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Fast Direct Solution of Method of
Moments Linear System

Alex Heldring, Juan. M. Rius, Member, IEEE, José Maria Tamayo, Josep Parrón, and Eduard Úbeda

Abstract—A novel algorithm, the compressed block decom-
position (CBD), is presented for highly accelerated direct (non-
iterative) method of moments (MoM) solution of electromagnetic
scattering and radiation problems. The algorithm is based on a
block-wise subdivision of the MoM impedance matrix. Impedance
matrix subblocks corresponding to distant subregions of the
problem geometry are not calculated directly, but approximated
in a compressed form. Subsequently, the matrix is decomposed
preserving the compression. Examples are presented of typical
problems in the range of 5000 to 70 000 unknowns. The total
execution time for the largest problem is about 1 h and 20 min for
a single excitation vector. The main strength of the method is for
problems with multiple excitation vectors (monostatic RCS com-
putations) due to the negligible extra cost for each new excitation.
For radiation and scattering problems in free space, the numerical
complexity of the algorithm is shown to be 2 and the storage
requirements scale with 3 2.

Index Terms—Fast solvers, impedance matrix compression,
method of moments (MoM), numerical simulation.

I. INTRODUCTION

THE METHOD OF moments (MoM) [1] is a widely
used technique for numerical simulation of radiation and

scattering problems. Its main drawback, the costly construction,
storage, and solution of a dense linear system, has led to the de-
velopment of several fast algorithms such as AIM [2], MLFMA
[3], and Multilevel MDA [4]–[6]. Most of these algorithms
are based on some approximative compressed representation
of the linear system matrix, or impedance matrix, that needs
much less storage and highly accelerates the matrix-vector
multiplications.

These efficient matrix-vector multiplication algorithms are
then used inside an iterative solution method such as the bi-con-
jugate gradient (BiCG) or the generalized minimum residual
(GMRES), often with an appropriate preconditioner [7]. These
new algorithms have enormously extended the range of prob-
lems that MoM can manage. The maximum affordable number
of unknowns used to be limited to a few thousands. Now prob-
lems with hundreds of thousands or even millions of unknowns
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are within reach, depending on the available computational re-
sources.

Based on the previous, one might be tempted to conclude that
direct solution of the MoM matrix equation, through Gaussian
elimination or LU decomposition, has become obsolete. This is
not entirely the case, for the following number of reasons.

• First of all, the fast algorithms are very efficient for electri-
cally large structures, while the direct solution is faster for
small and medium size problems, depending on the com-
putational resources and on the specifics of the problem.
The turning point may be of the order of a few thousand
unknowns.

• Furthermore, iterative solution methods for matrix equa-
tions yield the solution to the linear system for only one
independent vector (excitation vector) at a time. Conse-
quently, the computational effort is proportional to the
number of independent vectors. By contrast, the bulk of
the effort in LU decomposition, which is the generation
of the L and U factors of the impedance matrix, needs
to be done only once for as many independent vectors as
needed.

• Finally, the convergence rate of iterative methods can vary
in an unpredictable way. It is related to the matrix condi-
tion number, which is notoriously bad for the electric field
integral equation (EFIE) in large problems [8]. The only
remedy is the use of a good preconditioner with a relatively
large number of non-zero elements, but the construction of
such a preconditioner becomes the bottleneck of the com-
putation [9]–[11].

In this paper, we propose a direct solution method for the
MoM linear system, the compressed block decomposition
(CBD). It is directly applicable to almost any MoM formulation
and substantially reduces the storage and computational cost
with respect to straightforward LU decomposition. The method
is based on a blockwise compression of the impedance matrix
(see Section II), by the same technique as used in the matrix de-
composition algorithm (MDA) [4]–[6]. The compressed matrix
is then decomposed using an adapted version of the block LU
algorithm previously published in [9] and [10], which allows
to retain the original compression rate (see Section III-A).
As in the MDA algorithm, the compression rate depends on
the problem characteristics. In Section III-C, the algorithm is
shown to scale asymptotically with the number of unknowns
as . The storage requirement scales with . Several
examples of typical 3-D scattering and radiation problems,
concerning perfectly conducting objects in free space and
modeled with the electric field integral equation (EFIE), are
given in Section IV.
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II. IMPEDANCE MATRIX COMPRESSION

A. MDA Compression

The MDA compression algorithm is based on the observation
that subblocks of the impedance matrix representing interac-
tions between mutually distant groups of elementary scatterers
(basis functions), are typically low rank. In MDA, this feature
is exploited as follows: The problem geometry is divided into
subdomains containing groups of subscatterers. Each pair of
source-observer subdomains corresponds to an impedance ma-
trix block. Blocks representing self interactions, or interactions
between adjacent groups cannot be compressed through MDA,
but all other blocks can.

