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FAST DISCRETE POLYNOMIAL TRANSFORMS WITH
APPLICATIONS TO DATA ANALYSIS FOR DISTANCE

TRANSITIVE GRAPHS∗

J. R. DRISCOLL† , D. M. HEALY, JR.‡ , AND D. N. ROCKMORE§

SIAM J. COMPUT. c© 1997 Society for Industrial and Applied Mathematics
Vol. 26, No. 4, pp. 1066–1099, August 1997 008

Abstract. Let P = {P0, . . . , Pn−1} denote a set of polynomials with complex coefficients.
Let Z = {z0, . . . , zn−1} ⊂ C denote any set of sample points. For any f = (f0, . . . , fn−1) ∈ Cn,
the discrete polynomial transform of f (with respect to P and Z) is defined as the collection of

sums, {f̂(P0), . . . , f̂(Pn−1)}, where f̂(Pj) = 〈f, Pj〉 =
∑n−1

i=0
fiPj(zi)w(i) for some associated weight

function w. These sorts of transforms find important applications in areas such as medical imaging
and signal processing.

In this paper, we present fast algorithms for computing discrete orthogonal polynomial trans-
forms. For a system of N orthogonal polynomials of degree at most N − 1, we give an O(N log2 N)
algorithm for computing a discrete polynomial transform at an arbitrary set of points instead of the
N2 operations required by direct evaluation. Our algorithm depends only on the fact that orthog-
onal polynomial sets satisfy a three-term recurrence and thus it may be applied to any such set of
discretely sampled functions.

In particular, sampled orthogonal polynomials generate the vector space of functions on a distance
transitive graph. As a direct application of our work, we are able to give a fast algorithm for
computing subspace decompositions of this vector space which respect the action of the symmetry
group of such a graph. This has direct applications to treating computational bottlenecks in the
spectral analysis of data on distance transitive graphs, and we discuss this in some detail.

Key words. fast Fourier transform, FFT, discrete polynomial transform, orthogonal polynomi-
als, three-term recurrence, distance transitive graph

AMS subject classifications. Primary, 42C05, 42C10, 42-04, 33C90; Secondary, 65T20, 62-04,
62-07, 05C99

PII. S0097539792240121

1. Introduction. The efficient decomposition of a function into a linear combi-
nation of orthogonal polynomials is a fundamental tool which plays an important role
in a wide variety of computational problems. Applied science abounds with computa-
tions using such decompositions, along with the related computational techniques for
calculation of correlation or projection of data onto a family of polynomials. To cite
just a few examples, this sort of approach is used in spectral methods for solving dif-
ferential equations [Bo, Te], data analysis [D], signal and image processing [OS], and
the construction of Gauss quadrature schemes [Ga1]. In most cases, the choice of a
particular family of polynomials is determined by some special property or underlying
symmetry of the problem under investigation.
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FAST DISCRETE POLYNOMIAL TRANSFORMS 1067

Perhaps the most familiar example is the representation of a discrete data se-
quence as a linear combination of phase polynomials. In this case, the decomposition
is known as the discrete Fourier transform (DFT) and is accomplished both efficiently
and reliably through the use of the well-known fast Fourier transform algorithms
(FFT) (cf. [ER] and the references therein). The DFT is a particularly simple orthog-
onal polynomial transform which corresponds to the projection of a data sequence
f = (f0, . . . , fN−1) onto the family of monomials Pl(x) = ml(x) = xl evaluated at
the roots of unity zk = e2πik/N , k = 0, 1, . . . , N − 1. Thus the DFT is the collection
of sums

f̂(l) =
N−1∑
k=0

fkPl(z
k) =

N−1∑
k=0

fke
2πikl/N(1.1)

for the discrete frequencies l = 0, 1, . . . , N − 1. The monomials form an orthogonal
set whose properties account for the well-documented usefulness and algorithmic ef-
ficiency of the FFT algorithms. In particular, these algorithms allow the projections
in (1.1) to be computed in O(N logN) operations as opposed to the N2 operations
that a direct evaluation would require [ER]. (We assume a standard model in which
a single complex multiplication and addition are defined as a single operation.)

In this paper, we are concerned with the development of efficient algorithms
for computing more general discrete polynomial transforms. Specifically, let P =
{P0, . . . , Pn−1} denote a set of polynomials with complex coefficients. Let Z =
{z0, . . . , zn−1} ⊂ C denote any set of sample points. If f = (f0, . . . , fn−1) is any
data vector (often thought of as a function with known values at the sample points),
then the discrete polynomial transform of f (with respect to P and Z) is defined as

the collection of sums, {f̂(P0), . . . , f̂(Pn−1)}, where

f̂(Pj) = 〈f, Pj〉 =

n−1∑
i=0

fiPj(zi)w(i).(1.2)

The function w is some associated weight function, often identically 1. Familiar
examples of discrete polynomial transforms include the DFT (already mentioned) as
well as the related discrete cosine transform (DCT). In fact, both may be obtained as
particular cases of discrete monomial transforms—i.e., discrete polynomial transforms
in which Pj = mj is the monomial of degree j. Beyond such special cases, we know of
no prior general algorithm for computing discrete polynomial transforms which has
complexity less than O(n2).

Inspection of equation (1.2) shows that direct computation of the discrete poly-
nomial transform requires n2 operations. For large n, this cost quickly becomes pro-
hibitive. The main result of this paper is an algorithm which computes general discrete
orthogonal polynomial transforms in O(n log2 n) operations. This relies primarily on
the three-term recurrences satisfied by any orthogonal polynomial system and as such
our algorithms also obtain for computing transforms over any set of spanning functions
which satisfy such a recurrence. Related techniques have already found a number of
applications attacking computational bottlenecks in problems in areas such as medical
imaging, geophysics, and matched filter design [DrH, MHR, HMR, HMMRT].

Our original motivation for studying these sorts of computations comes from prob-
lems which arise in performing spectral analysis of data on distance transitive graphs.
This analysis is effectively the combinatorial analogue of the more familiar case of
spectral analysis on continuous spaces like the circle or the 2-sphere. For instance,
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1068 J. R. DRISCOLL, D. M. HEALY, JR., AND D. N. ROCKMORE

functions defined on distance transitive graphs admit a spectral decomposition which
mirrors that of integrable functions on the 2-sphere. In particular, recall that the
algebra of functions on the 2-sphere is generated by functions constant on circles of
fixed distance from the north pole (circles of latitude), the so-called “zonal spherical
functions” for the 2-sphere [He]. For each nonnegative integer m, there is a uniquely
defined (up to a constant) spherical function of degree m and the translates of this
function under the action of SO(3) (the symmetry group of the 2-sphere given by the
group of rotations in 3-space) span a subspace of the vector space of functions on the
2-sphere which is invariant under the action of SO(3). Similarly, distance transitive
graphs have an associated symmetry group. After the choice of a distinguished vertex,
analogous to the choice of a “north pole” on the 2-sphere, the algebra of functions on
a distance transitive graph is generated by analogously defined spherical functions.
(Here distance on the graph is the usual shortest path distance between vertices.) It
turns out that these discrete functions are sampled orthogonal polynomials. Spectral
analysis of data on a distance transitive graph, naturally viewed as a function on
the graph, requires the expansion of the function in terms of a basis generated by
the discrete spherical functions. The expansion may be reduced to the computation
of discrete spherical transforms which are, in fact, discrete orthogonal polynomial
transforms.

The spectral approach to data analysis, as described by Diaconis [D], is motivated
by the observation that it is often appropriate and useful to view data as a function
defined on an suitably chosen group or, more generally, some homogeneous space of
a group. The choice of a “natural” group in any given situation depends on various
symmetries of the problem. The group-theoretic setting of spectral analysis allows for
the techniques of Fourier analysis to be applied. In particular, a data vector will have
a natural decomposition into symmetry-invariant components which are calculated
by computing the projections of the data vector into the various symmetry-invariant
subspaces.

A familiar illustration of this approach comes from digital signal processing. Here
the standard analysis of stationary signals proceeds by decomposing the signal as a
sum of sines and cosines with coefficients determined by usual abelian FFT. The sines
and cosines of a given frequency determine subspaces of functions which are invariant
under translation of the origin.

For a possibly less familiar example (due to Diaconis [D]), consider the California
Lottery game. Each player chooses a six-element subset of {1, . . . , 49}. Every such
subset corresponds to a coset of S49/(S6 × S43). (Here S6 × S43 is identified with the
subgroup of S49 that independently permutes the subsets {1, . . . , 6} and {7, . . . , 49}.)
The vector space of functions defined on the cosets S49/(S6 × S43) is denoted as
M (43,6). Each “run” of the game gives rise to a function f ∈ M (43,6) such that f(x)
is the number of people picking 6-set x.

A spectral analysis approach to analyzing such a data vector is to decompose the
vector into symmetry-invariant components, where here a natural choice of symmetry
group is the symmetric group S49. Standard analysis from the representation theory of
the symmetric group shows that M (43,6) has a unique finest decomposition into seven
S49-invariant components, M (43,6) = S(49)⊕S(48,1)⊕ · · · ⊕S(43,6). This decomposition
has a natural data-analytic interpretation. The invariant subspace S(49) measures the
constant contribution. The other invariant subspaces S(49−j,j) naturally measure the
“pure” contribution of the popularity of the various j-sets (that is, the number of
people including a given j-set in their 6-set). Computation of the projections onto
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FAST DISCRETE POLYNOMIAL TRANSFORMS 1069

these subspaces can be reduced to computing the relevant spherical transforms, which
in this case turn out to be certain discrete Hahn polynomial transforms. The methods
of this paper allow these transforms to be computed efficiently.

The California Lottery example is, in fact, an example of data on a distance
transitive graph. More generally, the k-sets of an n-set comprise a distance transitive
graph by joining any two k-sets which differ by only a single element. This graph
possesses certain Hahn polynomials as its spherical functions (cf. [St3, section II.3]).
Other examples include the n-gon graph with dihedral group symmetry as well as the
n-dimensional hypercube with hyperoctahedral group of symmetries. In the former
case, the spherical functions are obtained from the Chebyshev polynomials, Tn(x) =
cos(n arccos(x)) [Bi], and in the latter case, the Krawtchouk polynomials give the
spherical functions (cf. [St3, section II.2]).

As we shall see in section 3, in general, the problem of finding an FFT for distance
transitive graphs may be reduced to that of the efficient computation of the projection
onto the spherical functions for the graph, which are an orthogonal family of special
functions on the graph. In many important examples (cf. [St1, St3] and the many
references therein), these spherical functions are actually sampled orthogonal polyno-
mials, and the spherical transform amounts to projection onto these polynomials in a
weighted `2 space.

