
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 59, NO. 5, MAY 2014 1131

Fast Distributed Gradient Methods
Dušan Jakovetić, Student Member, IEEE, João Xavier, Member, IEEE, and José M. F. Moura, Fellow, IEEE

Abstract—We study distributed optimization problems when
nodes minimize the sum of their individual costs subject to

a common vector variable. The costs are convex, have Lipschitz
continuous gradient (with constant), and bounded gradient.
We propose two fast distributed gradient algorithms based on
the centralized Nesterov gradient algorithm and establish their
convergence rates in terms of the per-node communications
and the per-node gradient evaluations . Our first method,

Distributed Nesterov Gradient, achieves rates and
. Our second method, Distributed Nesterov gradient

with Consensus iterations, assumes at all nodes knowledge of
and – the second largest singular value of the
doubly stochastic weight matrix . It achieves rates

and (arbitrarily small). Further, we give for both
methods explicit dependence of the convergence constants on
and . Simulation examples illustrate our findings.

Index Terms—Consensus, convergence rate, distributed opti-
mization, Nesterov gradient.

I. INTRODUCTION

D ISTRIBUTED computation and optimization have been

studied for a long time, e.g., [1], [2], and have received

renewed interest, motivated by applications in sensor [3], multi-

robot [4], or cognitive networks [5], as well as in distributed

control [6] and learning [7]. This paper focuses on the problem

where nodes (sensors, processors, agents) minimize a sum

of convex functions subject to a common

variable . Each function is convex and

known only to node . The underlying network is generic and

connected.

To solve this and related problems, the literature proposes

several distributed gradient like methods, including: [8] (see

Manuscript received November 30, 2011; revised August 04, 2012; accepted

March 29, 2013. Date of publication January 09, 2014; date of current version

April 18, 2014. This work was supported by the Carnegie Mellon|Portugal

Program under a grant from the Fundação de Ciěncia e Tecnologia (FCT) from
Portugal, FCT grants CMU-PT/SIA/0026/2009, PTDC/EMS-CRO/2042/2012,

SFRH/BD/33518/2008 (through the Carnegie Mellon|Portugal Program man-

aged by ICTI), ISR/IST plurianual funding (POSC program, FEDER), AFOSR

grant FA95501010291, and by National Science Foundation (NSF) grant

CCF1011903. Recommended by Associate Editor A. Ozdaglar.

D. Jakovetic was with the Institute for Systems and Robotics, Instituto Supe-

rior Tecnico (IST), University of Lisbon, Lisbon 1049-001, Portugal, and with

the Department of Electrical and Computer Engineering, Carnegie Mellon Uni-

versity, Pittsburgh, PA, 15213-3890 USA. He is now with University of Novi

Sad, BioSense Center, Novi Sad 21000, Serbia (e-mail: djakovet@uns.ac.rs).

J. Xavier is with the Instituto de Sistemas e Robótica (ISR), Instituto Supe-

rior Técnico (IST), University of Lisbon, Lisbon 1049-001, Portugal (e-mail:

jxavier@isr.ist.utl.pt).

J. M. F. Moura is with the Department of Electrical and Computer Engi-

neering, Carnegie Mellon University, Pittsburgh, PA 15213-3890 USA, and

also with CUSP, New York University, Brooklyn, NY 11201 USA (e-mail:

moura@ece.cmu.edu).

Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAC.2014.2298712

also [9]–[11]); [12] (see also [13]); [14] (see also [3], [15]);

and [16]. When the nodes lack global knowledge of the net-

work parameters, [14] establishes, for the distributed dual aver-

aging algorithm therein, rate , where is

the number of communicated -dimensional vectors per node,

which also equals the number of iterations (gradient evalua-

tions per node,) and is the second largest singular value

of the underlying doubly stochastic weight matrix .

Further, when is known to the nodes, and after opti-

mizing the step-size, [14] shows the convergence rate to be

.

1) Setup: The class of functions usually considered in the ref-

erences above are more general than we consider here, namely,

they assume that the ’s are (possibly) non-differentiable and

convex, and: 1) for unconstrained minimization, the ’s have

bounded gradients, while 2) for constrained minimization, they

are Lipschitz continuous over the constraint set. In contrast, we

assume the class of convex ’s that have Lipschitz contin-

uous and bounded gradients.

It is well established in centralized optimization, [17], that

one expects faster convergence rates on classes of more struc-

tured functions; e.g., for convex, non-smooth functions, the

best achievable rate for centralized (sub)gradient methods is

, while, for convex functions with Lipschitz con-

tinuous gradient, the best rate is , achieved, e.g., by

the Nesterov gradient method [17]. Here is the number of

iterations, i.e., the number of gradient evaluations.

2) Contributions: Building from the centralized Nesterov

gradient method, we develop for the class two distributed

gradient methods and prove their convergence rates, in terms

of the number of per-node communications , the per-node gra-

dient evaluations , and the network topology. Our first method,

the Distributed Nesterov Gradient (D–NG), uses one commu-

nication per (it has) and achieves convergence rate

, where is an

arbitrarily small quantity, and when the nodes have no

global knowledge of the parameters underlying the optimization

problem and the network: and the ’s gradient’s Lispchitz

constant and the gradient bound, respectively, the

second largest singular value of , and a bound on the dis-

tance to a solution. When and are known by all, D–NG with

optimized step-size achieves the same rate with reduced to 1.

Our second method, Distributed Nesterov gra-

dient with Consensus iterations (D–NC), assumes

global knowledge on and and achieves rates

and

. Further, we establish that, for the class

, both our methods (achieving at least) are strictly

better than the distributed (sub)gradient method [8] and the

0018-9286 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1132 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 59, NO. 5, MAY 2014

distributed dual averaging in [14], even when these algorithms

are restricted to functions in . We show analytically that

[8] cannot be better than and (see

Section VII-A for details), and by simulation examples that

[8] and [14] perform similarly.

