Figure 3 illustrates the idea, with the clear crossing 

lines in Figure 3 (back left) representing the inpainting 

domain. The simple diffusion-based inpainting algorithm 

produces blurred spots at the intersections between Ω and 

high contrast edges (see the small circles in Figure 3 

(front left)). By appropriately adding diffusion barriers 

(line segments across the mask in Figure 3 (back right)), 

the user stops the diffusion process from mixing 

information from both sides of the mask. The resulting 

straight lines are shown in Figure 3 (front right).  

4. RESULTS 

We have implemented the algorithm described in Figure 2 

in C++ and tried the two different diffusion kernels. In 

both cases the results were similar. All images shown in 

the paper were generated using a 450 MHz Pentium III 

PC with 128 MB of memory running Windows98 and 

using the leftmost kernel shown in Figure 2. Results 

shown in Figures 5, 8, 9 and 10 were produced with the 

simplest version of the algorithm without diffusion 

barriers. For Figure 1, a mask and two diffusion barriers 

were used (Figure 4). For the three girls example, four 

diffusion barriers associated with regions of the mask 

crossing high contrast edges were used (Figure 6 (right)). 

In all cases, 100 diffusion iterations were used. 

All inpainting and wire-and-rig removal systems require a 

step of manual masking. Given a painting system with a 

set of features, the time required to create a mask only 

depends on the available features and is independent of 

the inpainting algorithm used. For interactive 

applications, it is desirable to have the masking 

capabilities and the inpainting algorithm in the same 

system to avoid switching between different 

environments. In our current prototype, we have 

implemented a simple painting system and the ability to 

import and export JPEG files.  

The masks used for restoring Lincoln’s portrait and the 

picture of the three girls (Figures 4 and 6 (right), 

respectively), were created with our painting system. The 

mask used in the New Orleans example (Figure 5) was 

instantly obtained by selecting “red” using the select color 

range feature of Photoshop. The resulting image was 

saved and imported into our system. The masks used with 

Figures 8, 9 and 10 were JPEG images containing the 

corresponding text and scribble shown in these images.   

The cost of inpainting is linear on the size of the inpainted 

region and algorithms are cache intensive. For the 

example of Lincoln’s portrait, the inpainting time of our 

algorithm was 0.61 seconds. Figures 5 and 6 (left) were 

used in [2] and obtained from Bertalmio’s web site [3]. 

For the example shown in Figure 6, Bertalmio et al. 

reported an inpainting time (for one color channel) of 

approximately 7 minutes, or 2 minutes when a two-level 

multiresolution approach is used [2]. These times were 

measured on a 300 MHz Pentium II PC (128 MB of 

memory running Linux). The image shown in Figure 8 

(left) was produced with our algorithm in 1.21 seconds.    

Figures 8, 9 and 10 illustrate different kinds of features 

found in actual photographs. Figure 8 shows a 640x480-

pixel photograph exhibiting uncorrelated high frequencies 

represented by the leaves of the trees. It was 

superimposed with a textual mask (18 pt font size) 

covering 18.77% of its original area. The restored image, 

obtained in 6.37 seconds, essentially recovers all details 

of the original picture. Notice, for instance, the children 

playing in the back. Figure 9 shows a 640x480-pixel 

image containing very few high contrast edges, but with 

14.54% of its area scratched. The image shown on its 

right was recovered in 5.87 seconds. Finally, Figure 10 

shows an underwater scene (512x384 pixels) containing a 

large number of high contrast edges and superimposed 

with a mask covering 16.19% of its area.  Figure 10 

(right) was reconstructed in 4.06 seconds. Notice that 

such a reconstruction is mostly fine, except for some 

disconnected branches on the top right. Due to the 

relatively small scale of some of the masked branches, 

other inpainting techniques are also likely to fail to 

connect these edges. Table 1 summarizes the inpainting 

times obtained on two different systems. 

The quality of an inpainting is a subjective issue. Error 

measurements should take into account a perceptual 

metric, such as the S-CIELAB metric [16]. Unfortunately, 

Fig. 3.  The crossing lines define the inpainting domain (back

left). Result of the isotropic diffusion introduces some blurring

along high contrast edges (top left). User-added diffusion barriers

(back right). Result produced with diffusion barriers (front right). 



we were unable to use S-

CIELAB this time, and, 

instead, we used the mean-

square error (MSE) of the 

reconstructed region 

computed for the R, G and 

B channels as a measure of 

the quality of the 

reconstruction. MSE is 

frequently used in image 

processing to assess error. 

For the case of Figures 5 

and 6, the MSE was 

computed against images 

restored by Bertalmio et 

al. and available at their 

web site [3]. The errors associated with the reconstruction 

of the images shown in Figures 8, 9 and 10 were 

computed using the original photographs as reference. 

The results are summarized in Table 2, sorted by 

increasing error. Notice that for the case of images not 

containing sharp color or intensity discontinuity (e.g, 

three girls and baby Lu) the error is small. In particular, 

for the case of the three girls, our result is virtually 

indistinguishable from the Bertalmio’s.  

As expected, images containing large amounts of high 

frequencies (yard and underwater), present larger 

reconstruction errors. Despite the error values, the 

reconstructed images still look good (Figures 8 (right) and 

10 (right)).  For the yard, most high frequency regions 

correspond to tree leaves, which due to its stochastic 

nature help to mask the error. In the case of the 

underwater image, the error is again distributed across all 

high frequency regions. However, it only seems to be 

noticeable in areas containing predictable high contrast 

edges, such as the branches on the top right. 

5. CONCLUSION AND FUTURE WORK 

We have presented a simple and fast inpainting algorithm 

based on an isotropic diffusion model extended with the 

notion of user-provided diffusion barriers. The results 

produced by this simple model are, in many cases, 

comparable to previously known non-linear inpainting 

models, but two to three orders of magnitude faster, thus 

making inpainting practical for interactive applications.  