The organization of the paper is as follows. Section 2 discusses fast orthogo-
nal polynomial transforms, beginning with previously known results for monomial
transforms and concluding with our main computational result, which is an efficient
discrete orthogonal polynomial transform. This material is elementary and relies
on nothing more than the recurrence relations satisfied by the polynomials in ques-
tion. Section 3 treats our main application of interest: fast algorithms for projection
onto spherical functions on distance transitive graphs. We include here the necessary
group-theoretic background and notation and give explicit examples of the algorithm
for spherical functions on several graphs of interest. The fast spherical transform
algorithm may be modified in order to provide a fast inverse transform, and from
this we also obtain a fast convolution algorithm for functions on distance transitive
graphs. Section 4 discusses the connection of these results to the computation of
isotypic projections required for spectral analysis. We close in section 5 with some
final remarks.

2. Fast polynomial transforms. The goal of this section is to produce al-
gorithms for fast evaluation of polynomial transforms with an eye to their eventual
application to the efficient computation of spherical transforms. The general algo-
rithm proceeds in two steps. The initial phase is an efficient projection onto the
monomials. From here we are able to use the three-term recurrence to obtain a
divide-and-conquer approach for relevant fast polynomial transforms. In general, our
approach is to formulate the initial problem as a particular matrix–vector multiplica-
tion and then present the fast algorithm as a particular matrix factorization.

We proceed by first recalling the fast monomial transform. This is obtained by
writing it as the transpose of multiple-point polynomial evaluation and then formu-
lating a well-known efficient algorithm for the latter process (cf. [BM, Chapter 4]) as
a structured matrix factorization. We explain the full algorithm next and then close
this section with an example.

2.1. Fast monomial transforms. The simplest polynomial transform problem
that we could consider is the projection of a vector f = (f0, . . . , fn−1) onto the family
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1070 J. R. DRISCOLL, D. M. HEALY, JR., AND D. N. ROCKMORE

of monomials evaluated at the finite point set {z0, . . . , zn−1},

f̂(k) = 〈f, zk〉 =
n−1∑
`=0

f`(z`)
k (k = 0, . . . , n− 1).(2.1)

Note that viewed as a matrix–vector multiplication, this is the evaluation of multipli-
cation of the suitably defined Vandermonde matrix times the vector of samples. That
is,

〈f, zk〉 = (V · f)k,

where

V = V (z0, . . . , zn−1) =


1 1 · · · 1
z0 z1 · · · zn−1

...
...

z0
n−1 z1

n−1 · · · zn−1
n−1

 .(2.2)

The familiar example of the abelian DFT is obtained by taking the evaluation
points to be the nth roots of unity in C, z` = exp(2πi`/n). This projection may be
obtained by the familiar FFT divide and conquer strategy in O(n logn) operations as
opposed to the obvious O(n2). General references include [BM, ER, N, TAL].

Notice that the abelian FFT gives rise to our first efficient spherical transform,
corresponding to the n-gon graph. This is a fast discrete Chebyshev transform with
samples at the Chebyshev points, cos 2π`/n. This can be obtained by applying the
usual FFT to a real-valued data sequence.

Our fast monomial transform is based on the formulation of the FFT which con-
siders the transpose of projection and develops the algorithm as polynomial evaluation
at the roots of unity,

f̂(k) = (V t · f)k =
n−1∑
`=0

f`(zk)`

for zk = exp(2πik/n). This version of the FFT is achieved by efficient recursive
application of the division algorithm (cf. [BM]).

An advantage of this perspective is that it allows an easy generalization to the
direct evaluation of polynomials at n real points. We now review a well-known
O(n log2 n) algorithm for polynomial evaluation which we may formulate as a fac-
torization of the matrix V t into block-diagonal matrices with Toeplitz blocks of ge-
ometrically decreasing size. It is this structure which permits the fast computation
of the matrix–vector product. Consequently, we obtain a corresponding factoriza-
tion of the transpose, V and hence, an algorithm for projection which also requires
O(n log2 n) operations. For ease of exposition, we assume n is a power of 2.

Lemma 2.1. Let n = 2k and let V be the Vandermonde matrix for the set of com-
plex points z0, z1, . . . , zn−1, as defined in (2.2). The matrix–vector product V t · f , for
f ∈ Cn (corresponding to the evaluation of the polynomial f0 +f1z+ · · ·+fn−1z

n−1 at
the points z0, z1, . . . , zn−1) may be accomplished in O(n log2 n) operations. Likewise,
the product V · f for f ∈ Cn (corresponding to projection of a sampled function f
onto the monomials sampled at z0, z1, . . . , zn−1) may be accomplished in O(n log2 n)
operations.
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FAST DISCRETE POLYNOMIAL TRANSFORMS 1071

Fig. 2.1. Tree for evaluating a polynomial φ(z) at n = 2k points. Note that it has k = logn levels.

Proof. Let φ(z) =
∑n−1
i=0 fiz

i, n = 2k, with k ≥ 0. We may evaluate φ at any of
the zj , j = 0, 1, . . . , n−1 by the division algorithm because φ(zj) = φ(z) mod (z−zj).
The division may be done in O(n logn) for a given zj , but to proceed this way for
each of the zj separately is prohibitively expensive.

Instead, we use a familiar divide-and-conquer strategy, simultaneously reducing
the original polynomial modulo each linear factor (z − zj) in k = logn stages, as
shown in Figure 2.1. Notice that fast polynomial arithmetic algorithms allow for the
various moduli to be precomputed in O(n log2 n) operations (cf. [BM, section 4.3]).

Each downward edge in the tree in Figure 2.1 represents the reduction of a polyno-
mial p(x) modulo another polynomial of form mS(z) = Πzj∈S(z − zj), corresponding
to a certain subset S of the evaluation points z0, . . . , zn−1. To move down this edge
of the tree, we need an algorithm to efficiently compute the remainder rS(x), and
incidentally q(x), in the division algorithm representation

p(x) = q(x)mS(x) + rS(x).

The input p is a remainder from a previous stage and has degree d− 1, where d is a
power of 2. The precomputed modulus mS has degree d/2. Therefore, rS has degree
d/2− 1.

The key point is that in this tree, rS is equivalent mod mS not only to its im-
mediate ancestor p but also to every ancestor of p, all the way back to the original
polynomial φ. Indeed, p was itself obtained as a remainder modulo mS̃ from its ances-
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1072 J. R. DRISCOLL, D. M. HEALY, JR., AND D. N. ROCKMORE

tor P, and Figure 2.1 shows that always S ⊂ S̃, so mS |mS̃ . Therefore, mS |(rS − P ).
So upon reaching the leaves of the tree, we have actually computed φ(z) modulo the
linear factors (z − zj) as desired.

To see how to compute the basic reduction steps efficiently, we write the division
algorithm representation r = p − qm in matrix form. It is natural to split this
equation into a high-order and a low-order part, due to the vanishing of the higher-
order coefficients of r, corresponding to powers d/2, . . . , d−1. The low-order equation
involving the nonzero coefficients of r looks like

r d
2−1

...

...

...
r0

 =



p d
2−1

...

...

...
p0

−


m0 m1 · · · · · · m d
2−1

0
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . . m1

0 · · · · · · 0 m0





q d
2−1

...

...

...
q0

 .(2.3)

The upper triangular Toeplitz matrix in (2.3) is comprised of the lower-order coeffi-
cients of the polynomial m; for future reference, we call this matrix M.

Now the higher-order terms of r are zero, so the high-order equation reduces to

pd−1

...

...

...
p d

2

 =



m d
2

0 · · · · · · 0

m d
2−1

. . .
. . .

...

...
. . .

. . .
. . .

...
...

. . .
. . . 0

m1 · · · · · · m d
2−1 m d

2





q d
2−1

...

...

...
q0

 .(2.4)

Since md/2 = 1, the lower triangular Toeplitz matrix in (2.4) is invertible. Its
inverse, G, is also lower triangular and Toeplitz and may be computed in O(d log d)
operations by a Newton iteration and then prestored (cf. [BM, Chapter 4] and Remark
3 following this proof). Insert the result into equation (2.3). This gives

 r d
2−1

...
r0

=

 p d
2−1

...
p0

−MG

 pd−1

...
p d

2



=

 |
−MG | Id/2

|





pd−1

...
p d

2−−−
p d

2−1

...
p0


.

(2.5)

Here Id/2 is the d/2× d/2 identity matrix.
Here we must briefly recall that standard techniques using the FFT allow Toeplitz

matrices of dimension b to be multiplied by an arbitrary vector of length b in at most
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FAST DISCRETE POLYNOMIAL TRANSFORMS 1073

O(b log b) operations. This is done by framing the computation as the convolution
of two sequences. More specifically, the Toeplitz matrix of order b is extended to
a circulant matrix of order 2b. A zero-padded version of the original data vector is
then multiplied by this matrix in order to obtain the appropriate product. The new
matrix–vector multiplication is precisely the circular convolution of two sequences
of length 2b and as such is performed efficiently by computing the FFTs of each of
the sequences, performing the pointwise multiplications of the resulting sequences
and finally computing an inverse Fourier transform (requiring one more FFT) of
this sequence. Thus a total of three FFTs are required as well as one pointwise
multiplication of a sequence of length 2b. If 2b = 2r, then an FFT of length 2b
requires at most 3/2 · 2b · r = 3br operations (cf. [BM, p. 84]). Consequently, the
multiplication of a Toeplitz matrix of order b = 2r−1 by an arbitrary vector requires
at most 3 · 3br + 2b operations or O(b log b) operations.

Since M and G are both Toeplitz, the above discussion shows that the product

M ·G ·

 pd−1

...
p d

2


can be computed in at most 2(9 · (d/2)r+ 2 ·d/2) = 9dr+d operations, where d = 2r.
This is effected by first performing the multiplication

G ·

 pd−1

...
p d

2


and then multiplying this result by M . This means then that the multiplication in
(2.5) may be accomplished in 9dr+ d+ d/2 = 9dr+ 3d/2 operations. The additional
term of d/2 comes from the multiplication of the identity subblock against the low-
order coefficients. Note that this is the cost of a single reduction in a single stage of
the algorithm.

