
FAST DIRECTIONAL IMAGE INTERPOLATION WITH DIFFERENCE PROJECTION
Zhiwei Xiong1*, Yonghua Zhang2, Xiaoyan Sun2, Feng Wu2

1Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, China
2Internet Media Group, Microsoft Research Asia, Beijing, China

1 *This work was done during Z. Xiong’s internship at Microsoft Research Asia.

ABSTRACT

This paper presents a new directional image interpolator, aiming
to increase image resolution with high perceptual quality and low
computational complexity. In our method, missing pixels in a
magnified image are generated through linear interpolation on
certain fixed supports to facilitate fast implementation, while
local directional features are imposed on the adaptive interpola-
tion weights which are determined by the gradients diffused from
the low resolution image. Afterwards, a novel difference projec-
tion strategy is proposed to enforce the continuity of the magnified
image by reusing the directional interpolator. Experimental re-
sults show that our method outperforms conventional bicubic and
some existing adaptive interpolators, in terms of both the percep-
tual and quantitative quality.

Index Terms— Difference projection, directional interpola-
tor, gradient diffusion, image interpolation

1. INTRODUCTION

There are many occasions that we want to increase the resolution
of images to have better observation experience. Thus image in-
terpolation finds its wide application in real world [1]. Basically,
there are two criterions to evaluate the performance of an image
interpolator: perceptual quality and computational complexity.
Conventional bilinear and bicubic operators have advantages in
simplicity and fast implementation, but they often introduce an-
noying “jaggy” artifacts around the edges because local directional
features in images are not taken into consideration. Consequently,
various adaptive image interpolators [2]-[4] have been designed to
better preserve the edges by utilizing more accurate models. Still,
there are some of the following disadvantages to overcome. First,
the iterative or large-scale property of adaptive coefficient estima-
tion often results in high computational complexity. Second, the
edge orientations utilized are sometimes restricted to several pre-
defined choices, which affect the accuracy of the imposed model.
Third, many interpolators are limited to a 2× magnification, and it
is inconvenient to achieve other magnification ratios.

Besides the complicated interpolators mentioned above, there
are also some simple yet effective methods. For example, the 2×
interpolator proposed in [5] generates a missing pixel only from
its four nearest available neighbors, which are divided into two
symmetric pairs centered at the missing pixel. The weight of each
pair is inversely proportional to the difference between the two
pixels in the pair. This interpolator can alleviate the “jaggy” arti-
facts along diagonal edges. However, edges in other orientations

have not been discussed. Also, the continuities between original
and interpolated pixels are not well reconstructed, which is an
inherent deficiency of the first-order interpolation in our view.

In this paper, we develop a new directional adaptive and
computational efficient interpolator. First, gradients from the low
resolution image are diffused to the desired high resolution to
determine the edge orientations at missing pixels in the magnified
image. Second, linear interpolation is performed with position-
fixed supports (i.e. involved available pixels) and gradient-
adaptive weights. Third, the continuities between original and
interpolated pixels are enforced by difference projection, which
simply reuses the proposed directional interpolator. In our
scheme, arbitrary edge orientations can be detected and utilized,
non-iterative, linear algorithm requires low computational com-
plexity and the continuity of the reconstructed image is improved.

The rest of this paper is organized as follows. Section 2 de-
scribes our proposed directional interpolator. The difference pro-
jection process is detailed in Section 3. Section 4 presents the
experimental results and briefly analyzes the complexity of our
algorithm. Section 5 concludes the paper.

2. PROPOSED DIRECTIONAL INTERPOLATOR

The proposed interpolator is to magnify a low resolution image X
of size H×W into a high resolution image Y of size nH×nW.
Without loss of generality, we assume n=3 for the illustration of
our algorithm, yet it can be easily extended to other integer mag-
nification ratios.

