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Abstract: Oral instant membranes can be quickly wetted by the patient’s saliva and dissolved/disintegrated
in the mouth without the need for drinking water and chewing, exhibiting great promise for patients
from children to the elderly who have difficulties with swallowing. However, the reported instant oral
membranes can load and release only one single drug, which greatly hinders their potential applications.
Herein, we employ a sequential electrospinning approach to fabricate dual drug-loaded bilayered gelatin
oral instant membranes. The results indicate that a gelatin membrane with a uniform nanofibrous structure
can be successfully prepared, and that both the hydrophilic model drug and hydrophobic model drug
can be embedded into the gelatin nanofibers. X-ray diffraction results verify that the two drugs are well
distributed in the nanofibrous matrix in an amorphous state. Owing to the excellent water solubility and
large surface area of gelatin nanofibers, the hydrophilic model drug can be quickly dissolved in 101 s,
while the hydrophobic model drug can be completely released in 100 s. The bilayered gelatin nanofibrous
membrane shows promise for simultaneous loading and release of two drugs for fast-dissolving delivery
applications.

Keywords: electrospinning; dual drug release; fast-dissolving; gelatin; bilayered structure

1. Introduction

Recently, oral instant membranes have gained great attention in the pharmaceutical
industry due to their convenience, fast drug release, high bioavailability, and no risk of
asphyxia [1–4]. Unlike conventional solid drug formulations, oral instant membranes are a
kind of thin and flexible dosage form with one or multiple drugs in it, which can be quickly
wetted by patient’s saliva and further dissolved/disintegrated in the mouth without the
need for drinking water and chewing [2,5–9]. Their unique fast-dissolving performance
makes them very promising for patients with swallowing difficulties, such as children
and the elderly [10–14]. Generally, patients who have physical problems with swallowing
may need to take dual drugs or even multiple drugs to treat different diseases [15–19].
Therefore, the design and preparation of multiple drug-loaded oral instant membranes is
highly desirable.

To date, various approaches have been reported to fabricate oral instant membranes,
including solvent casting, hot melt extrusion, and electrospinning. Among these, solvent
casting is the most convenient methods, as oral instant membranes can be quickly pre-
pared after pouring and molding the drug/polymer mixed solution into a customized
mould [20–22]. Rashid et al. used this method to fabricate an orally disintegrating mem-
brane containing ranitidine hydrochloride (RHCl). The membrane could be disintegrated
within 15 s and release 81% of RHCl in 120 s [23]. Unfortunately, it possesses the disadvan-
tage of brittleness in the resulted membrane. In addition, only one drug can be encapsulated
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into the membrane. Hot melt extrusion is another frequently used approach [24]. Pim-
parade et al. produced an oral anti-allergic hot-melt extruded instant membrane. This
membrane was disintegrated in 6–10 s, and the dissolution process was completed in
300 s [25]. However, this technique is only suited for encapsulation of thermostable drugs,
and only one drug can be loaded during the preparation process. Compared with the above-
mentioned two methods, oral instant membranes prepared by the novel electrospinning
approach have many unique characteristics, including large surface area, flexibility, and
high drug encapsulation amount [26–28]. Qin et al. reported that aspirin was encapsulated
within the chitosan/pullulan nanofibers by electrospinning, and the membrane was com-
pletely dissolved into water within 60 s [29]. Similarly, Németh and coworkers presented
an electrospun polyaspartamide fast-dissolving membrane incorporating with vitamin B12,
finding that vitamin B12 was dissolved within 60 s [30]. Ponrasu et al. reported that novel
jelly fig/pullulan nanofibers were rapidly soluble in water within 60 s [31]. Abbaspour’s
group prepared a polyvinylpyrrolidone instant membrane to load valsartan, and found
that 90% of the drug was released within 120 s [32]. From the reported publications, it is
apparent that the conventional electrospinning method only results in fast-dissolving mem-
branes for loading and releasing only a single drug, which cannot meet the requirements of
patients with swallowing difficulties. Thus, it is important to develop a novel method with
the capacity to load and release two different drugs from oral instant membranes.