Looking back at the tree (see Figure 2.1), we see that the first stage of the
algorithm consists of two reductions from order n = 2k to order n/2 by two polynomial
divisions. Consequently, if we let T (n) denote the number of operations required to
compute the order n problem, then we obtain the following recurrence:

T (n) = 2T
(n

2

)
+ 2 ·

(
9nk +

3

2
n

)
= 18n logn+ 3n.(2.6)

Iteration of the recurrence (2.6) yields

T (n) ≤ 18n log2 n+ 3n logn,(2.7)

which shows that the entire computation can be performed in O(n log2 n) operations.
This sequence of reductions can be encoded as a structured matrix factorization

of V t. Let Ml,i denote the upper triangular Toeplitz matrix associated (in the sense
of (2.3)) with the polynomial which gives the ith modulus at level l of the tree in
Figure 2.1. Thus M1,0 is associated with (z − z0) · · · (z − zn/2−1), M1,1 is associated
with (z− zn/2) · · · (z− zn−1), M2,0 is associated with (z− z0) · · · (z− zn/4−1), and, in
general, Ml,i is associated with the product (z − zi(n/2l)) · · · (z − z(i+1)(n/2l)−1).
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1074 J. R. DRISCOLL, D. M. HEALY, JR., AND D. N. ROCKMORE

Similarly, let Gl,i denote inverse of the lower triangular Toeplitz matrix associated
(in the sense of (2.4)) with the polynomial which gives the ith modulus at level l of
the tree in Figure 2.1. As discussed above, Gl,i is itself lower triangular and Toeplitz.

Define the matrices Rl,i as in (2.5) by

Rl,i =

 |
−Ml,iGl,i | I2k−l

|

 ↑
2k−l

↓
← 2k−l → ← 2k−l →

(2.8)

for 1 ≤ l ≤ k = logn and 0 ≤ i < 2l. Then the previous discussion shows that V t has
a factorization into k = logn factors as the matrix product

 Rk,0
−−−
Rk,1

 © Rk,2
−−−
Rk,3


. . .

©

Rk,n−2

−−−
Rk,n−1





· · ·




R2,0

− − −
R2,1

 ©

©


R2,2

− − −
R2,3







R1,0

− − −

R1,1


.

By transposition, a similarly structured factorization of V is then also obtained.
The reversal of order obviously does not change the complexity of the sequence of mul-
tiplications; each matrix is still block diagonal, with the blocks themselves comprised
of products of triangular Toeplitz subblocks as before.

Remarks. 1. As mentioned previously, Lemma 2.1 is a restatement of what is
now a classical result of the complexity for polynomial evaluation. For variations on
this algorithm as well as pointers to the more recent literature, we refer the reader to
the survey article of Pan [P] and the extensive bibliography contained therein.

2. Our proof treats only the case of n equal to a power of 2 but may be extended
to the general case in a straightforward manner with the same asymptotic result.

3. Notice that the above algorithm requires O(n logn) storage. To see this,
recall that the matrix–vector multiplications involving the matrices Ml,i and Gl,i are
effected by extending these matrices to the appropriate circulant matrices of twice
the size and then performing the subsequent matrix–vector multiplications as circular
convolutions using the FFTs of the associated sequences. The matrices Ml,i and Gl,i

D
ow

nl
oa

de
d 

05
/1

4/
18

 to
 1

29
.1

70
.1

16
.2

35
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



FAST DISCRETE POLYNOMIAL TRANSFORMS 1075

are of dimension 2k−l (where n = 2k) and thus are extended to circulants of size
2k−l+1. We need only store the DFT of a single row of this circulant, so in total we
require 2n logn storage to keep the necessary data from the all of the Ml,i’s and Gl,i’s.

To generate this initial data structure, we require O(n log2 n) operations. For this,
we first note that to generate the necessary DFTs from all of the Ml,i’s and Gl,i’s we
require at most O(n log2 n) operations, assuming that we have constructed the Ml,i’s
and Gl,i’s. The Ml,i’s and the G−1

l,i ’s are obtained from the polynomial coefficients of
the various supermoduli in the division tree of Figure 2.1. These may be generated
recursively from the bottom of the tree up using efficient polynomial multiplication
routines which require O(m logm) operations to multiply two polynomials of degree
m (cf. [BM, p. 86]). Thus at most O(n log2 n) operations are needed to generate all
of the Ml,i’s and G−1

l,i ’s (cf. [BM, p. 100]). Finally, to invert any particular G−1
l,i in

order to obtain Gl,i, an additional O(l 2l) is needed (cf. [BM, p. 96]) so that in total
we require O(n log2 n) operations to precompute the necessary data structure.

4. Notice that one direct result of an efficient monomial transform is that we
can obtain an FFT at nonuniformly spaced frequencies. This amounts to evaluating
the polynomial above at n nonuniformly spaced points on the unit circle and can be
accomplished in O(n log2 n) operations. An application of this to fast scanning for
MRI is discussed in [MHR], as are issues of stability of the fast algorithm.

Nonuniform FFTs also immediately provide anO(n log2 n) Chebyshev polynomial
transform on the uniform grid {k/n− 1|k = 0, . . . , 2n− 1} in [−1, 1] by applying the
nonuniform Fourier transform to a real data sequence f at the points exp(iθk) with
cos(θk) = k/n. This turns out to be useful, and we will explore it in more detail later.

Lemma 2.1 has many applications. We record some here for later use.
Corollary 2.2. Each of the following three computations can be obtained in

O(n log2 n) operations:
(1) the `2 projections of a discrete function onto the monomials sampled at the

points x0, x1, . . . , xn−1 in R,

n−1∑
k=0

fkxk
l, l = 0, . . . , n− 1,

(2) the `2 projections of a discrete function onto the Chebyshev polynomials Tn(x)
sampled uniformly at the points{

uk = 2
k

n
− 1
∣∣∣k = 0, . . . , n− 1

}
⊂ [−1, 1],

n−1∑
k=0

fkTl(uk), l = 0, . . . , n− 1;

(3) the `2 projections of a discrete function onto the shifted Chebyshev polynomi-
als T ∗n(x) = Tn(2x− 1) on the regular grid{

vk =
k

n

∣∣∣k = 0, . . . , n− 1

}
⊂ [0, 1].

Proof. (1) This is an immediate application of the lemma.
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1076 J. R. DRISCOLL, D. M. HEALY, JR., AND D. N. ROCKMORE

(2) Take θk = arccos(uk) in [0, π], k = 0, . . . , n−1. Define points zj , j = 0, . . . , 2n−
1 in the unit circle by

zj =

{
eiθj if 0 ≤ j < n− 1,
ei(θj−n−π) if n ≤ j < 2n.

Then

n−1∑
k=0

fkTl(uk) =

n−1∑
k=0

fk cos(lθk)

=

n−1∑
k=0

1

2
fk(zlk + zlk)

=

2n−1∑
j=0

F (zj)z
l
j ,

where F (z0) = f0; F (zk) = (1/2)fk, k = 1, . . . , n − 1; F (zn) = 0; and F (z) = F (z).
The result follows by applying Lemma 2.1 to this last expression.

Alternatively, one may apply Lemma 2.1 separately to the real and imaginary
parts of f, evaluating at the points zj , j = 0, . . . , n− 1, and taking the real part.

(3) This follows from (2) by a change of variables.
For reasons of numerical stability, the projections described in the last two parts

of the corollary provide a useful alternative to projection onto monomials on uniform
grids. Even though the Chebyshev polynomials are not discretely orthogonal on
the uniform grid, they still are much better conditioned than the monomials [Ga2,
Hi]. It should also be noted that certain modifications of the resulting algorithm
for projection onto the Chebyshev polynomials are required for stable computation.
These modifications do not affect the efficiency of the algorithm in any appreciable
way (cf. [MHR]).

2.2. Three-term recurrence relations and fast projection. We wish to
extend the results of section 2.1 to obtain an algorithm for the fast projection onto
functions other than the monomials or the Chebyshev polynomials. In particular, we
are interested in doing this for the spherical functions for distance transitive graphs.
These functions satisfy three-term recurrence relations, which permits us to make an
efficient change of basis from monomials or Chebyshev polynomials. The following
theorem demonstrates this in a case of interest for the current paper. It is evident
that the argument can be applied in more general situations.

Theorem 2.3. Let n = 2k and let Φi(x), i = 0, . . . , n − 1 comprise a family of
functions defined at the positive integers x = 0, 1, . . . , n−1 and satisfying a three-term
recurrence there:

Φl+1(x) = (alx+ bl)Φl(x) + clΦl−1(x),

with initial conditions Φ0 = 1, Φ−1 = 0. Then the projections of a data vector f =
(f0, . . . , fn−1) defined by

f̂(l) =
n−1∑
j=0

fjΦl(j)wj = 〈f,Φl〉,
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FAST DISCRETE POLYNOMIAL TRANSFORMS 1077

where w is a weight function, can be computed for all l < n in O(n log2 n) operations.

Proof. Without loss of generality, we may assume that wi = 1 for each i. (In the
more general case, the weights could be absorbed immediately into f .) By Lemma 2.1,
we can effect the projection onto the monomials of degree less than n sampled at the
points x = 0, 1, . . . , n − 1 in O(n log2 n) operations. We now use the three-term
recurrence to transform these into the desired projections onto the Φl.

Define the sequence Zl for each l = 0, 1, . . . , n− 1 by

Zl(k) = 〈f, xkΦl〉 =

n−1∑
j=0

fjj
kΦl(j)(2.9)

for k = 0, 1, . . . , n − 1. Our goal is to obtain the values Zl(0) = 〈f, x0Φl〉. However,
what we may compute efficiently from the initial data are the values Z0(k) = 〈f, xk〉.

In terms of the Zl, the recurrence

Φl+1(x) = (alx+ bl)Φl(x) + clΦl−1(x)(2.10)

translates into

Zl+1(k) = al〈f, xk+1Φl〉+ bl〈f, xkΦl〉+ cl〈f, xkΦl−1〉
= alZl(k + 1) + blZl(k) + clZl−1(k).

(2.11)

Observe that the weights in (2.11) do not depend on the k index. That is, the
sequence Zl+1 is obtained by adding scalar multiples of the sequences Zl, Zl−1, and
a shifted version of Zl.

According to Lemma 2.1 and, specifically, equation (2.7), we can compute the
sequence Z0 in 18n log2 n + 3n logn operations. Setting Z−1 = 0, the recurrence
(2.11) gives Z1 in at most 2n additional operations. In particular, this gives the

value Z1(0) = f̂(1). Proceeding in this direct fashion, one could successively build
the sequences Zl and the obtain the values Zl(0). Of course, this yields no savings,
requiring n operations of length 2n and thus O(n2) in total.1

Instead, following [DrH], we are able to use a divide-and-conquer approach to solve
the problem more efficiently. To explain this, it is instructive to view the computation
graphically. For this, consider the coordinate grid in Figure 2.2 with the l-axis in
the horizontal direction and the k-axis in the vertical direction. We can consider
the function Z defined on the grid with values Z(l, k) = Zl(k). Using recurrence
(2.11), one sees immediately that the computation of Zl(k) (for k < n − l) only
requires the prior computation of Zi(j) for (i, j) in the triangle defined by the vertices
(l, k), (0, k), (0, l + k).