The details of the MDA can be found in [4] and [5]. Here,
we show the form of the resulting decomposition. Consider a
block that represents the action of a group labeled , of ele-
mentary scatterers upon another and distant group labeled of

elementary scatterers. The corresponding submatrix
is then replaced with1

(1)

where the matrix dimensions are, respectively, , ,
, and . The sets and denote sets of equivalent

elementary scatterers defined in groups and , respectively,
using the techniques described in [4] and [5]. Since and

, the storage size and matrix-vector computation time are
much smaller for the decomposed matrix than for the original
one, . Of course, the compression implies a
loss of information, which can be controlled through the choice
of and , compromising between compression rate and desired
accuracy.

B. SVD Post Compression

An important further compression, with little additional loss
of accuracy, can be obtained by applying the following sequence
of transformations to the resulting factors:

(2)

(3)

(4)

Equation (2) represents a QR decomposition, (3) an adjoined
QR decomposition (the prime denotes the adjoined matrix), and
(4) an SVD decomposition with a given compression threshold

on the singular values. Denoted as SVD , this amounts to
eliminating all rows and/or columns in the respective matrices
that correspond to a given singular value that is smaller than

, where is the largest singular value. This procedure re-
duces the inner dimensions of the inner matrix from to

.
The previous transformations inserted in (1) yield

(5)

1Notation: lower case latin letters in italics like n denote an integer number,
the same symbol in square brackets denotes a set of indices. For example [n]
denotes the set of indices that identify n elementary scatterers.

with

(6)

Since the outer matrices and are orthonormal and
is a diagonal matrix, (5) corresponds to a singular value

decomposition (SVD) of [12], leading to the optimum
compression with threshold .

While SVD post-compression is optional in iterative MDA,
it is necessary for the CBD algorithm, as will be explained in
Section III. The QR and SVD algorithms are computationally
expensive, but due to the initial MDA compression they are only
applied to blocks of highly reduced size with respect to the orig-
inal impedance matrix blocks ( and ).

Blocks representing interactions between adjacent source and
field boxes cannot be precompressed with MDA, since MDA
requires a minimum distance between the source and the ob-
server subdomains. However, using an octal tree space subdivi-
sion such blocks can be subdivided into their children blocks,
and MDA can be used to compress all the children blocks that
represent nonadjacent interactions. Those smaller blocks that do
represent touching boxes can in turn be subdivided and treated in
the same way, recursively down to a minimum box-size, which
is typically of the order of half a wavelength. Of course, all
these compressed submatrices must be recombined to form the
compressed representation of the original block. Although this
involves concatenation of compressed matrices, as depicted in
Fig. 1(b) and (c), and reorthonormalization and recompression
of the resulting matrices, it is still much more efficient than di-
rect SVD compression.

At the lowest level, blocks representing touching boxes
cannot be compressed with MDA so they must be directly
compressed with SVD . The latter SVD compression
would be computationally expensive if applied directly to the
submatrices. Instead, an adaptive division strategy is used: a
strip of columns with a width of, for instance, 5% of
the total number of columns is picked off the left of the block

. This strip is QR factorized and the R-factor, which
is of dimensions , is compressed with SVD . If
the compression is small (compression rate larger than 25%),
the width of the next strip to be picked off is doubled. When
the whole block is thus precompressed, all the terms are con-
catenated and a final SVD is applied to the result. This
strategy considerably accelerates the compression of the blocks
corresponding to adjacent boxes.

III. COMPRESSED BLOCK DECOMPOSITION ALGORITHM

A. Block Decomposition

Once the blockwise compressed impedance matrix is gener-
ated, it can be decomposed with an adapted version of the block
LU algorithm we previously developed to factorize a sparse
preconditioner for iterative methods [9], [10]. The block sub-
division of the impedance matrix is depicted in Fig. 2. On the
left-hand side, the matrix is represented in block format, while
the right-hand side represents the decomposition. Note that all



3222 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 55, NO. 11, NOVEMBER 2007

Fig. 1. (a) Summation, (b) horizontal concatenation, and (c) vertical concate-
nation of compressed matrices. Matrices in grey need to be reorthonormalized.