In this study, we propose a novel sequential electrospinning approach to fabricate a
water-soluble bilayered gelatin membrane with the capacity to be simultaneously loaded
with hydrophilic and hydrophobic drugs. The reason for choosing gelatin as the skeletal
polymer is that gelatin is a water-soluble biopolymer made from the degradation of col-
lagen in acidic or basic conditions. In addition, gelatin is rich in beneficial amino acids,
especially glycine and proline, which can promote wound healing and prevent wrinkles.
Previous studies have shown that gelatin can accelerate the elasticity of connective tissue
and increase cartilage density, and can additionally help to repair intestinal wall damage
and rebuild the protective mucosa of the intestine. The glycine in gelatin has unique
anti-inflammatory effect [33–37]. To verify this hypothesis, we first fabricated gelatin
nanofibrous membranes by electrospinning and investigated the water-induced dissolution
process of the pristine gelatin nanofibrous membranes. Then, a sequential electrospinning
approach was employed to fabricate dual (hydrophilic/hydrophobic) drug-loaded bilay-
ered electrospun membranes and the corresponding drug release profiles were carefully
measured. To the best of our knowledge, this is the first report of a fast-dissolving dual
drug-loaded membrane using the sequential electrospinning technique.

2. Materials and Methods
2.1. Materials

Gelatin (Gel) was purchased from the Rousselot Company (Sonora, TX, USA). Triflu-
oroethanol (TFEA) was supplied by Shanghai Aladdin Biochemical Technology Co. Ltd.
(Shanghai, China). Rhodamine B (Rhb) was obtained from Sinopharm Chemical Reagent
Co. Ltd. (Shanghai, China). Fluorescein (Flu) was provided by Sinopharm Chemical
Reagent Co. Ltd. (Shanghai, China). All reagents were of analytical grade and were used
without further purification.

2.2. Preparation of Pristine Gelatin Nanofibrous Membrane, Single Drug-Loaded Gelatin
Nanofibrous Membrane, and Dual Drug-Loaded Gelatin Nanofibrous Membrane

Gel (0.5000 g) was dissolved in 4 mL of TFEA with stirring for 6 h. The gelatin
solution was poured into a 5 mL medical glass syringe. Gelatin nanofibrous membrane
was prepared using a home-made electrospinning setup containing a high voltage DC
power supply (DW-P303-1ACF0, Dongwen High Voltage Power Supply Co. Ltd., Tianjin,
China), a microinjection pump (LSP01-1A, Baoding Lange Constant Current Pump Co. Ltd.,
Baoding, China), and a collecting plate. The spinning voltage was controlled at 4–8 kV.
The flow velocity of the gelatin solution was fixed at 1.2–1.5 mL/h. The distance from the
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needle to the collecting plate was 12–15 cm. The obtained gelatin membrane was dried in
an oven at 37 ◦C for 24 h before use.

For the preparation of hydrophilic drug-loaded gelatin nanofibrous membrane, 0.0500 g
Rhb powder was dissolved into the gelatin solution with stirring for 2 h. For the prepa-
ration of hydrophobic drug-loaded gelatin nanofibrous membrane, 0.0125 g Flu powder
was dissolved into the gelatin solution with stirring for 2 h. The detailed processes were
the same as before. In order to fabricate dual drug-loaded gelatin nanofibrous membrane,
1500 µL of Gel/Rhb solution was first electrospun and deposited onto the conductive
collector. Then, 1500 µL of Gel/Flu solution was processed into nanofibers and stacked
above the first layer. The bilayered membrane was dried in the oven at 37 ◦C for 24 h.