Our goal is to compute the values Zl(0) for 0 ≤ l ≤ n − 1. As discussed above,
initial computation of the first two columns, {Zj(k) | j = 0, 1 and 0 ≤ k ≤ n− 1} can
be obtained in 18n log2 n + 3n logn + 2n operations. In particular, the values Z0(0)
and Z1(0) are obtained.

To compute the remaining Zl(0)’s we wish to rewrite the recurrence (2.11) as a
matrix equation. For any complex numbers α, β, and γ, define a 2n × 2n matrix

1Strictly speaking, the recurrence can be applied to the initial sequence Z0 to obtain the correct
values of Zl(k) for k < n− l. For example, to get Z1(n− 1) with equation (2.11) requires the value
of Z0(n), which we do not have. This “edge effect” propagates as l increases but does not affect the
values of the sequences that we actually need for the algorithm.
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1078 J. R. DRISCOLL, D. M. HEALY, JR., AND D. N. ROCKMORE

Fig. 2.2. Computation of Z6(4) depends only on the computation of Zi(j) for (i, j) in the
shaded triangle.

Tn(α, β, γ) by

Tn(α, β, γ) =

(
0 I
γI βI + αN

)
,

where I denotes the n× n identity matrix and N denotes the n× n nilpotent matrix
with ones on the superdiagonal and zeros elsewhere. Note that Tn(α, β, γ) is a block
matrix composed of four n×n Toeplitz blocks. With this notation, recurrence (2.11)
may be rewritten as (

Zl
Zl+1

)
= Tn(al, bl, cl) ·

(
Zl−1

Zl

)
.(2.12)

Iteration of the recurrence is then realized as a product of such matrices, and so
for any m, (

Zl
Zl+1

)
= Rn(l −m− 1, l) ·

(
Zl−m−1

Zl−m

)
.(2.13)

The product

Rn(l −m− 1, l) = Tn(αl, βl, γl) · · ·Tn(αl−m−1, βl−m−1, γl−m−1)

is still a block matrix made up of four n × n Toeplitz blocks. Consequently, the
values of Zl−1 and Zl can be computed from those of Zl−m−1 and Zl−m by a single
matrix–vector multiplication using a 2n× 2n matrix with n× n Toeplitz blocks.
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FAST DISCRETE POLYNOMIAL TRANSFORMS 1079

In particular, (
Zn

2

Zn
2 +1

)
= Rn

(
0,
n

2

)
·
(
Z0

Z1

)
.(2.14)

Recalling the discussion within the proof of Lemma 2.1, multiplication of an n × n
Toeplitz matrix by a vector may be performed by standard FFT techniques using
at most 9n(1 + logn) + 2n operations. Four such matrix–vector multiplications are
required to compute (2.14) so that an additional 36n(1 + log n) + 8n operations are
required to compute Zn

2
and Zn

2 +1 and, in particular, Zn
2

(0) and Zn
2 +1(0) from our

initial data of Z0 and Z1.
The point of this is to decompose the problem into two half-sized subproblems;

we shall compute the Zl for l > n/2+1 by applying equation (2.13) to Zn
2

and Zn
2 +1.

As we indicated previously in Figure 2.2, the values Zl(0) for l > n/2+1 depend only
on the initial half-segments of the sequences Zn

2
and Zn

2 +1. Similarly, the values Zl(0)
for l < n/2 may be computed by applying the recurrence to the initial half-segments
of the sequences Z0 and Z1. This is reexhibited in Figure 2.3, in which the diagonal
lines display the dependence of the desired output Zl(0) on the various “subtriangles”
in the grid for a problem of size n = 16.

Consequently, we see that to continue to obtain the remaining Zl(0)’s, we need
only keep Zj(k) for 0 ≤ k < n/2 and j = 0, 1, n/2, and n/2 + 1. Thus step 2 proceeds
by throwing away half of each of the sequences Z0, Z1, Zn

2
, and Zn

2 +1 and then
computing Zn

4
(k) and Zn

4 +1(k) (0 ≤ k < n/2) from the truncated sequences Z0 and
Z1 and computing Z 3n

4
(k) and Z 3n

4 +1(k) (0 ≤ k < n/2) similarly from the truncated
sequences Zn

2
and Zn

2 +1.
At the end of step 2, we own the first halves of the sequences Z0, Z1; Zn

4
, Zn

4 +1;
Zn

2
, Zn

2 +1; Z 3n
4
, Z 3n

4 +1. Again, we throw away the latter halves of each (half-) se-
quence and continue by performing four multiplications by Toeplitz matrices of size
n/4, and so on.

All of this is illustrated again by Figure 2.3 for a problem of size n = 16 in which
we have indicated which values in the grid we have obtained after each step in the
algorithm. Thus it shows that step 0 results in the sequences Z0 and Z1. After step
1, we have also obtained the sequences Z8 and Z9, which we then truncate in half
while also cutting the sequences Z0 and Z1 in half. From this subset of data, we can
then compute one quarter of the sequences Z4, Z5, Z12, and Z13 and, after truncating
each of the previous data sequences in half, a quarter of the sequences Z0, Z1, Z8,
and Z9 as well. Finally, in the last step, we obtain the remaining pieces, one eighth
of the sequences Z2, Z3, Z6, Z7, Z10, Z11, Z14, and Z15.

The complexity of the algorithm follows easily from an argument similar to that
of Lemma 2.1. The process of “throwing away” is just a standard projection, so even
if we include it in our estimate, it requires at most an additional 4n operations at
the first step. Having cut the vectors Z0, Z1, Zn/2, and Zn/2+1 in half, we now have
two identical subproblems that are half the size of the original problem, in which we
computed Zn/2 and Zn/2+1 from Z0 and Z1. Thus if we let T (n) denote the number
of operations needed to compute the elements Zj(0) from the initial data of Z0 and
Z1, we obtain the recurrence

T (n) = 36n(1 + logn) + 8n+ 4n+ 2T
(n

2

)
= 48n+ 36n logn+ 2T

(n
2

)
.(2.15)

Iterating (2.15) yields

T (n) ≤ 48n logn+ 36n log2 n.(2.16)
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1080 J. R. DRISCOLL, D. M. HEALY, JR., AND D. N. ROCKMORE

Fig. 2.3. Computation of the Zl(0) for l < n by a cascade of convolutions of decreasing size.
The relevant ranges of Z are highlighted, and the step in which they are calculated is indicated.

Finally, throwing in the operations needed to initially compute Z0 and Z1, we see
that at most 48n logn+ 36n log2 n+ 9n(1 + logn) + 2n = O(n log2 n) operations are
needed to compute the projections.

Remarks. 1. As regards the storage requirements of the precomputed data struc-
ture, it is clear that all that is needed are the various Toeplitz matrices in the array:

Rn

(
0,
n

2

)
Rn

2

(
0,
n

4

)
Rn

2

(
n

2
,

3n

4

)
Rn

4

(
0,
n

8

)
Rn

4

(
n

4
,

3n

8

)
Rn

4

(
n

2
,

5n

8

)
Rn

4

(
3n

4
,

7n

8

)
...

R4(0, 2) R4(4, 6) . . . . . . R4(n− 4, n− 2) .

In fact, each should be suitably augmented to circulant matrices in order to effect
an efficient matrix–vector multiplication. Analysis similar to that used in Remark 3
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FAST DISCRETE POLYNOMIAL TRANSFORMS 1081

following the proof of Lemma 2.1 shows that this will require O(n logn) storage.
2. The Toeplitz matrices in the array above may be generated in O(n log2 n)

operations. The idea here is to build the larger R matrices at the top of this array
from the smaller matrices lower down, which will have already been computed.

We start by filling in the bottom level of the array, building all of the matrices of
the form R4(2j, 2j + 2). Notice that we actually only need every other one of these
for the lowest level of our data structure, but the rest are required for building the
next level. These matrices may be combined pairwise, as detailed below, in order
to obtain the matrices at the next level. Explicitly, we combine R4(4j, 4j + 2) with
R4(4j+2, 4j+4) to obtain R8(4j, 4j+4). Again, only half of these results are needed
to fill out the second level of the data structure, and the rest are required for building
the third level. Continuing in this fashion, we end up with all of the matrices that we
need, up to Rn(0, n/2).

The basic step is as follows: given matrices Rp(j, j +m) and Rp(j +m, j + 2m),
determine R2p(j, j + 2m) efficiently. To see this, it is helpful to note that each of the
four Toeplitz blocks of one of these matrices, say Rp(j, j + m), may be written as
a polynomial expression in the powers of the nilpotent matrix N of degree no more
than m. The blocks are completely determined by the coefficients of these polynomials,
and multiplication of a pair of R matrices corresponds to 2-by-2 matrix multiplication
using polynomial arithmetic on the entries. Thus the entries of R2p(j, j + 2m) may
be computed from those of Rp(j, j +m) and Rp(j+m, j+ 2m) using fast polynomial
arithmetic for polynomials of degree no more than m. Therefore, this may be done in
O(m logm) operations.

The complexity of obtaining the entire array is now determined as in several
similar calculations that we have done earlier; at the lth level (starting at the bottom)
of log n levels, we have n/2l matrices to compute at O(l2l) complexity each. This leads
to the given complexity of O(n log2 n) for the entire array.

2.3. Some practical considerations and an example. The approach of sec-
tion 2.2, while theoretically interesting, is, in fact, numerically rather suspect. Part
of the problem comes from the step of first projecting the data vector onto the mono-
mials. These functions, while linearly independent in exact arithmetic, are so close
to being dependent as to be nearly useless in practice. See, for example, [Ga2] for
a discussion of the condition number of expansions of polynomial functions in the
monomial basis and other bases. Numerical experiments confirm that when the al-
gorithm presented above is implemented in floating-point arithmetic, it can produce
very unreliable answers for problems of modest size.

To treat this potential problem, we now prove a slight generalization of the re-
currence technique of the last section that permits us to replace the monomials with
other polynomial bases that satisfy simple constant coefficient recurrence relations.
In particular, we have in mind the shifted Chebyshev polynomials. They satisfy the
recurrence

T ∗n+1 = (4x− 2)T ∗n(x)− T ∗n−1(x).(2.17)

Such a recurrence can be run in either the forward direction or the backward direction,
in which case we obtain

T ∗n−1(x) = (4x− 2)T ∗n(x)− T ∗n+1(x).