Fig. 2. Transformation from blocked impedance matrix to block inverse.

the and blocks of the impedance matrix are stored in com-
pressed form as the product of three matrices (5).

It is important to remark here that in Fig. 1 each matrix
block is associated to a pair of source and observation boxes

in the space subdomain decomposition. , , and are sub-
matrices of with noncontiguous rows and column indices
corresponding to the basis and testing functions within the
observation and the source box, respectively.

The CBD algorithm is as follows.

Algorithm CBD ( blocks):

1)

2) For to do

3) For to do

4)

5)

6) reorthonormalize and

7) For to do

8)

9)

10) reorthonormalize and

11) End

12) End

13) For to i do; ; End

14)

15) End

End algorithm

Steps 6) and 10) of the algorithm are explained in
Section III-B. Finally, in order to apply the decomposed
matrix to an independent vector to obtain the linear system
solution , the independent vector is subdivided according to
the blocks of the impedance matrix, yielding a set of vectors

. Then the algorithm Apply_CBD given in the
following is used to compute the solution block by block.

Algorithm Apply_CBD(x):

1) For to do

2)

For to do

3)

4) End

5) End

End algorithm

The work for the algorithm Apply_CBD is, for a single inde-
pendent vector, almost negligible compared to the decomposi-
tion step (see the numerical examples in Section IV).
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It is also possible to use the conventional block-LU algorithm
given by Golub and van Loan in [13] instead of the previously
shown CBD algorithm. Indeed, the Golub and van Loan algo-
rithm involves only half the number of matrix summations and,
as we shall see in Section III-B, the summations of compressed
matrix blocks are bottleneck of the algorithm. The Golub and
van Loan algorithm is not twice as fast, however, because the
multiple summations in lines 4 and 5 of the CBD algorithm can
be done more efficiently than the single summations in lines 8
and 9 while the Golub and van Loan algorithm only involves
single summations. To do the multiple summations of lines 4
and 5 efficiently, it suffices to sort the terms of the summation
with respect to the size of the inner matrix, and to start summing
the two smallest terms, then adding the third smallest term, and
so on.

Furthermore, there are the following two very common sit-
uations in which the CBD algorithm has additional advantages
that make it preferable to conventional block-LU.

1) When the matrix is symmetrical, anti-symmetrical, Hermi-
tian or, in general, when it is possible to know the elements
in a given block from the elements in the transposed block,
this property is conserved in the decomposition. For in-
stance, the EFIE-MoM impedance matrix is symmetrical
(excluding anisotropic media), in which case ,
for all and . This means that the matrices do not need
to be computed. Also, much less storage space is needed.
The numerical examples in Section IV all use this property.

2) As mentioned earlier, the CBD algorithm is based on an al-
gorithm originally conceived for out-of-core factorization
of large preconditioning matrices [9]. At every decomposi-
tion step (index in the algorithm), the only blocks that are
modified are the current blocks (of index ). In contrast, the
conventional block-LU requires the modification, at every
level , of all the not-yet-factorized blocks. If the decom-
position needs to be done using hard disk storage, for lack
of available memory, and the total number of elements of
the compressed matrix equals , the CBD algorithm needs

reading instructions but only writing instruc-
tions, while conventional block-LU needs for both
reading and writing.

B. Compressed Decomposition

The CBD algorithm from Section III-A represents the various
blocks as single matrices. In reality, all nondiagonal blocks are
available in compressed form, that is, a sequence of three ma-
trices with the inner matrix being a small diagonal matrix (5)
and the outer matrices orthonormal. In the proposed block de-
composition algorithm, two types of operations are used: mul-
tiplication and summation.

The multiplication of two sequences of matrices poses no
problem, since the product of the inner matrices leads to a new
sequence of three matrices and the two outer matrices are still
orthonormal. The inner matrix is no longer diagonal, not even
square, in general, but this is not essential to the algorithm.

The sum is obtained as shown in Fig. 1(a). This destroys the
orthonormality of the outer matrices. At the same time, with
every summation, the compression rate is progressively lost.