2.3. Characterization

The morphology of the nanofibrous membrane was observed by a fluorescent micro-
scope and a field emission scanning electron microscope (SEM) (S4800, Hitachi, Tokyo,
Japan). Water contact angle (WCA) images of the gelatin membrane were taken by a
static contact angle tester (DSA25, Kruss, Hamburg, Germany). A 2 µL water droplet was
dripped on the surface of the gelatin membrane and the change in WCA was recorded.
Functional groups in the samples (three kinds of nanofibrous membranes, drug powder)
were obtained using an FTIR spectrometer (TENSOR 27, Bruker, Karlsruhe, Germany). The
X-ray diffraction (XRD) patterns of the samples (three kinds of nanofibrous membranes,
drug powder) were recorded using an X-ray diffractometer (D8 ADVAHCL*, Bruker, Karl-
sruhe, Germany) with Cu Kα radiation. The thickness of the membrane was measured
using a thickness gauge.

2.4. Fast-Dissolving Performance of the Drug-Loaded Electrospun Gelatin Membrane

In order to investigate the in vitro fast-dissolving performance of the electrospun
gelatin membrane, a small piece of the membrane was placed into water. The whole
dissolution process was monitored by a camera, and the dissolution time was recorded. To
study the dual drug release profiles of the gelatin nanofibrous membrane, the absorption
spectra of both Rhb and Flu in the solution were taken using a UV-Vis spectrophotometer
(Jinghua Instruments, Shanghai, China). Experiments were run in triplicate per sample.

3. Results and Discussion
3.1. Characterization and Fast-Dissolving Performance of the Gelatin Nanofibrous Membrane

Figure 1a shows an illustration of the electrospinning fabrication process of the pris-
tine gelatin membrane. The membrane has white appearance and a thickness of 46 µm
(Figure 1b). The SEM image in Figure 1c shows that the membrane contains many bead-free
nanofibers with an average diameter of 0.83 µm (Figure 1d). Further, to investigate the sol-
ubility of gelatin nanofibrous membrane, a drop of water was dropped onto the membrane.
As shown in Figure 1e, where the membrane contacted the water droplet, it completely lost
its fibrous morphology. We found that a clear fingerprint could be observed after pressing
onto the gelatin membrane for 2 s, which was due to the sweat secreted from the fingertip
(Figure 1f) [38]. The wettability of the membrane was measured as 48.1◦, indicating the
strong water affinity of the gelatin membrane (Figure 1g). Finally, we placed the membrane
into water, and found that the membrane first changed its color from white to transparent
after contacting the water, then disappeared (Figure 1h). The above results indicate the
gelatin membrane’s fast-dissolving performance.

In this study, two strategies were implemented to ensure the complete removal of
TFEA. As was noted during the electrospinning process, nanofiber formation was accom-
panied by solvent evaporation. The nanofiber was ejected from the spinning nozzle to the
collector at a very fast rate, and the fast movement of nanofiber favored the quick evapora-
tion of TFEA. In addition, during the electrospinning process the nanofibers became thinner
and thinner due to electrical repulsion. More solvent molecules could be diffused from
the interior of the nanofiber to the surface of the nanofiber, benefiting solvent evaporation.
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Moreover, in order to ensure the complete removal of the TFEA solvent, we placed the
nanofiber membrane into the oven at 37 ◦C for 24 h, which is a relatively long period.
As the nanofiber membrane is highly porous and the nanofiber possesses a large specific
surface area, it is possible to completely remove the residual solvent in the nanofiber.
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Figure 1. (a) Schematic illustration of the fabrication process of the electrospun nanofibrous gelatin
membrane. (b) Optical image of the white gelatin membrane. (c) SEM image and (d) diameter
distribution of the gelatin membrane. (e) Appearance of the membrane after contact with a water
droplet. (f) A fingerprint that formed on the gelatin membrane. (g) WCA images of the gelatin
membrane. (h) The fast dissolution process of the gelatin membrane.