Consequently, we see that running the recurrence backwards from 0 allows the def-
inition of T ∗−k(x) = T ∗k (x) for all values of k. Notice that, in general, T ∗k (x) is a
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1082 J. R. DRISCOLL, D. M. HEALY, JR., AND D. N. ROCKMORE

polynomial of degree |k|. Equality for negative and positive indices follows from the
fact that the recurrence is the same in either direction.

More generally, any constant coefficient recurrence can be run in either direction,
producing polynomials of degree |k| for index k, assuming initial conditions that
dictate polynomials of degree 0 and 1 for indices 0 and 1, respectively. For example,
if a system satisfies the recurrence

pk+1(x) = (αx+ β)pk(x) + γpk−1(x),

then we obtain the “backward recurrence”

pk−1(x) = − 1

γ
(αx+ β)pk(x) +

1

γ
pk+1(x).

This simple observation allows us to couple our algorithm with polynomials that
satisfy such recurrences.

Theorem 2.4. Suppose that the polynomial families {pk(x)| − n ≤ k < n} and
{Φl(x)|l = 0, . . . , n− 1} satisfy three-term recurrences

pk+1(x) = (αx+ β)pk(x) + γpk−1(x),(2.18)

Φl+1(x) = (alx+ bl)Φl(x) + clΦl−1(x),(2.19)

with deg(pk) = |k| and Φ0 = 1, and set Φ−1 = 0. Suppose that the projections 〈f, pk〉
are known, −n ≤ k < n. From this, the projections 〈f,Φl〉, l = 0, . . . , n − 1, can be
computed in O(n log2 n) operations.

Proof. Again, we may assume without loss of generality that the weight function
is identically 1. Define the sequence Zl for each l = 0, 1, . . . , n− 1 by

Zl(k) = 〈f, pkΦl〉(2.20)

for k = −n, . . . , 0, 1, . . . , n − 1. Our goal is to obtain the values Zl(0) = 〈f, p0Φl〉.
Instead, we have the values Z0(k) = 〈f, pkΦ0〉. We hope to proceed by convolution as
in Theorem 2.3 and push up from Z0 to the higher sequences Zl.

Recurrence (2.19) for the Φl shows that for l > 0,

Zl+1(k) = al〈f, xpkΦl〉+ bl〈f, pkΦl〉+ cl〈f, pkΦl−1〉
= al〈f, xpkΦl〉+ blZl(k) + clZl−1(k).

Now use recurrence (2.18) for the pk’s to see that

〈f, xpkΦl〉 =
1

α
〈f, pk+1Φl〉 −

β

α
〈f, pkΦl〉 −

γ

α
〈f, pk−1Φl〉

=
1

α
Zl(k + 1)− β

α
Zl(k)− γ

α
Zl(k − 1).

Therefore,

Zl+1(k) =
al
α

[
Zl(k + 1) +

(
α

al
bl − β

)
Zl(k)− γZl(k − 1)

]
+ clZl−1(k)(2.21)

= ulZl(k + 1) + vlZl(k) + wlZl(k − 1) + clZl−1(k).(2.22)
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FAST DISCRETE POLYNOMIAL TRANSFORMS 1083

Fig. 2.4. The computation of Z7(6) depends only on the computation of Zi(j) for (i, j) in the
shaded triangle.

Observe that the weights in expression (2.22) are independent of k. As in the
case of Theorem 2.3, the sequence Zl+1 is obtained from the sequences Zl and Zl−1

by convolving each with a fixed mask and then adding the resulting vectors. However,
there is a difference. To describe this, it is again instructive to view the computa-
tion graphically. Following Theorem 2.3, we consider a function Z defined on a grid
described by the l- and k-axes such that Z(l, k) = Zl(k). From this point of view,
recurrence (2.22) indicates that a given value Zl+1(k) depends on knowing only any
two adjacent vertical lines of data contained within the triangle determined by the
vertices (l, k), (0, k + l), and (0, k − l). Figure 2.4 is an example.

Because in this case recurrence (2.22) “reaches” both down and up in k, slight
modifications to the proof of Theorem 2.3 are required. Since the complexity counts
are very similar, we will only point out the major changes and leave the details to the
interested reader.

In analogy with Theorem 2.3, our goal is to express the full computation as a
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1084 J. R. DRISCOLL, D. M. HEALY, JR., AND D. N. ROCKMORE

Fig. 2.5. Computation of the Zl(0) for l < 16 by a cascade of convolutions of decreasing size.
The relevant ranges of Z are highlighted, and the step in which they are calculated is indicated.

divide-and-conquer algorithm. Figure 2.5 indicates how this can be accomplished.
Starting with the full data of Z0 and Z1, we will construct Zn

2
and Zn

2 +1. The values
Zj for j < n/2− 1 depend on only half of the sequences Z0 and Z1, and similarly for
Zn

2 +j , Zn
2

, and Zn
2 +1. Thus by keeping only the relevant values of these two pairs

of sequences, we will have divided the original computation into two computations of
half of the original’s size. Continuing in this fashion, we ultimately obtain all values
Zl(0). We need show only that the “divide” portion of the algorithm can be performed
efficiently—that is, in O(j log j) operations for a problem of size j.

Again, we need the initial data of Z0 and Z1. We assume that Z0 is given. By
definition,

Z1(k) = 〈f, pkΦ1〉
= 〈f, (a0x+ b0)pk〉
= a0〈f, xpk〉+ b0Z0(k).
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FAST DISCRETE POLYNOMIAL TRANSFORMS 1085

Notice that by using recurrence (2.18) for pk+1, we may build the first summand out
of at most three shifted copies of Z0. Thus as a first step, a total of at most an
additional 3n operations are needed to compute Z1 from Z0.

To compute the remaining Zl’s, we wish to rewrite recurrence (2.22) as a matrix
equation. We can do this—up to “edge effects”—as we will now explain. For any
complex numbers w, y, and z, let Cn(w, y, z) denote the 2n × 2n circulant matrix
determined by setting the second row equal to w, y, z, 0, . . . , 0,

Cn(w, y, z) =



y z 0 · · · 0 0 w
w y z · · · 0 0 0
0 w y · · · 0 0 0
...

...
... · · ·

...
...

...
0 0 0 · · · w y z
z 0 0 · · · 0 w y


.(2.23)

Using the convention that

Zl =


Zl(n− 1)

...
Zl(0)

...
Zl(−n)

 ,

consider the vectors Z ′l and Z ′l+1 defined by the expression(
Z ′l
Z ′l+1

)
=

(
0 I2n

clI2n Cn(wl, vl, ul)

)
·
(
Zl−1

Zl

)
.(2.24)

Notice that Z ′l = Zl but that Z ′l+1 differs from Zl+1 by at worst the entries Zl+1(n−1)
and Zl+1(−n). This is precisely the aforementioned “edge effect.” If we define

An(l) =

(
0 I2n

clI2n Cn(wl, vl, ul)

)
,(2.25)

then we can make the following more general statement: a product of matrices of
the form of An(l+ r) · · ·An(l) will still be composed of four 2n× 2n circulant blocks,
and the edge effects incurred when by multiplying this product by the vector ( Zl

Zl+1
)

will still affect only (at most) the r − 1 outermost values of Zl+r−1 and Zl+r. More
precisely, a simple inductive argument yields the following claim.

Claim. Let 0 ≤ r < n. Define Z ′l+r−1 and Z ′l+r by(
Z ′l+r−1

Z ′l+r

)
= An(l + r) · · ·An(l) ·

(
Zl−1

Zl

)
.

Then Z ′i(j) = Zi(j) for j = −(n− r − 2), . . . , n− r − 2 and i = l + r − 1, l + r.
The import of the claim is that if we compute the product R · (Z0

Z1
), where

R = An(0) · · ·An
(
n

2
− 1

)
,(2.26)

then we will correctly compute the values Z n
2+i

(j) for i = 0, 1 and −(n/2− 1) ≤ j ≤
n/2− 1. Notice that this is precisely the data we need in order to effect the “divide”

D
ow

nl
oa

de
d 

05
/1

4/
18

 to
 1

29
.1

70
.1

16
.2

35
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



1086 J. R. DRISCOLL, D. M. HEALY, JR., AND D. N. ROCKMORE

portion of this algorithm (cf. Figures 2.4 and 2.5). The matrix R is composed of four
2n× 2n circulant blocks, and thus the matrix–vector multiplication (2.26) requires at
most 64n(1 + logn) + 16n operations (cf. the discussion in the proof of Theorem 2.3).
We continue by throwing away the upper and lower quarters of the vectors Z0, Z1, Z ′n

2
,

and Z ′n
2 +1, forming two new subproblems of size n/2, and repeating the procedure.

The analysis now follows that of the proof of Theorem 2.3.
Remark. Notice that if initially only the projections onto the pk’s for positive k

were given, then the projection onto the pk’s for negative k could obtained efficiently
by using Theorem 2.3 applied to the backwards recurrence.

In particular, the shifted Chebyshev polynomials satisfy all of our requirements:
they have a constant coefficient recurrence relation, fast projection is possible by
Corollary 2.2, Tk = T−k, and they possess relatively salutary numerical properties,
even on a uniform grid. We have applied them in the case of the Hahn polynomial
transforms with a great improvement in numerical accuracy over the method of The-
orem 2.3.

Example 1: Fast Hahn polynomial transform. To illustrate Theorem 2.4 we pro-
ceed with an example and discuss its application to the specific case of the Hahn
polynomials, a well-known discrete orthogonal polynomial family. This is, in fact,
the relevant family of orthogonal polynomials for the California Lottery example dis-
cussed in section 1, and it provides the spherical functions for the k-sets of n-set
graph. We begin by summarizing the relevant properties of the Hahn polynomials.
We follow Stanton’s notation of [St1], wherein a good bibliography for further sources
is also contained. For general facts about orthogonal polynomials, Chihara’s book [C]
provides a friendly introduction to the subject.

The Hahn polynomials

Qj(x;α, β,N) =

j∑
i=0

(−j)i (1 + α+ β + j)i (−x)i
i! (1 + α)i (−N)i

are defined on the finite set x = 0, 1, . . . , N for j = 0, 1, . . . , N. They are orthogonal
with respect to the hypergeometric distribution

W (j;α, β,N) =

(
−1− α
−β + N

)(
−1− j
β

)
,

which is positive in the cases that we consider, α, β < −N.
For the purpose of our calculations, we scale things so that all of the action takes

place on the uniform grid in [0, 1],
{
k/(N + 1)

∣∣k = 0, . . . , N
}
. For fixed α, β, and N ,

define

Q∗n(x) = Qn( (N + 1)x;α, β,N)

for x in the grid. Then we have the three-term recurrence

Q∗n+1(x) =

(
bn + dn − (N + 1)x

bn

)
Q∗n(x)− dn

bn
Q∗n−1(x)(2.27)

derived from that for Hahn polynomials, with

bn =
(n+ α+ β + 1)(n+ α+ 1)(N − n)

(2n+ α+ β + 1)(2n+ α+ β + 2)
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FAST DISCRETE POLYNOMIAL TRANSFORMS 1087

and

dn =
n(n+ β)(n+ α+ β +N + 1)

(2n+ α+ β)(2n+ α+ β + 1)
.