In order to restore both of them, we reorthonormalize the se-
quences representing the decomposed blocks in steps 6) and
10). This is done according to the following algorithm.

Algorithm Reorthonormalize(X):

1) set U,S and V to the three factors of the sequence
2) ;
3)
4) ;
5) replace the three factors of with U,S and V

End algorithm

The QR decompositions in the reorthonormalization algo-
rithm can be optimized making use of the fact that the input
consists of a concatenation of two matrices, which are them-
selves already orthonormal.

Suppose that the matrix U in the reorthonormalization algo-
rithm consists of two column-wise orthonormal matrices and

. We first determine which is the larger of the two. Supposing
that has more columns than , the algorithm goes as fol-
lows ([X Y] denotes horizontal concatenation and [X;Y] denotes
vertical concatenation).

Algorithm :

1)
2)
3) ;
4)
5)

End algorithm

If has more columns than , the algorithm is trivially
adapted. For vertical concatenation, the same algorithm is ap-
plied to the adjoined matrices.

Regarding the actual recompression inside the reorthonor-
malization algorithm, in line 3, we used SVD with the same
threshold as in the initial compression. In our experience, this
leads to a decomposed matrix of approximately the same size as
the original one in (5) and an error in the direct CBD solution
of the same order of magnitude as the error in the MDA-SVD
compression of matrix subblocks.

The previous is illustrated with several representative numer-
ical examples in Section IV. It is necessary for the compressed
matrices to be true SVD decompositions, that is, an inner diag-
onal matrix of singular values and two outer orthonormal ma-
trices. Consequently, unlike with iterative MDA, we cannot suf-
fice with just an MDA compression, as was mentioned in the
introduction.

C. Computational Complexity

The computational complexity of the method is the relation
between the number of unknowns of a problem and the
number of elementary operations needed by the algorithm,
for asymptotically large . We analyze it for radiation and
scattering problems in free space. Consider a problem with
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unknowns, subdivided into subgroups of approximately
unknowns, such that . The expensive operations in
the algorithm are as follows:

1) inversion of the diagonal blocks [step 14) in the CBD
algorithm]. The number of elementary operations for this
step is proportional to

(7)

2) multiplications and summations (which include two QR
and one SVD operations, see Section III-B).

If denotes the rank of the compressed matrices, equal to the
number of singular values, then, the summations scale with
and the SVD scales with , while the multiplications and the
QR scale with . Since for far-field subdomains ,
the multiplications and QR are asymptotically the most expen-
sive operations in the algorithm. From the CBD algorithm, we
see that the total number of all of these operations needed is de-
termined by the three loops over the groups, and, therefore,
proportional to . However, the cost per operation varies from
group to group, depending on the and of the two blocks
involved in the operation. We can account for this, by writing
the total operation cost (for the asymptotically dominant opera-
tions QR and multiplication) as

(8)

where the leading reflects the outer loop in the algorithm and
the squared summation the two inner loops. The total number of
interactions is proportional to .

The maximum rank for an interaction is obviously . For in-
teractions between blocks representing touching boxes (labeled
zero) we can say nothing further, so we have

(9)

The number of touching observation boxes for one source box
is a constant, so the operation count for all the touching boxes
equals

(10)

We subdivide the remaining interactions into levels with
index according to the mutual distance of the concerned
boxes. For every source box, the first level interac-
tions are with the nearest nontouching observation boxes, the
next layer is level two, etc. The rank is proportional to
[see Appendix A, (17)], where is the distance between
the source- and observation box, until it stabilizes at some
minimum value , when, to the required precision, the boxes
are point-sources to each other. equals two because there
are two independent polarizations in the far field. If all the
interactions were rank , the complexity of (8) would equal

and the total complexity would be

(11)

which, obviously, can be minimized by choosing and such
that they scale with as

(12)

yielding . In reality, the nearby interactions have a
rank . Clearly, for an asymptotically large problem it
is always possible to choose many small boxes, such that the
number of far interactions of rank is much larger than the
number of near interactions , but this is not enough to prove
that the algorithm scales with . For that, we must show that, if
we scale up a problem by a factor , the proportion of minimum-
rank interactions does not change. To this aim, we investigate
the distribution of the number of nonempty observation boxes

in layer . This depends on the problem geometry at the scale
of the boxes. At one extreme, we have a very elongated (1-D)
problem structure (labeled ), for example, a large dipole,
such that the boxes are all on a straight line. In this case, ,
and the total number of unknowns scales with . At the other
extreme, we may have a problem that entirely fills all the boxes
in a 3-D region in space, for example a large 3-D array of small
elements . This leads to and . For a
2-D structure, like a metal plate, we find and

. In general, for curved 1-D and 2-D cases (e.g., loops,
spheres), the given relation between and will generally only
hold locally. However, this is sufficient, since the initial box-size
can be chosen freely (arbitrarily small), and we are addressing
asymptotically large problems. Consequently, we can make sure
the relation holds for the first several layers , up to the first layer
for which , which is sufficient for our argument.