Ideally, the mask Ω should include exactly the region to 

be retouched. If smaller, ∂Ω will contain spurious 

information, which will be carried into the restored area. 

If bigger, some possibly important information might be 

discarded. Being able to create and refine Ω interactively 

can greatly improve the quality of the reconstruction.  

The presented algorithm is intended for filling in locally 

small areas. For larger inpainting domains, a scale-space 

approach [15] can be used to preserve the algorithm’s 

speed at the expense of reconstruction quality.  

Although diffusion barriers could be used to reconnect 

edges in Figures 5 and 11, an automatic procedure similar 

to the one described by Nitzberg et al [12] is preferable. 

Finally, we intend to evaluate the quality of the restored 

images using the S-CIELAB metric for perceptual color 

fidelity [16]. 

  Table 1 Inpainting time measured using two systems 

Image Time PIII 

450 MHz 

Time Athlon      

1 GHz 

Lincoln 0.61 sec. 0.30 sec. 

New Orleans 2.53 sec. 0.71 sec. 

Three girls 1.21 sec. 0.49 sec. 

Yard 6.37 sec. 1.90 sec. 

Baby Lu 5.87 sec. 1.70 sec. 

Underwater 4.06 sec. 1.11 sec. 

Table 2 MSE for the RGB channels of the restored images 

REFERENCES 

[1] Applied Science Fiction. DIGITAL ICE Technology 

(http://www.appliedsciencefiction.com).  

[2] Bertalmio, M, Sapiro, G., Caselles, V., Ballester, C. Image 

Inpainting. SIGGRAPH 2000, pages 417-424. 

[3]    Bertalmio, M. Marcelo Bertamio’s web site: 

http://www.ece.umn.edu/users/marcelo/restoration.html 

[4]  Chan, T., Shen, J. Mathematical Models for Local Deterministic 

Inpaintings. UCLA CAM TR 00-11, March 2000. 

[5]  Chan, T., Shen, J. Non-Texture Inpainting by Curvature-Driven 

Diffusions (CCD). UCLA CAM TR 00-35, Sept. 2000. 

[6]   Discreet. Revival. (http://www.discreet.com) 

[7] Eismann, K. and Simmons, S. Photoshop Restoration and 

Retouching. Que. ISBN: 0789723182. 

[8]  Gomes, J., Velho, L. Image processing for computer graphics (New 

York, NY, Springer-Verlag, 1997. ISBN: 0387948546) 

[9] Kanizsa, G. Organization in vision: essays on gestalt perception. 

Praeger Publishers, 1979.   

[10] Kokaram, A. Morris, R., Fitzgerald, W., Rayner, P. Interpolation of 

Missing Data in Image Sequences. IEEE Transactions on Image 

Processing, 11(4), pages 1509-1519, 1995. 

[11] Hirani, A., Totsuka, T. Combining Frequency and Spatial Domain 

Information for Fast Interactive Image Noise Removal. 

SIGGRAPH 1996, pages 269-276. 

[12] Nitzberg, M., Mumford, D., Shiota, T. Filtering, Segmentation and 

Depth. Lecture Notes in Computer Science Number 62, Springer-

Verlag, 1993. ISBN: 0387564845. 

[13] Perona, P. Malik, J. Scale-space and edge detection using 

anisotropic diffusion. IEEE-PAMI 12, pp. 629-639, 1990. 

[14]   PuffinDesigns. Commotion (http://www.puffindesigns.com/ 

products/commotion.html) 

[15] Witkin, A. P. Scale-space filtering. Proceedings International Joint 

Conference on Artificial Inteligence, pages 1019 - 1022, 1983. 

[16]  Zhang, X. M. and Wandell, B. A. A spatial extension to CIELAB 

for digital color image reproduction. Journal of the Society for 

Information Display, 5, No. 1, pp. 61-63, 1997. 

 

Image MSE r MSE g MSE b # Masked 

pixels 

Three Girls 33.88 33.88 33.88 9,264 

Baby Lu 61.32 66.9 72.40 42,061 

New Orleans 347.53 269.57 290.59 20,795 

Yard 729.76 725.73 732.90 57,688 

Underwater 802.10 589.26 510.06 31,831 

Fig. 4: Lincoln portrait

showing mask and two

diffusion barriers (at the

boundaries of Lincoln’s hair).



Fig. 6. Left: Old photograph (courtesy of Marcelo Bertalmio [4]). Right: Mask and diffusion barriers superimposed. Diffusion barriers:

one between the left white border and the gray background, one between the background and the left side of each of the two bigger girls’

faces, and one between the “left” arm of the girl in the center and the background. 

Fig. 7. Three girls. Left: Restored image obtained with our algorithm. Right: Result produced with Bertalmio’s algorithm (courtesy

of Marcelo Bertalmio [4]).  Different masks were used for the two images. 

Fig. 5: New Orleans: (left) Picture with superimposed text (courtesy of Marcelo Bertalmio [4]). (right) Restored image obtained with

our algorithm. 



 

 

 

 

Fig. 9.  Baby Lu: Image containing few high contrast edges. Mask covers 14.54% of its area. Right: restored image. 

Fig. 10.  Underwater. Left: Image containing many high contrast edges, with text covering 16.19% of its area. Right: restored image.

Although the error is distributed across all high frequency regions, it is noticeable at the broken and blurred white edges on the top right. 

Fig. 8.  Yard: Image containing uncorrelated high frequency with text covering 18.77% of its area. Right: restored image obtained with

our algorithm. Notice the children playing in the back, and the details of the doors, windows and columns.  