The calculation begins with projections of the data vector f onto the shifted
Chebyshev polynomials T ∗n(x). The projections are taken as l2 inner products on the
uniform grid in [0, 1], weighted by the hypergeometric distribution W on the grid. For
the balance of this example, we will use this weighted l2 inner product.

As described in Corollary 2.2, all of these projections may be done in O(N log2N)
time. We now think of these as projections onto the functions T ∗nQ

∗
0 and employ the

techniques described in Theorem 2.4 for efficiently changing this information into the
desired projections onto the Q∗n’s.

We use the coefficients of recurrence (2.17) to construct the convolution masks
described in Theorem 2.4. In practice, we also normalize the recurrences by the l2

norms of the Hahn polynomials. Define

Zl(k) =
1

‖Q∗l ‖
〈f, T ∗kQ∗l 〉, −N ≤ k < N,

with T ∗k = T ∗−k. Then

Zl(k) = Al−1Zl−1(k) +Bl−1 {Zl−1(k − 1) + Zl−1(k + 1)}+ Cl−1Zl−2(k),

with

Al =
bl + dl − N+1

2

bl

‖Q∗l ‖
‖Q∗l+1‖

.

One-step convolution coefficient masks for producing a sequence Zl from lower in-
dex sequences Zl0 and Zl0+1 may be generated by an appropriate recursion. In the
derivation that follows, Mj and Nj denote the one-step convolution masks for obtain-
ing Zj+1 from Zj and Zj−1; in the present case, Mj = {. . . , 0, Bj , Aj , Bj , 0, . . .} and
Nj = {. . . , 0, 0, Cj , 0, 0, . . .}. Then

Zl+1 = Ml ∗ Zl + Nl ∗ Zl−1

=Ml ∗ (Ml−1 ∗ Zl−1 +Nl−1 ∗ Zl−2) + Nl ∗ Zl−1

= (Ml ∗Ml−1 +Nl) ∗ Zl−1 + (Ml ∗Nl−1) ∗ Zl−2

= Ml (2) ∗ Zl−1 + Nl (2) ∗ Zl−2.

Likewise we can continue all the way down to Zl0 and Zl0+1:

Zl+1 = Ml (l − l0) ∗ Zl0+1 +Nl (l − l0) ∗ Zl0
with multistep masks Ml (j) and Nl (j) defined recursively by

Ml (j + 1) = Ml (j) ∗Ml−j +Nl (j),

Nl (j + 1) = Ml (j) ∗Nl−j
with initial conditions

Ml (1) = Ml, Nl (1) = Nl.

Using this, we generate and prestore the various multistep masks as described in
Theorem 2.4, and run the tree of convolutions. Figure 2.6 shows the resulting steps
of a small calculation, starting with Z0 and Z1, and then filling out the various other
sequences in the tree.
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1088 J. R. DRISCOLL, D. M. HEALY, JR., AND D. N. ROCKMORE

Fig. 2.6. Stages in the computation of the Zl for the Hahn polynomials. Z0 is projection
onto the Chebyshev polynomials. The desired transform values are the Zl(0)’s. This example is the
transform of Q∗8.

3. Fast spherical transforms for distance transitive graphs. We now em-
ploy the various results of the last section to obtain results leading up to a fast Fourier
transform for distance transitive graphs. As mentioned, these results are of interest in
several problems of data analysis, such as the California Lottery example mentioned
in section 1.

Briefly, the setting is as follows. Let G be a finite group acting as isometries on
a finite graph X with distance function d(·, ·) given by the usual measure of shortest
path. Recall that X is distance transitive (for G) if given any two pairs of points
(x, y), (x′, y′) ∈ X such that d(x, y) = d(x′, y′), there exists s ∈ G such that (sx, sy) =
(x′, y′). Let L2(X) denote the vector space of complex-valued functions on X. Then
L2(X) affords a linear representation of G by left translation. In this case, L2(X)
may be decomposed into irreducible subspaces

L2(X) = V0 ⊕ · · · ⊕ VN ,

where N is the maximum distance between two points in X.
Fix a basepoint x0 ∈ X and let H be the stabilizer of x0 in G. Then X is in

a natural 1:1 correspondence with G/H and L2(G/H) is the vector space of right
H-invariant functions on G. If Ωk denotes the sphere of radius k about x0, then the
algebra of functions constant on each Ωk is isomorphic to the algebra of H-biinvariant
functions on G, denoted L2(H\G/H).

The fact that L2(X) is multiplicity free is equivalent to the existence in each Vk of
a unique function φk, constant on each Ωk and normalized by φk(x0) = 1. Classically,
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FAST DISCRETE POLYNOMIAL TRANSFORMS 1089

the function φk is called the kth spherical function on X (cf. [He] and the references
therein, as well as the remarks at the close of section 3.1.)

Let xj ∈ Ωj . Then in analogy with the classical case (see, e.g., [He, Chapter 4]),
we define for any function f constant on each Ωk the spherical transform of f at φi
to be the sum

f̂(φi) =
N∑
j=0

f(xj)φi(xj)|Ωj |.

The discrete spherical transform (DST) of f is the collection of transforms {f̂(φi)}i.
Direct computation of the DST requires O(N2) operations. For large N , this cost

quickly becomes prohibitive. In this section, we give an algorithm that computes the
DST for spherical functions from distance transitive graphs inO(N log2N) operations.
By the same techniques, we may also invert the transform in the same number of
operations and consequently obtain an O(N log2N) algorithm for convolution of two
H-biinvariant functions.

Section 4 will show that the problem of finding an FFT for distance transitive
graphs may be reduced to that of finding an efficient projection onto the spherical
functions, an orthogonal family of special functions on the graph. This section dis-
cusses the fast DST. We begin by giving an expanded review of the group theoretic
background (section 3.1), sufficient to present the fast algorithm in section 3.2.

3.1. Background and notation. In the interest of making this paper as self-
contained as possible, we sketch the group-theoretic background and notation. We
mainly follow Stanton’s expositions [St1, St3], which are very accessible and provide
a wealth of references. For the necessary graph-theoretic terminology—with special
attention paid to distance transitive graphs—see Biggs [Bi]. Serre’s book [S] provides
a nice introduction to the representation theory of finite groups.

Throughout, X is a distance transitive graph. Thus X is a finite metric space
with integer-valued distance d (taken to be the usual distance of the shortest path
on the graph) with G a group of isometries of X (acting on the left) satisfying the
property of two-point homogeneity:

If x, y, x′, y′ ∈ X are such that d(x, y) = d(x′y′), then there exists g ∈ G such that
gx = x′ and gy = y.

In this case, X is also said to be a two-point homogeneous space (with respect to
G and d).

It is perhaps instructive at this point to recall the analogy here with the usual
2-sphere in R3. In this case, we know that any pair of points on the sphere which are
a fixed distance apart can be moved into any two other such points by a rotation—or
isometry of R3. Thus the rotation group SO(3) acts two-point homogeneously on the
2-sphere. Stanton’s papers [St1, St3] do a terrific job of spelling out these analogies.

Thus since d(x, x) = 0 = d(x′, x′) for every x, x′ ∈ X, there is a g ∈ G such
that gx = x′, i.e., G acts transitively on X. Let x0 ∈ X denote a fixed basepoint
and H = {g ∈ G | gx0 = x0} denote the stabilizer subgroup of x0. Since G acts
transitively on X, any element x ∈ X can be written as x = sx0 for some s ∈ G and
if sx0 = x = tx0, then s−1tx0 = x0 and hence s−1t ∈ H and t ∈ sH. Thus there is a
natural correspondence between X and the coset space G/H, associating any element
x = sx0 with the coset sH. Keeping in mind the analogy with the 2-sphere, consider
the subgroup H = SO(2) < SO(3) of rotations that fix the north pole. Cosets are
represented by circles of latitude, with coset representatives in 1:1 correspondence
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1090 J. R. DRISCOLL, D. M. HEALY, JR., AND D. N. ROCKMORE

with a choice of points at all possible latitudes. Any two points of the same latitude
differ by only a rotation about the north pole.

Under the correspondence between points in X and cosets in G/H, the vector
space of complex-valued functions on X, L2(X), is isomorphic to the vector space of
complex-valued functions on G/H, L2(G/H), by defining

f(sH) ≡ f(sx0).

Any function on G/H then naturally extends to f̃ , a function defined on the entire
group G, by declaring it to be constant on cosets,

f̃(s) ≡ f(sH).

It is not hard to check that f̃ is well defined and that

f̃(sh) = f̃(s).(3.1)

Thus f̃ is a (right) H-invariant function on G. Conversely, it is easy to see that for
any subgroup H < G, the subspace of L2(G) satisfying (3.1)) is equivalent to the
L2(G/H). Following along the analogy with the 2-sphere, L2(SO(2)\SO(3)/SO(2))
can be identified with the subspace of functions on the 2-sphere which are constant
on latitudes.

The action of G on X gives rise to a representation of G in L2(X) by translation.
More precisely, for every s ∈ G and f ∈ L2(X), a new function ρ(s)f ∈ L2(X) can
be defined by

[ρ(s)f ](x) ≡ f(s−1x).

In this manner, each ρ(s) defines a linear operator on L2(X) such that ρ(st) = ρ(s)ρ(t)
and thus is a representation of the groupG. This representation is, in general, reducible
in the sense that there exist proper subspaces of W1, . . . ,Wr such that each Wi is G-
invariant (i.e., ρ(s)Wi ⊂ Wi for all s ∈ G) and L2(X) = W1 ⊕ · · · ⊕Wr. A subspace
W is G-irreducible if it contains no proper G-invariant subspaces. For L2(X), an
irreducible decomposition can be understood by considering the action of H.

Let Ωk denote the sphere of radius k about x0,

Ωk = {x ∈ X | d(x, x0) = k}.(3.2)

Then the Ωk’s are exactly the H-orbits in X. That is, X is the disjoint union of the
Ωk’s and if x, y ∈ Ωk, then hx = y for some h ∈ H and, conversely, if hx = y, then
x, y ∈ Ωk for some k. In the case of the 2-sphere, the associated “Ωk’s” are the circles
of latitude.