Therefore, barring very specific problems that exhibit high
curvatures at any scale (fractal-like geometries), we can charac-
terize a structure by its dimension and we have

(13)

The distance (and corresponding ) at which the rank has
reduced to scales with [see Appendix A, (20)]. Further-
more, if the rib-length of the boxes equals , then, on the one
hand, we have , and, on the other hand, we have

or . Therefore, and the number of
near interactions for one box equals

(14)

But, with (12), the total number of interactions
. Therefore, the proportion of -interactions

is independent of , and the algorithm, with the proper initial
choice for , has a complexity .

Observing that the storage of one block scales with , we
find that the total asymptotic storage requirement for nondiag-
onal matrix blocks is

(15)
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TABLE I
PERFORMANCE PARAMETERS FOR 16-BLOCK CBI APPLIED TO A 4� � 4�

SQUARE PLATE WITH 4720 UNKNOWNS. SVD THRESHOLD � , MATRIX

BUILDING AND INVERSION SIZE S AND S , BUILDING AND

INVERSION TIME t AND t . RELATIVE ERROR "

and, for the diagonal blocks, . Thus, with (12),
the storage scales with .

It should be emphasized again that the previous analysis poses
no lower limit on the box-size. For instance, if we choose boxes
such that (one elementary scatterer per box), and, when
upscaling the problem we obey (12), the predicted complexity
will be observed. This, however, is evidently not optimum in
practice. In fact, because of the constant factors leading the var-
ious complexity terms, it is generally advantageous to choose
few and large boxes (see also Section IV-A).

IV. NUMERICAL EXAMPLES

All the numerical experiments reported in this section have
been performed on a PC with 8 GB of RAM and an AMD
Opteron processor at 2.2 GHz. The computations were done in
MATLAB 7.0.4 (the problems in Section IV-A) and in MATLAB

7.3.0, always using only one CPU.
Three different perfectly conducting structures in free space

were analyzed, all discretized using RWG basis functions
[14]. First, a series of square plates of varying sizes to inves-
tigate the scaling of various performance parameters with the
problem size. Second, a sphere, to evaluate the performance
of the method on a full 3-D problem and, third, a pyramidal
X-band horn, to give an example of a practical application of
the method. The analyzed objects exhibit four-fold symmetry,
which allowed to compute the direct LU solution with no
compression, but with exactly the same discretization as the
CBD computation, as a reference for error computation. The
symmetry was ignored in the CBD computations in order to
test the algorithm with a large number of unknowns.

The reported relative errors due to the CBD are calculated as

where is the computed solution coefficient vector and is
the coefficient vector of the direct noncompressed solution using
four-fold symmetry. Consequently, is a measure of the addi-
tional error (on top of the inherent discretization errors in the
MoM) due to the MDA-CBD compression.

A. Square Plates

We have started with a relatively small problem, a
square plate, discretized into RWG basis functions
with an average edge length of . The plate was subdi-
vided into subdomains of with an approxi-
mate block size of basis functions. Table I shows the

TABLE II
PERFORMANCE PARAMETERS FOR CBI APPLIED TO A 4�� 4� SQUARE PLATE

WITH 4720 UNKNOWNS. SVD THRESHOLD � = 0:001, NUMBER OF BLOCKS

M , MATRIX BUILDING AND INVERSION SIZE S AND S , BUILDING AND

INVERSION TIME t AND t . RELATIVE ERROR "

TABLE III
PERFORMANCE PARAMETERS FOR CBI APPLIED TO SQUARE PLATES

SVD(0.001). NUMBER OF BASIS FUNCTIONS N , NUMBER OF

BLOCKS M , MATRIX BUILDING AND INVERSION SIZE S

AND S , BUILDING AND INVERSION TIME t AND t .
RELATIVE ERROR "

performance of CBD for various SVD compression parameters
. As Table I shows, the compressed matrices and the decom-

posed matrices are approximately equal in size. The choice of
for any particular problem is a compromise between computa-
tional effort and desired accuracy.