3.2. Characterization and Fast-Dissolving Performance of the Single Drug-Loaded Gelatin
Nanofibrous Membrane

Rhb was used as a hydrophilic model drug, and the mixed Gel/Rhb solution was elec-
trospun into nanofibrous structure by electrospinning (Figure 2a). The resultant nanofibrous
membrane with a thickness of 44 µm showed a purplish-red color due to the incorpora-
tion of the red Rhb dye (Figure 2b). A fluorescence microscope was employed to test the
distribution of the model drug within the nanofibers, and it could be seen that the red
color was uniform within the whole nanofiber, indicating a uniform drug encapsulation of
the hydrophilic model drug in the fiber (Figure 2c). We further detected the FTIR spectra
of the three kinds of samples (Rhb powder, Gel membrane, and Gel/Rhb membrane)
(Figure 2d,e). By comparing the FTIR spectra of different samples, characteristic peaks
at 1591, 1132, and 685 cm−1 in the FTIR of the Gel/Rhb membrane were ascribed to Rhb,
indicating that Rhb was successfully incorporated into the gelatin membrane. XRD studies
were carried out to determine the physical state of Rhb in the gelatin nanofibers. From the
results, it was found that the XRD pattern of the Rhb powder showed numerous distinct
reflections, representing the crystalline areas of Rhb, while after electrospinning, the Rhb in
the Gel membrane exhibited an amorphous state (Figure 2f). Compared with the crystalline
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state, the drug-loaded Rhb membrane in the amorphous state may be dissolved more
quickly. In order to prove this, we further placed the red Gel/Rhb membrane into water,
and found that the membrane could be completely dissolved and the model drug Rhb was
fully released within 101 s (Figure 2g). We then measured the cumulative release profile of
Rhb from the composite membrane; the results indicated the fast and complete release of
the hydrophilic model drug Rhb (Figure S1).

Coatings 2023, 13, x FOR PEER REVIEW 5 of 10 
 

 

the red color was uniform within the whole nanofiber, indicating a uniform drug encap-

sulation of the hydrophilic model drug in the fiber (Figure 2c). We further detected the 

FTIR spectra of the three kinds of samples (Rhb powder, Gel membrane, and Gel/Rhb 

membrane) (Figure 2d,e). By comparing the FTIR spectra of different samples, character-

istic peaks at 1591, 1132, and 685 cm−1 in the FTIR of the Gel/Rhb membrane were ascribed 

to Rhb, indicating that Rhb was successfully incorporated into the gelatin membrane. XRD 

studies were carried out to determine the physical state of Rhb in the gelatin nanofibers. 

From the results, it was found that the XRD pattern of the Rhb powder showed numerous 

distinct reflections, representing the crystalline areas of Rhb, while after electrospinning, 

the Rhb in the Gel membrane exhibited an amorphous state (Figure 2f). Compared with 

the crystalline state, the drug-loaded Rhb membrane in the amorphous state may be dis-

solved more quickly. In order to prove this, we further placed the red Gel/Rhb membrane 

into water, and found that the membrane could be completely dissolved and the model 

drug Rhb was fully released within 101 s (Figure 2g). We then measured the cumulative 

release profile of Rhb from the composite membrane; the results indicated the fast and 

complete release of the hydrophilic model drug Rhb (Figure S1). 

 

Figure 2. (a) Schematic illustration of the process of fabricating of Gel/Rhb membrane by elec-

trspinning. (b) Optical image exhibiting the red appearance of the Gel/Rhb membrane. (c) Image of 

the Gel/Rhb nanofibers from fluorescence microscopy. (d) FTIR spectra and (e) partial enlarged FTIR 

spectra. (f) XRD patterns of Rhb powder, pristine Gel membrane, and Gel/Rhb membrane. (g) Fast 

dissolution process of the Gel/Rhb membrane. 

We then investigated the capacity of the gelatin nanofibrous membrane in terms of 

loading and fast release of a hydrophobic drug. Flu was chosen as a hydrophobic model 

drug, and the mixed Gel/Flu solution was manufactured into the nanofibrous membrane 

by one-step electrospinning (Figure 3a). As shown in Figure 3b, the membrane with a 

thickness of 45 μm showed a yellow appearance due to the incorporation of the dye Flu. 