A subspace W of L2(X) is H-invariant if for all f ∈W , ρ(h)f ∈W for all h ∈ H.
Thus a function constant on each of the Ωk’s is H-invariant and vice versa. Hence if N
is the maximum distance occurring in X, then the subspace of H-invariant functions
in L2(X) is of dimension N+1. This may be immediately translated into a statement
about functions onG: under the association of L2(X) with right H-invariant functions
on G, the H-invariant functions of L2(X) become functions which are both left and
right H-invariant, i.e., functions f ∈ L2(G) such that

f(h1sh2) = f(s)
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FAST DISCRETE POLYNOMIAL TRANSFORMS 1091

for all h1, h2 ∈ H. Such H-biinvariant functions are then naturally associated with
the space of functions constant on double cosets H\G/H and thus are denoted as
L2(H\G/H). Hence we see that L2(H\G/H) is of dimension N + 1.

Note that the subspaces L2(X) and L2(H\G/H) are, in fact, algebras under
convolution: if f, g ∈ L2(X), then define f ? g ∈ L2(X) by

f ? g(x) =
∑
s∈G

f̃(s)g(s−1x),(3.3)

where f̃ is the function on G derived from f by extending it to be constant on cosets
of H as in (3.1). It is easy to check that if f and g are H-invariant, then their
convolution is as well.

As a complex representation space for a finite group G, L2(X) may be decomposed
into G-irreducible subspaces (cf. [S, section 1.4, Theorem 2]). In the general situation
of decomposing the permutation representation arising from a finite group G acting
transitively on a set X, this irreducible decomposition need not be unique. However,
under the assumption of distance transitivity, an irreducible decomposition is indeed
unique.

Theorem 3.1 ([St1, Theorem 2.6]). Let all notation be as above. Then as a
representation of G, the space L2(X) has a unique decomposition into irreducible
subspaces as

L2(X) = V0 ⊕ V1 ⊕ · · · ⊕ VN ,

where the Vi are all pairwise inequivalent—that is, the representation of G in L2(X)
is multiplicity-free.

The proof of this theorem is not crucial for the main results, but it is worth re-
marking that it depends only on the fact that G acts two-point homogeneously on
X and as such is a general fact about permutation representations (cf. [W, Chapter
5, section 29]). In this context, a proof follows from the fact that Theorem 3.1 is
equivalent to the statement that the intertwining algebra of the permutation repre-
sentation is commutative. (The intertwining algebra is the algebra of linear operators
T that commute with the permutation representation ρ—i.e., the set of T such that
Tρ(s) = ρ(s)T for all s ∈ G.) To show this commutativity, choose a basis for L2(X)
consisting of “delta functions” or point masses concentrated at single points. For
0 ≤ k ≤ N , define the |X| × |X| matrices Dk by

Dk(x, y) =

{
1 if d(x, y) = k,
0, otherwise.

(3.4)

Straightforward combinatorial arguments (e.g., [St1, St3]) show that the Dk’s
commute and span the intertwining algebra, which must then be of dimension N + 1.
Moreover, the algebra is generated by D1 since the Dk’s satisfy the following three-
term recurrence [St1, St3],

D1Di = ci+1Di+1 + aiDi + bi−1Di−1,(3.5)

where

ci+1 = |{z : d(x, z) = 1, d(y, z) = i}| for any fixed x, y with d(x, y) = i+ 1,

ai = |{z : d(x, z) = 1, d(y, z) = i}| for any fixed x, y with d(x, y) = i,

bi−1 = |{z : d(x, z) = 1, d(y, z) = i}| for any fixed x, y with d(x, y) = i− 1.
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1092 J. R. DRISCOLL, D. M. HEALY, JR., AND D. N. ROCKMORE

Consequently, Di is a polynomial in D1,

Di = pi(D1).(3.6)

Since D1 is real symmetric and generates an algebra of dimension N + 1, it has
distinct real nonzero eigenvalues {λ0 < · · · < λN}. Also, sinceD1 is in the intertwining
algebra for the representation ρ and the intertwining algebra is commutative, the λi
eigenspaces must be the G-irreducible subspaces.

The importance of Theorem 3.1 is that it shows that in this special case, the
isotypic and irreducible decompositions coincide so that the irreducible decomposition
is independent of the choice of basis. It is a direct consequence of Theorem 3.1 that
in each Vi there exists a unique one-dimensional H-fixed subspace (e.g., see [D, p. 54,
Theorem 9]). We choose a basis vector φi for this subspace by demanding that
φi(x0) = 1. Note that this is possible since the previous reference—or Frobenious
reciprocity (cf. [S])—shows the existence of some nonzero H-fixed element (hence
constant on each of the Ωk) φi ∈ Vi. Since

D1φi = λiφi(3.7)

and φi is constant on each Ωk, the fact that φi is not identically zero implies that
φi(x0) 6= 0. Hence φi can be normalized so as to assume φi(x0) = 1.

Note that φi may be viewed as either an H-invariant function on X or an H-
biinvariant function on G. As an H-invariant function on X, it is constant on the
spheres Ωk. We call φi the ith spherical function. By counting, we see that the
spherical functions give a basis for the H-invariant functions on X.

For distance transitive graphs, the polynomial nature of the spherical functions is
derived from the self-same property of the commuting algebra for the representation
of G in L2(X).

As shown in [St1], by evaluating the eigenvalue equation (3.7) at Ωk, we move
recurrence (3.5) to the φi’s:

λiφi(Ωk) = γkφi(Ωk+1) + αkφi(Ωk) + βkφi(Ωk−1),(3.8)

where for any x ∈ Ωk,

γk = |{z : z ∈ Ωk+1 and d(x, z) = 1}|,
αk = |{z : z ∈ Ωk and d(x, z) = 1}|, and

βk = |{z : z ∈ Ωk−1 and d(x, z) = 1}|.

An examination of the combinatorics yields

|Ωk|φi(Ωk) = pk(λi).(3.9)

The orthogonality relations for the spherical functions take on the form

1

|X|

N∑
k=0

φi(Ωk)φj(Ωk)|Ωk| = δij
1

dim(Vj)
,(3.10)

where φi(Ωk) makes sense since φi is constant on Ωk. In addition, we have a “dual
orthogonality relation,”

1

|X|

N∑
i=0

φi(Ωk)φi(Ωj) dim(Vi) = δkj
1

|Ωk|
.(3.11)
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FAST DISCRETE POLYNOMIAL TRANSFORMS 1093

We summarize this with the following theorem.
Theorem 3.2. Let X be a finite distance transitive graph with respect to a group

of isometries G. Let

L2(X) = V0 ⊕ · · · ⊕ VN
be the isotypic and hence irreducible decomposition of L2(X) so that N is the max-
imum distance occurring in X. Let φi be the spherical function for Vi and λi as in
(3.7) and Ωk as in (3.2). Then

|Ωk|φi(Ωk) = pk(λi)

for some set of orthogonal polynomials {pk(x) | 0 ≤ k ≤ N} such that pk is of degree
k and the polynomials satisfy a three-term recurrence (3.5).

Remarks. 1. It is worth noting that while the spherical functions φi are deter-
mined by the polynomial functions described above, Theorem 3.2 does not say that
φi(Ωk) is polynomial in k (i.e., equal to some fixed polynomial evaluated at N + 1
fixed points). Rather, this is a statement that the dual functions pk are an orthogonal
polynomial system with respect to the weights dim(Vi), although for many examples
this will also be true of the spherical functions (cf. section 4). As a consequence, in
general the inverse spherical transform is always a projection onto polynomials and
would thus benefit from general results on fast projection onto polynomials. In fact,
such an algorithm can then be transposed to obtain an algorithm for the direct trans-
form with the same complexity, whether or not the direct transform is obtained by
projection onto polynomials.

2. The existence of spherical functions depended only on the fact that the permu-
tation representation of G on L2(G/H) was multiplicity free. This is often summarized
by saying that (G,H) form a Gelfand pair. Gelfand pairs have been much studied of
late. See Gross [Gr] for a survey with applications to number theory and Diaconis
[D] for applications to statistics and probability as well as an extensive bibliography.
Helgason’s book [He] gives a thorough introduction to the study of spherical functions
for compact and locally compact groups with a full bibliography.

As remarked, the polynomial nature follows from the polynomial relation of the
Di’s. This is true in a slightly more general setting than distance transitive graphs. It
can be extended to finite two-point homogeneous spaces in which the metric satisfies
some technical properties (cf. [St1, p. 90]).

Spherical functions may also be computed by character-theoretic methods. Travis
[Tr] generalizes this approach to construct “generalized” spherical functions attached
to any pair of characters ψ and χ for representations of a finite group G and subgroup
H, respectively.

3. While the existence of the spherical functions depends only on the multiplicity-
free nature of the representation, their expression as certain sampled values of or-
thogonal polynomial sets and consequent relations via the recurrence (3.8) use the
integer-valued property of the metric.

4. We should point out that many of the problems and results discussed here
may be phrased in the language of association schemes. Bannai and Ito [BI] give a
beautiful treatment of this subject. We have not pursued this connection.

3.2. Fast spherical transforms on distance transitive graphs. The termi-
nology is that of section 3.1. In particular, recall that H < G is the isotropy group
of a fixed basepoint x0 ∈ X so that L2(H\G/H) is identified with the subspace of
L2(X) of functions constant on spheres around x0.
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1094 J. R. DRISCOLL, D. M. HEALY, JR., AND D. N. ROCKMORE

Theorem 3.3. For distance transitive graphs with maximum distance N , the
spherical transform and its inverse can be computed in at most O(N log2N) opera-
tions.

Proof. Let f ∈ L2(H\G/H). Then the components of f̂ are

f̂(φi) =
N∑
k=0

f(Ωk)φi(Ωk)|Ωk| =
N∑
k=0

f(xk)pk(λi)(3.12)

using

|Ωk|φi(Ωk) = pk(λi)

from section 3.1.
This has the form of polynomial evaluation, or multiplication by the transpose

of the generalized Vandermonde matrix associated with the polynomials pk and the
evaluation points λi:

f̂(φ0)

f̂(φ1)
...

f̂(φN )

 =


p0(λ0) p1(λ0) · · · pN (λ0)
p0(λ1) p1(λ1) · · · pN (λ1)

...
... · · ·

...
p0(λN ) p1(λN ) · · · pN (λN )




f(Ω0)|Ω0|
f(Ω1)|Ω1|

...
f(ΩN )|ΩN |

 = P (Λ)tfΩ.