Next, we investigated the performance as a function of the
number of blocks, for a fixed value of . The results
are shown in Table II. For this particular problem, a choice of
16 blocks seems optimum in terms of decomposition speed, and
near optimum in terms of storage. One observes that the de-
composition time grows strongly with the number of blocks. In
fact, of the two computationally expensive operations and

from Section III-C, , which grows strongly with ,
has a much higher leading constant. Therefore, if allowed by
the available memory, it is generally recommendable to choose
few, large blocks.

To test the derived complexity (see Section III-C), we dis-
cretized two larger plates of and of with the
same average RWG edge length as shown before. The resulting
number of basis functions was and ,
respectively, with . We chose to subdivide the
plates into and subdomains, which com-
plies approximately with the theoretical optimum of

. The diameters of the spheres enclosing the resulting
subdomains are and , respectively.

Table III shows the performance of CBD with SVD(0.001).
In Fig. 3, the CBD decomposition time is shown for the two
plates and compared with an -slope. The slopes correspond
remarkably well.

Incidentally, the matrix construction time using MDA should
scale with , and indeed it does, since
292 s while 288 s. If no MDA is used, the matrix con-
struction time can be shown to scale with , using the tech-
nique explained at the end of Section II.
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Fig. 3. CBD computation time versus number of unknowns for the square
plates from Section IV-A.

TABLE IV
PERFORMANCE PARAMETERS FOR CBI APPLIED TO SPHERES. COMPRESSION

USING SVD(0.001). SPHERE RADIUS R, NUMBER OF UNKNOWNS N , NUMBER

OF BLOCKS M , MATRIX BUILDING AND INVERSION SIZE S AND S ,
BUILDING AND INVERSION TIME t AND t . RELATIVE ERROR "

B. Spheres

In theory, there is no fundamental difference in the appli-
cation of the method to 2-D geometries like the square plates
from Section IV-A or to a 3-D geometry, like a sphere. How-
ever, the sphere is considerably more compact (more unknowns
for the same electrical size), and the impedance matrix con-
ditioning is much worse if we compare similar discretizations
and number of unknowns [8]. These two circumstances are ex-
pected to degrade the CBD performance, just like they do for
iterative methods like MDA and MLFMA. It should be men-
tioned though, that closed surfaces like spheres can be analyzed
with the combined field integral equation (CFIE) which is typi-
cally much better conditioned. This results in much better con-
vergence for the iterative methods, while the CBD performance
is not expected to change much.

We analyzed two PEC spheres, of radius and
, calculating the surface current and the RCS due to

an incident plane wave. The results are summarized in Table IV.
Comparing the largest sphere with the largest square plate,

we do observe that the matrix sizes are larger and the compu-
tation times longer. This is because the sphere is electrically
smaller, and, therefore, less compressible. The spheres are too
small to serve as illustration for the derived complexity from
Section III-C.

Just as with the square plates, using more, smaller subdo-
mains leads to a longer decomposition time, and a slightly
higher error, but more compression. Finally, Fig. 4 compares
the RCS for the largest sphere with the exact (Mie series)
solution, with excellent agreement.

Fig. 4. RCS of a PEC sphere, computed using the Mie series and using CBD
with N = 44508.

Fig. 5. CBD analysis of a 3� � 4� X-band horn: (a) real part of the induced
current distribution (inner plus outer sides of the surface) and (b) radiation pat-
tern compared with measurements and aperture theory Kirchoff aproximation.

C. Pyramidal Horn

Last, we present an example of the CBD applied to the anal-
ysis of a practical antenna: the same pyramidal X-band horn
as was analyzed in [8]. The pyramidal section has a length of

, the aperture measures , and the feeding consists
of a section of single mode waveguide with an infinitesimal
dipole excitation at the center [see Fig. 5(a)]. As was shown in
[8], with RWG basis functions, a fine discretization of approxi-
mately must be used to achieve convergence of the radi-
ation pattern, leading to basis functions.