Employing the fluorescent microscope, uniform green fibers could be observed, indicat-

ing the homogenous encapsulation of the model drug Flu (Figure 3c). The FTIR spectra of 

the Flu powder, Gel membrane, and Gel/Flu membrane (Figure 3d,e) were studied. In the 

Figure 2. (a) Schematic illustration of the process of fabricating of Gel/Rhb membrane by electrspin-
ning. (b) Optical image exhibiting the red appearance of the Gel/Rhb membrane. (c) Image of the
Gel/Rhb nanofibers from fluorescence microscopy. (d) FTIR spectra and (e) partial enlarged FTIR
spectra. (f) XRD patterns of Rhb powder, pristine Gel membrane, and Gel/Rhb membrane. (g) Fast
dissolution process of the Gel/Rhb membrane.

We then investigated the capacity of the gelatin nanofibrous membrane in terms of
loading and fast release of a hydrophobic drug. Flu was chosen as a hydrophobic model
drug, and the mixed Gel/Flu solution was manufactured into the nanofibrous membrane
by one-step electrospinning (Figure 3a). As shown in Figure 3b, the membrane with a
thickness of 45 µm showed a yellow appearance due to the incorporation of the dye Flu.
Employing the fluorescent microscope, uniform green fibers could be observed, indicating
the homogenous encapsulation of the model drug Flu (Figure 3c). The FTIR spectra
of the Flu powder, Gel membrane, and Gel/Flu membrane (Figure 3d,e) were studied.
In the Flu FTIR spectra, the C–H bending vibration of the benzene ring at 1109 cm−1

can be clearly observed. In contrast, in the FTIR spectra of the Gel/Flu nanofibrous
membrane, the characteristic peaks at 1109 cm−1 imply the successful encapsulation of
Flu in the gelatin membrane. The XRD patterns of the Flu powder, Gel membrane, and
Gel/Flu membrane were further investigated (Figure 3f). It can be seen that Flu powder
shows a typical crystalline state with many sharp peaks, while after incorporation into
the gelatin membrane it transforms into an amorphous state. We finally investigated the
fast-dissolving performance of the Gel/Flu nanofibrous membrane (Figure 3g); we found
that after placing the membrane into water, the green dye Flu was immediately released
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and the membrane was completely dissolved in 100 s. The cumulative release profile of
Flu from the composite membrane proved this (Figure S2). These results indicate that
both hydrophilic and hydrophobic drugs can be loaded within the gelatin nanofibrous
membrane, then the drugs can be quickly released from the membrane thanks to the fast-
dissolving performance of the gelatin membrane along with the amorphous state of the
drugs.
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Figure 3. (a) Schematic illustration of the electrospinning equipment. (b) Optical image exhibiting the
prepared sample of the Gel/Flu membrane. (c) Image of the Gel/Flu nanofibers from the flurescent
microscope. (d) FTIR spectra and (e) Partial enlarged FTIR spectra. (f) XRD images of the Flu
powder, pristine Gel membrane, and Gel/Flu membrane. (g) Fast dissolution process of the Gel/Flu
membrane.