Likewise, the inverse spherical transform can be written in terms of (P (Λ)t)t =
P (Λ) itself; by the dual orthogonality equation (3.11),

f(Ωk) =
1

|X|

N∑
i=0

f̂(φi)φi(Ωk) dim(Vi).

Using equation (3.10), we rewrite this as

|Ωk|f(Ωk) =
|Ωk|
|X|

N∑
i=0

f̂(φi)pk(λi) dim(Vi).

Up to scaling, this has the form of projection onto the polynomials pk, or multiplica-
tion by the generalized Vandermonde matrix P (Λ). The three-term recurrence relation
is already known explicitly; consequently, the methods of section 2 apply directly to
this computation. Thus the inverse spherical transform can be done in O(N log2N)
operations.

We can also conclude that the transpose problem, the direct spherical transform, is
also fast. This follows, for instance, from the results of Bshouty et al. [BKK]. Roughly
speaking, they observe that if a straight-line algorithm can compute a matrix product
M · v in time O(T (n)) (where M is an n× n matrix and v is a column vector), then
there exists an algorithm computing the transposed product M tv in the same time.
They note that any such algorithm may be encoded in a directed graph and in this
context the “transposed” algorithm is essentially given by reversing all arrows on the
graph.

In our case, this has a concrete interpretation in matrix language. Namely, the
inverse spherical transform algorithm amounts to a factorization of the matrix P (Λ).
The order reversed and transposed factors comprise a factorization of P (Λ)t, which
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FAST DISCRETE POLYNOMIAL TRANSFORMS 1095

effects the direct transform by matrix multiplication. The individual factors have
block structure with Toeplitz blocks, and this does not change upon their transposi-
tion. Therefore, the direct transform is computed with the same complexity as the
inverse.

Finally, consider the convolution of two functions f, g ∈ L2(H\G/H). Recall that
this is simply the convolution over G (cf. equation (3.3)) of H-biinvariant functions
which is again H-biinvariant. As such, it makes sense to compute the DST of the
convolution. It can be shown that for such functions,

|X|f̂ ? g(φi) = f̂(φi)ĝ(φi),

with a quick proof using the multiplicative properties of a Fourier transform on a
finite group and the fact that a spherical function is a particular matrix coefficient
for the symmetry group (cf. [D, pp. 54–56]). Thus we obtain the following result.

Theorem 3.4. Let f, g ∈ L2(H\G/H). Given as initial input the spherical

transforms {f̂(φi)}i, the function f may be recovered in O(N log2N) operations. The
convolution f ? g can be computed in at most O(N log2N) operations. The implied
constants here are universal and depend only on the universal constant for the FFT.

Example 2: Two particular distance transitive graphs.
1. K-sets of an N -set. This is the collection of size-K subsets x ⊂ {1, 2, . . . , N},

|x| = K, with metric d(x, y) = K−|x∩y|, SN as the symmetry group. The K-sets are
made into a graph in the usual way: put edges between those K-sets whose distance
is 1. Assuming that 2K < N, the largest distance is K, occurring for disjoint K-sets.
Picking a basepoint K-set x0, the stabilizer is ∼= SK ×SN−K , so we may identify this
graph with SN/(SK × SN−K).

This is a distance transitive graph of size (NK ). The weights in the spherical func-
tion orthogonality relations are the sizes of the spheres at fixed distances from the
basepoint: |Ωj | = (N−Kj ). Recall that the spherical functions satisfy

|Ωj |φi(Ωj) = pj(λi)

for a family of orthogonal polynomials defined on the collection of eigenvalues for
the adjacency operator. We saw that the spherical functions are eigenvectors of the
adjacency operator and that this provides the three-term recurrence from which the
λi’s and pj ’s may be determined:

λipj(λi) = j2pj−1(λi) + (K − j)(N −K − j)pj+1(λi)

+ [K(N −K)− j2 − (K − j)(N −K − j)]pj(λi).

This is the recurrence for the Eberlein or dual Hahn polynomials. From the case
where j = 1, we get λi = K(N−K)− i(N+1− i). We can now compute the spherical
functions as

φi(Ωj) = c
i∑
l=0

(N −K − i+ 1)l
(−K)s

(
K − j
l

)(
j

−i− l

)
.

This is the Hahn polynomial Qi(j;K − N − 1,−K − 1,K) [KM, St1]. As we have
already seen, these are orthogonal polynomials satisfying a three-term recurrence
(2.27). The norms can be determined from dimVi = (Ni )− ( N

i−1 ).
In this case, we have the recurrence relation needed to make the forward spherical

transform fast, as discussed in Example 1 of the last section. On the other hand, we
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1096 J. R. DRISCOLL, D. M. HEALY, JR., AND D. N. ROCKMORE

know that in every case we have the recurrence relation for the pk’s needed to make
the inverse transform fast.

2. The hypercube: The hypercube ZN2 has the Hamming metric and symmetries
consisting of the hyperoctohedral group, the semidirect product Z2 wr SN . This is
a distance transitive graph. The three-term recurrence from the adjacency operator
eigenequation is

λipj(λi) = jλipj−1(λi) + (N − j)pj+1(λi),

from which we determine the eigenvalues λi = N − 2i and the spherical functions

φi(Ωj) = c
i∑
l=0

(
j

l

)(
N − j
i− l

)
(−1)i−l.

Again, these are orthogonal polynomials with respect to weights |Ωj | = (Nj ) = dimVj ,

known as the Krawtchouk polynomials Ki(j, 1/2, N). This is a particularly nice case
in that the dual polynomials and the spherical polynomials are the same up to a
constant. Thus the forward spherical transform and its inverse are effectively the
same, and can be done fast using the three-term recurrence as before.

4. Computation of isotypic projections. As remarked in section 1, a fast
DST algorithm has applications in spectral analysis for data on distance transitive
graphs. In this section, we wish to explain this in a little more detail. Diaconis’ book
[D, especially Chapter 8] is an excellent introduction to these ideas and also gives
many pointers to the existing literature. (See [DR] for a more thorough account of
the following discussion as well as for other approaches to this problem.)

In general, let G be a finite group acting transitively on a set

X = {x0, x1, . . . , xn}.

The action of G on X then determines the associated permutation representation ρ
of G in L2(X) given by translation,

(ρ(s)f)(x) = f(s−1x).

If η and η′ are two representations of G, then we will write η ∼ η′ if η is equivalent
to η′. Recall that the isotypic decomposition of L2(X),

L2(X) = V0 ⊕ · · · ⊕ VN ,

is defined by the following:
(1) Each Vi is G-invariant.
(2) If ρ(i) := ρ |Vi , then

ρ(i) ∼ miηi,

where the ηi’s are irreducible representations of G, mi is some positive integer, and
i 6= j implies that ηi 6∼ ηj.

The isotypic decomposition is canonical in the sense that it is independent of the
choice of basis for L2(X).

In appropriate settings, data on a such a finite homogeneous space X is viewed as
a vector f ∈ L2(X). The relevant statistics then become the projections of f onto the
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FAST DISCRETE POLYNOMIAL TRANSFORMS 1097

isotypic components. To state things a bit more sharply, the computational problem
is as follows:

Given as input f = (f(x0), . . . , f(xn)), compute for i = 0, . . . , N the projection
of f into the ith isotypic, denoted f (i)(∈ Vi), as

f (i) = (f (i)(x0), . . . , f (i)(xn)).

One way to proceed here is via character theory. Let χi be the character corre-
sponding to ηi. Then [S, Theorem 2.7],

f (i)(x) =
χi(1)

|G|
∑
s∈G

χi(s)f(s−1x).(4.1)

This gives a näıve upper bound of |X||G| operations to compute all projections.
Note that in the example of the California Lottery of section 1, this would give 49!(49

6 )
operations, which is beyond the capabilities of any machine.

Careful analysis of this formula permits significant speedups, even in the general
case.

Theorem 4.1 ([DR, Theorem 2.4]). For any fixed i, the projection onto the ith
isotypic can be computed in at most |X|2 operations. Consequently, all projections
can be computed in at most (N + 1)|X|2 operations.

Let us now specialize the case of interest, in which L2(X) has a multiplicity-free
decomposition so that the isotypic decomposition is actually an irreducible decom-
position. As previously, let H denote the isotropy subgroup of the chosen basepoint
x0 and let {s0 = 1, . . . , sn} denote a fixed set of coset representatives. Let {φi}Ni=0

denote the corresponding spherical functions. In this case, the character formula (4.1)
can be rewritten as

f (i)(xk) =
|H|
|G|χi(1)

N∑
j=0

fk(Ωj)φi(Ωj)|Ωj |,(4.2)

where

fk(Ωj) =
1

|Ωj |
∑
x∈Ωj

f(s−1
k x).(4.3)

The computation of the fk is a preprocessing of the original data whose complexity
will depend on the geometry of X. In any event, this may always be done in at most
|X|2 additions.

Finally, using the notation of the previous sections, we rewrite (4.2) as

f (i)(xk) =
|H|
|G|χi(1)f̂k(φi).

Consequently, using the results of section 3, we have the following result.
Theorem 4.2. Let X be a distance transitive graph for G with maximum distance

N . Then the set of projections f (i) ∈ Vi (i = 0, . . . , N) may be computed in at most

O(|X|2 + |X|N log2N)

operations.
Remark. In some cases, the projections can also be computed combinatorially

using variations of the discrete Radon transform (cf. [D, DR, BDRR]).
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5. Final remarks. Of course, distance transitive graphs are not the only source
of orthogonal polynomials. Another example closely related to this setting is the
construction of orthogonal polynomial systems from group actions on posets [St2]. If
P is a ranked poset, then L2(P ) has a natural decomposition into “harmonics.” In
[St2], Stanton shows that under certain assumptions about the automorphism group
G of P , the space of functions on the maximal elements of P gives a multiplicity-
free representation of G. Again these functions can be written in terms of discretely
sampled orthogonal polynomials.

More generally, one might consider other special function systems satisfying re-
currence relations that arise in a continuum setting. Results similar to those of this
paper can be obtained, provided that an appropriate sampling theorem is available to
reduce the computations to finite ones. Some initial work along this line for the case
of the homogeneous space SO(3)/SO(2) may be found in [DrH]. Maslen has recently
extended these ideas to more general compact groups [M].

Beyond the example of spectral analysis, we are actively seeking other applications
for the techniques presented here. A recent book by Nikiforov, Suslov, and Uvarov
[NSU] cites a large number of tantalizing possibilities.

Acknowledgments. We would like to thank the referees for their suggestions
following a careful reading of the manuscript. We also thank Peter Kostelec and Doug
Warner for their help with the final typesetting.
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