As depicted in Fig. 1, pixels in Y are divided into three cate-
gories. The black dots are the copies of original pixels from X; the
gray dots and white dots are the missing pixels to be interpolated.
Imagining four black dots form a square block (marked in dashed
line), we call the gray dots in-block pixels and the white dots on-
block pixels. In our scheme, the in-block interpolation is first
performed in the square to generate the gray dots, and then the on-
block interpolation is carried out in the hexagons (marked in dot-

Fig. 1. High resolution image layout

81978-1-4244-4291-1/09/$25.00 ©2009 IEEE ICME 2009

Fig. 2. In-block interpolation layout

TABLE I. IN-BLOCK INTERPOLATION WEIGHTS

k (-∞, -1] [2, +∞) [-1, 1/2] [1/2, 2]
αA (4k-2)/9k (4-2k)/9 1/3
αB (2k+2)/9k (2+2k)/9 1/3
αC (k-2)/9k (1-2k)/9 0
αD (2k+2)/9k (2+2k)/9 1/3

TABLE II. IN-BLOCK INTERPOLATION SUPPORTS MIRRORING

I0 A B C D k
I1 B A D C -k
I2 C D A B k
I3 D C B A -k

ted line) to generate the white dots. We found this two-pass strat-
egy can adequately exploit the correlations between neighboring
pixels. Generally, a missing pixel U is interpolated as

1 1(, ,)(, ,)T
N NU V V (1)

where V1, …, VN are the available neighbors of U in certain fixed
positions, and α1, …, αN are directional adaptive weights deter-
mined by the estimated gradients at U.

2.1. Gradient Diffusion

Gradient diffusion is performed to estimate the gradients at miss-
ing pixels in the magnified image. Such gradients at individual
pixels indicate the local directional features, which are thus in-
volved in the later interpolation. To get the gradients on Y, we
first calculate the gradients on X using the Sobel operator (de-
noted by M)

1 0 1
, , 2 0 2

1 0 1

T
h v
X XG M X G M X M (2)

h
XG and v

XG are the low resolution gradients in horizontal and
vertical directions and * means convolution. The high resolution
gradients h

YG and v
YG are then diffused from h

XG and v
XG using

the bilinear interpolator (denoted by L)

() , () , 3h h v vL LY X Y XG G G G (3)

2.2. In-block Interpolation

After the high resolution gradients are obtained, we first interpo-
late the four in-block pixels indexed as I0, I1, I2 and I3 in Fig. 2(a).

Fig. 3. On-block interpolation layout

TABLE III. ON-BLOCK INTERPOLATION WEIGHTS

k (-∞, -1] [-1, 0] [0, 1] [1, +∞)
αA 1/(1-2k) 2/(3-3k) 2/(3+3k) 1/(1+2k)
αB -(1+k)/(1-2k) 0 2k/(3+3k) k/(1+2k)
αC 1/(1-2k) -2k/(3-3k) 0 0
αD 0 (1+k)/(3-3k) (1-k)/(3+3k) 0
αE 0 0 2k/(3+3k) 1/(1+2k)
αF -k/(1-2k) -2k/(3-3k) 0 (k-1)/(1+2k)

TABLE IV. ON-BLOCK INTERPOLATION SUPPORTS MIRRORING

J0 A B C D E F k
J1 D C B A F E -k
J2 A B C D E F 1/k
J3 D C B A F E -1/k

Since they are symmetrical in geometry, we only take the interpo-
lation of I0 for illustration.

As shown in Fig. 2(b), we can draw a line l perpendicular to
the gradient direction at I0 (marked by arrow). Along l the local
variation should be the minimum and thus the interpolation will
be in this direction. With the gradients at I0 we can easily calcu-
late the slope of l, denoted as k

0 0() ()v hk I IY YG G (4)

Then, l has two intersections P and Q with the square ABCD
formed by the original pixels. As P and Q are situated on the
square sides, they are generated by linear interpolation with the
corresponding vertices; afterwards, they both generate I0, again by
linear interpolation. In short, we have

0 (, , ,)(, , ,)T
A B C DI A B C D (5)

where the indices of pixels also refer to their intensity values. The
interpolation weights are given in Table I and we omit the de-
tailed deduction for brevity. Note that three sets of weights apply
according to different k’s, which are depicted in Fig. 2(b), respec-
tively. Due to the geometric symmetry, the same weights can be
used for I1, I2 and I3 just by mirroring A, B, C, D and l. The per-
muted supports and rotated slope are presented in Table II.

2.3. On-block Interpolation

Now the in-block pixels are generated, we then interpolate the on-
block pixels in the hexagons formed by both the original and the
in-block pixels, as illustrated in Fig. 3. The procedure of the on-
block interpolation is quite similar to that of the in-block interpo-
lation, which can be finally formulated as

0 (, , , , ,)(, , , , ,)T
A B C D E FJ A B C D E F (6)

The interpolation details are listed in Table III and Table IV.