3.3. Fabrication of Dual Drug-Loaded Bilayered Gelatin Nanofibrous Membrane and Its
Fast-Dissolving Performance

In order to load two different drugs in the nanofibrous membrane, we employed a
novel sequential electrospinning technique to fabricate dual drug-loaded bilayered gelatin
nanofibrous membranes. As shown in Figure 4a–c, the red Gel/Rhb nanofibrous membrane
was first deposited on the collector by electrospinning. Then, the yellow Gel/Flu nanofi-
brous membrane was further stacked above the first layer to form a bilayered structure. The
thickness of the bilayered membrane was measured as 88 µm. The bilayered membrane
was incubated into water, and it was found that the membrane was first swollen, then
disintegrated, and finally quickly dissolved in 105 s; meanwhile, the two model drugs
were gradually released (Figure 4d). We employed a UV-Vis spectrophotometer to detect
the two released drugs. As shown in Figure 4e, the Flu aqueous solution showed an
adsorption peak at 491 nm, while the Rhb aqueous solution showed a peak at 554 nm. We
then detected the spectra of the solution after dissolving the dual drug-loaded nanofibrous
membrane, and two peaks at 491 and 551 nm were found, again attributed to Flu and
Rhb, respectively. The above results indicate that the dual drug-loaded bilayered gelatin
nanofibrous membrane was able to simultaneously load and release two different drugs.
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Oral instant membranes are a unique kind of drug delivery system for patients with
swallowing difficulties, with the benefits of high bioavailability, good patient compliance,
and rapid drug release [39–41]. However, the reported oral instant membranes are only
able to load and release one drug, which greatly hinders their application [42,43]. Previ-
ous studies have shown that combination therapy using dual-drug loaded nanofibrous
membranes can enhance therapeutic efficiency [44]. In this study, we employed a two-step
electrospinning technique to fabricate dual drug-loaded bilayered nanofibrous membranes.
Unlike from the conventional one-step electrospinning technique, our sequential electro-
spinning technique can be used to construct bilayered or multiple-layered structures, each
layer loaded with different drugs. In order to achieve fast-dissolving performance, we
chose gelatin as the skeleton polymer to improve the dissolution velocity of the membrane.
Gelatin has been proven to be biocompatible, and its amino acid degradation product is
beneficial to the human body [45]. After being manufactured into the nanofibrous structure
via electrospinning, the large surface area and big pore size of the membrane contribute to
fast dissolution [46]. We observed that both a hydrophilic drug (Rhb) and a hydrophobic
drug (Flu) were converted to an amorphous state after electrospinning, which might be due
to the very fast drying process [47]. The two drugs in amorphous state in the nanofibrous
membrane could be released faster than in their respective crystalline states [48]. Overall,
owing to the unique sequential electrospinning technique, good hydrophilicity of gelatin,
and the amorphous state of the two drugs, the dual drug-loaded nanofibrous membrane
showed fast oral dissolving performance.

As a new formation, the dual-loaded nanofibrous membrane was suitable for children
and elderly patients with dysphagia. Such a membrane has many unique advantages.
Drug combination therapy by dual-drug loaded oral instant membranes promise enhance
efficacy compared to mono-therapy approaches. In addition, two drugs loaded into differ-
ent layers could avoid interference during the preparation process, potentially maximizing
the bioactivity retention of the two drugs. The doses of each drug could easily be tuned
according to the needs of individual patients. In addition to the combination of hydrophilic
and hydrophobic drugs, two hydrophilic drugs or two hydrophobic drugs could be encap-
sulated into the membrane as well, depending on the patient. Thus, this study provides
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a paradigm for the fabrication of dual drug-loaded oral instant membranes, which show
great potential for patients with dysphagia.

4. Conclusions

In this paper, we describe an electrospinning approach for fabricating gelatin nanofi-
brous membranes. Thanks to the good hydrophilicity of gelatin along with its nanofibrous
structure, pristine gelatin membranes could be quickly dissolved into water in 100 s.
Two kinds of drugs with different water solubility were incorporated into the gelatin mem-
brane to form a bilayered structure; and the results indicated that both the hydrophilic
drug and hydrophobic drug were homogenously embedded within the gelatin nanofibers.
In vitro dissolution results revealed that the bilayered membrane was quickly dissolved
into water, and the two drugs could be completely released. This study provides an ex-
ample of the design and fabrication of a new type of bilayered nanofibrous membrane
as a fast-disintegrating dual drug delivery system; such dual drug-loaded oral instant
membranes with high patient compliance may find tremendous applications in modern
medicine.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/coatings13010023/s1. Figure S1: Cumulative release of Rhb from
the composite membrane; Figure S2: Cumulative release of Flu from the composite membrane.
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