Table V shows the performance of CBD on this problem. The
results show that, while the CBD does not seem to allow for a
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TABLE V
PERFORMANCE PARAMETERS FOR X-BAND HORN, N = 69228.

NUMBER OF BLOCKS M = 52. SVD THRESHOLD � .
SOLVE TIME t . OTHER SYMBOLS AS IN TABLE IV

very fast, highly approximative solution (with an SVD threshold
as high as 1% the total computation time is still almost 1 h),

on the other hand, the computational requirements do not grow
excessively with higher accuracy (about 1 h and 20 min for
0.1%). This indicates that the CBD is particularly interesting
when high accuracy is required. In our experience, this contrasts
with fast iterative methods like MLFMA where highly approx-
imative results can be obtained very fast, but for high accuracy,
the computational requirements grow quickly.

Another noteworthy result is the solution time reported in
Table V. This is the time for multiplying the decomposed ma-
trix with one excitation vector. It is virtually negligible com-
pared with the matrix setup and decomposition time. This step
consists of only matrix-vector products, that are performed ef-
ficiently by level 2 BLAS routines [16]. For multiple excita-
tion vectors, even more efficient level 3 BLAS routines for ma-
trix-matrix products can be used.

Fig. 5(b) shows the radiation pattern computed with CBD and
, compared to a measurement and to the result from

aperture theory Kirchoff approximation. As expected, beyond
forty degrees from broadside direction CBD matches the mea-
surements much closer than the aperture theory approximation.

V. CONCLUSION

A new algorithm, the CBD technique, has been presented. It
allows for the direct solution of scattering and radiation prob-
lems with the MoM, with highly reduced computational and
storage requirements compared to conventional LU decompo-
sition. For scattering and radiation problems in free space, the
computational complexity of the algorithm is shown to be of
order and the storage requirements of order .

The surface current on a perfectly conducting sphere, dis-
cretized with almost 45 000 RWG basis functions, is computed
in less than 1 h. A pyramidal horn antenna, with almost 70 000
unknowns takes about 1 h and 20 min. In both cases, the dif-
ference with the direct, uncompressed LU solution is about 1%.
The storage requirement for these problems is about 2 and 4 GB,
respectively.

A major advantage of the presented algorithm is the small so-
lution time per incident field vector once the impedance matrix
is decomposed. For the previous two problems, this takes only a
few seconds. Consequently, the method is particularly useful for
problems with multiple incident fields such as monostatic RCS
computations.

Another noteworthy advantage is the fact that only two pa-
rameters need to be optimized for a specific problem: the com-
pression threshold and the number of blocks. The first directly
controls the accuracy versus computational cost tradeoff, while

the second is directly linked to the available computer memory.
This makes the practical application of CBD very simple.

In this paper, only perfectly conducting structures in free
space have been addressed. However, since the MDA method
used for the initial matrix compression is independent of the
specific Greens function of the problem, as long as it decreases
with the source-observer distance, as is commonly the case,
and the rest of the algorithm is entirely algebraic, the proposed
technique is applicable to almost any electromagnetic problem
provided it is discretized with local basis functions.

As a final remark, we have not yet studied the numerical sta-
bility of the CBD method. We intend to report on this issue in a
future paper. However, we have not observed any instability in
any of the reported or any other numerical experiments.

APPENDIX A

We subdivide the 3-D region containing the problem struc-
ture into cubic boxes of riblength . We address the interac-
tion between two such boxes, at a mutual minimum distance

. Now we construct the two minimum radius spheres that
entirely enclose both boxes. This radius equals . From
[18], we know that, as long as the two spheres do not overlap,
the field radiated by the first, evaluated at the second, is entirely
and uniquely determined by the far field. In [17], it is shown
that, for two spherical arrays, in each other’s far field, both of
effective aperture

(16)

[17, (38)], the interaction has a number of spatial degrees-of-
freedom (rank) given by, as a function of the solid angle sub-
tended by either sphere as seen from the center of the other

(17)

[17, (41)]. Consequently, the rank is proportional to .
The degrees-of-freedom reach a minimum (the spheres be-

come point-sources to each other), when the maximum differ-
ence in path length over the aperture vanishes with respect
to the wavelength

(18)

with . Thus, for fixed box-size and fixed
precision , the distance at which this happens is

(19)

Consequently, if we scale up a problem by a factor , by mul-
tiplying the frequency with and refining the discretization ac-
cordingly

(20)
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