A

F E

D

C B

l

J0 J1 J2

J3

F

E

D

C

B

A

Q

P

A

I0

C B

D
l

l

l

(b)

Q

P

Q

Q

P

P

A

I0

C B

D

I3

I1 I2

(a)

G

82

Fig. 4. Difference projection in 1-D case

Note that the gradient diffusion in our scheme is quite
straightforward, only simple Sobel and bilinear operators are
used. Moreover, once we get the gradients at the missing pixels,
two passes of linear interpolation will reconstruct a high resolu-
tion image. The novelty of our method, however, lies in that we
preserve the property of position-fixed interpolation supports as in
conventional operators (e.g., bilinear and bicubic) while imposing
the directional adaptivity onto the interpolation weights, which
are dependent on a single parameter (the slope k) and extremely
easy to compute (Table I – IV are prefixed). Different from exist-
ing methods that first select the interpolation supports and then
calculate the interpolation weights, our designment greatly facili-
tates fast implementation when parallel computation is practical,
such as in GPU and some hardware acceleration platforms.

3. DIFFERENCE PROJECTION

For image interpolators, first-order algorithm (including linear
interpolation) is most computational efficient, especially when
directional features need to be taken into consideration. However,
since few pixels are involved, first-order interpolation bears a
disadvantage that the continuities between original and interpo-
lated pixels are not well reconstructed. In this paper, we propose a
novel difference projection strategy to solve this problem.

We start from the 1-D case for simplicity. Still, the magnifi-
cation ratio is assumed to be 3. As shown in Fig. 4, ai (i = 0, 1, …)
represent the original pixels, bi and ci are the linearly interpolated
pixels from ai

1 1(,) , (,) , (2 3,1 3)T T
i i i i i ib a a c a aC C C (7)

It can be observed from the dash line that the first-order deriva-
tives at ai are not continuous. Mathematically, we may directly
design interpolators that imply continuous derivatives, but in this
work we consider another approach. That is, for better continuity,
pixels ai' are interpolated from bi and ci. We call the gap between
ai and ai' difference and denote it as

1', ' () 2i i i i i ia a a a c b (8)

Since the original pixels ai are generally supposed to be reliable,
we project this difference back to bi and ci with the same linear
interpolator

1 1(,) , (,)T T
i i i i i ib a a c a aC C (9)

Fig. 5. Virtual interpolation layout

TABLE V. VIRTUAL INTERPOLATION WEIGHTS

k (-∞, -1] [-1, 0] [0, 1] [1, +∞)
αA -1/2k -k/2 0 0
αB 0 (1+k)/2 (1-k)/2 0
αC 0 0 k/2 1/2k
αD (1+k)/2k 0 0 (k-1)/2k
αE -1/2k -k/2 0 0
αF 0 (1+k)/2 (1-k)/2 0
αG 0 0 k/2 1/2k
αH (1+k)/2k 0 0 (k-1)/2k

Then the rectified pixels bi' and ci' can be easily deduced from (7)-
(9) by adding back the projected differences

1 1 2

2 1 1

' '(, , ,) ,
' '(, , ,) ,
' (1 9,5 6,1 3, 1 18)

T
i i i i i i i

T
i i i i i i i

b b b a a a a
c c c a a a a

C
C

C
 (10)

After difference projection, more original pixels contribute to
an interpolated pixel and the overall continuity is improved, as
shown by the solid line in Fig. 4. Actually, reusing a first-order
interpolator on the difference equals to a higher-order algorithm.
For example, the corresponding weights of cubic spline interpola-
tion are (2 27,7 9,1 3, 1 27)

in (10), which is very similar to

our result.
In the 2-D scenario, the above difference projection can be

directly applied by reusing our proposed linear directional inter-
polator, which can achieve similar continuity as higher-order algo-
rithms. Note again that, we may directly design higher-order in-
terpolators, but since directional features need to be involved, the
designment can be quite complicated. Therefore, the consideration
of computational efficiency suggests our approach.

The 2-D different projection works as follows. Suppose X is
a high resolution image with original pixel copies from X and
zeros at missing pixels. F represents our directional interpolator
described in Section 2. We first get an intermediate result ()F X .
To calculate the difference, a virtual interpolation is then per-
formed at each original pixel according to (11) (also referring to
Fig. 5 and Table V)

(, ,)(, ,)T
A HK A H (11)

Denote F+ the concatenation of F and the virtual interpola-
tion, the obtained difference () ()F FX X is then projected to
the interpolated pixels by employing F again. Finally, our interpo-
lation algorithm can be formulated as

(() ()) ()F F F FY X X X (12)

Note that the projected difference is added back to ()F X , as the
original pixels need to remain unchanged.

A H G

B F K

C D E

l Q

P

value

location

a0

a2

a3

b0

c0

b1

c1 b2
c2

b1'

c1'

a2'

a1'
a3'

Original pixel Virtual interpolated pixel
Rectified interpolated pixel

Before difference projection After difference projection
Interpolated pixel

difference

projected difference

b2'

c2'

a1

83

Fig. 6. Results of the Lena and Monarch image at 4× interpolation. From left to right: bicubic, NEDI [2], CAI [5] and proposed.

TABLE VI. PSNR(DB) RESULTS OF DIFFERENT METHODS

Image n× Bicubic NEDI CAI Proposed

Lena 3× 30.26 - - 30.33
4× 27.96 28.09 27.69 28.20

Monarch 3× 27.66 - - 27.82
4× 25.36 25.25 25.03 25.41

Mandrill 3× 20.17 - - 20.41
4× 19.43 19.58 19.57 19.63

Peppers 3× 27.93 - - 28.02
4× 26.82 26.89 26.86 26.91

4. EXPERIMENTAL RESULTS

We test the proposed interpolator on a variety of images, and
compare its performance with three other interpolators: bicubic,
new edge-directed (NEDI) [2] and content-adaptive (CAI) [5] (the
last two are both 2× interpolators). The numerical results of sev-
eral test images at 3× and 4 × magnifications are given in Table
VI, where the low resolution images used are directly downsam-
pled from the original ones. The 4× results of Lena and Monarch
are shown in Fig. 6. It can be observed that bicubic introduces
“jaggy” artifacts and gives the blurriest results. The other three
adaptive methods give smoother edges. However, NEDI some-
times introduces unrealistic artifacts around the edges (e.g. the
speckle of Monarch), whereas our interpolator gives more realis-
tic results due to the simple yet effective designment. On the other
hand, CAI presents many isolated original points which fuzzes the
edges (e.g. the hat of Lena), and the proposed interpolator gene-
rates more continuous and clearer edges with difference projec-
tion. (Please see the electronic version for better visualization.)

Our method involves three procedures: gradient diffusion, in-
block/on-block interpolation, and difference projection. The mul-
tiplication times required per missing pixel are 4.5 (0.5 for the
Sobel operation on the low resolution image), 4 and 4.5 (0.5 for

the virtual interpolation at original pixels), respectively. Besides,
the adaptive interpolation weights cost another 3.5 multiplications
(including 1 for calculating k). Contrastively, NEDI requires about
1300 multiplications per pixel, and CAI adopts exponential opera-
tions to calculate the weights. Therefore, the complexity of our
interpolator is relatively low.

5. CONCLUSION

We present a fast directional interpolator in this paper, which can
detect and utilize arbitrary edge orientations by gradient diffusion.
Missing pixels in the magnified image are generated by position-
fixed supports with gradient-adaptive weights through linear in-
terpolation. Moreover, difference projection is introduced to en-
hance the continuity that the first-order interpolation lacks. Our
algorithm has competitive efficiency compared with other adap-
tive methods, and it can be easily extended to any integer magni-
fication ratios.

REFERENCES

[1] E. Meijering, “A chronology of interpolation: From ancient
astronomy to modern signal and image processing,” Proc. IEEE,
vol. 90, no. 3, pp. 319–342, Mar. 2002.
[2] X. Li and M. T. Orchard, “New edge-directed interpolation,”
IEEE Trans. Image Process., vol. 10, no. 10, pp. 1521–1527, Oct.
2001.
[3] L. Zhang and X. Wu, “An edge-guided image interpolation
algorithm via directional filtering and data fusion,” IEEE Trans.
Image Process., vol. 15, no. 8, pp. 2226–2238, Aug. 2006.
[4] Q. Wang and R. K. Ward, “A new orientation-adaptive inter-
polation method,” IEEE Trans. Image Process., vol. 16, no. 4, pp.
889–900, Apr. 2007.
[5] T. Chan, O. C. Au, T. Chong and W. Chau, “A novel content-
adaptive interpolation,” in ISCAS 2005, pp. 6260–6263.

84