3) Distributed Versus Centralized Nesterov Gradient

Methods: The centralized Nesterov gradient method does not

require bounded gradients – an assumption that we make for our

distributed methods. We prove here that if we drop the bounded

gradients assumption, the convergence rates that we establish

do not hold for either of our algorithms. (It may be possible to

replace the bounded gradients assumption with a weaker re-

quirement.) In fact, the worst case convergence rates of D–NG

and D–NC become arbitrarily slow. (See Section VII-B for

details.) This important result illustrates a distinction between

the allowed function classes by the centralized and distributed

methods. The result is not specific to our accelerated methods;

it can be shown that the standard distributed gradient method

in [8] is also arbitrarily slow when the assumption of bounded

gradients is dropped (while convexity and Lipschitz continuous

gradient hold) [18].

Remark: Since we make use here of the bounded gra-

dients assumption, an interesting research direction is to

look for a weaker requirement, e.g., boundedness of all

(, , .) In fact,

with both D–NG and D–NC, we prove elsewhere that we can

assume different setups (corresponding to broad classes of

functions) and still achieve the same convergence rates in terms

of and . With D–NG, we can replace the bounded gradients

assumption with the following: there exists such that,

, whenever . For a natural extension

of D–NC, we can replace the unconstrained problems with

Lipschitz continuous and bounded gradients assumed here by a

constrained optimization problem (compact, convex constraint

set) where the ’s have Lipschitz continuous gradient on a

certain compact set that includes . Due to lack of space, these

alternatives are pursued elsewhere.

Remark: We comment on references [19] and [20] (see also

Section VII-A and [18]). They develop accelerated proximal

methods for time varying networks that resemble D–NC. The

methods in [19] and [20] use only one consensus algorithm per

outer iteration , while we use two with D–NC. Adapting the

results in [19], [20] to our framework, it can be shown that

the optimality gap bounds in [19], [20] expressed in terms of

, and have the same or worse (depending on the

variant of their methods) dependence on and than the

one we show for D–NC, and a worse dependence on . (See

Section VII-A and [18].)

In addition to distributed gradient methods, the literature also

proposes distributed augmented Lagrangian dual or ordinary

dual methods [5], [21]–[27]. These are based on the augmented

Lagrangian (or ordinary) dual of the original problem. They in

general have significantly more complex iterations than the gra-

dient type methods that we consider in this paper, due to solving

local optimization problems at each node, at each iteration, but

may have a lower total communication cost. Reference [22]

uses the Nesterov gradient method to propose an augmented La-

grangian dual algorithm but does not analyze its convergence

rate. In contrast, ours are primal gradient algorithms, with no

notion of Lagrangian dual variables, and we establish the con-

vergence rates of our algorithms. References [26], [27] study

both the resource allocation and the problems that we consider

(see (1)). For (1), [26], [27] apply certain accelerated gradient

methods on the dual problem, in contrast with our primal gra-

dient methods. Finally, [6] uses the Nesterov gradient algorithm

to propose a decomposition method based on a smoothing tech-

nique, for a problem formulation different than ours and on the

Lagrangian dual problem.

4) Paper Organization: The next paragraph introduces

notation. Section II describes the network and optimization

models that we assume. Section III presents our algorithms,

the distributed Nesterov gradient and the distributed Nesterov

gradient with consensus iterations, D–NG and D–NC for short.

Section IV explains the framework of the (centralized) inexact

Nesterov gradient method; we use this framework to establish

the convergence rate results for D–NG and D–NC. Sections V

and VI prove convergence rate results for the algorithms

D–NG and D–NC, respectively. Section VII compares our

algorithms D–NG and D–NC with existing distributed gradient

type methods, discusses the algorithms’ implementation, and

discusses the need for our Assumptions. Section VIII provides

simulation examples. Finally, we conclude in Section IX. Proofs

of certain lengthy arguments are relegated to the Appendix.

Notation: We index by a subscript a (possibly vector) quan-

tity assigned to node ; e.g., is node ’s estimate at itera-

tion . Further, we denote by: the -dimensional real coor-

dinate space; the imaginary unit (); or the

entry in the -th row and -th column of a matrix ; the

-th entry of vector ; the transpose and the conjugate

transpose; , 0, , and , respectively, the identity matrix, the

zero matrix, the column vector with unit entries, and the -th

column of ; and the direct sum and Kronecker product

of matrices, respectively; the vector (respectively, matrix)

-norm of its vector (respectively, matrix) argument;

the Euclidean (respectively, spectral) norm of its vector (respec-

tively, matrix) argument (also denotes the modulus of a

scalar); the -th smallest in modulus eigenvalue;

means that a Hermitian matrix is positive semi-definite;

the smallest integer not smaller than a real scalar ; and

the gradient and Hessian at of a twice differentiable

function , . For two positive sequences

and , the following is the standard notation: if

; if ; and

if and .

II. PROBLEM MODEL

This section introduces the network and optimization models

that we assume.

1) Network Model: We consider a (sparse) network of

nodes (sensors, processors, agents,) each communicating only

locally, i.e., with a subset of the remaining nodes. The commu-

nication pattern is captured by the graph , where

is the set of links. The graph is connected, undi-

rected and simple (no self/multiple links.)

JAKOVETIĆ et al.: FAST DISTRIBUTED GRADIENT METHODS 1133

2) Weight Matrix: We associate to the graph a symmetric,

doubly stochastic (rows and columns sum to one and all the en-

tries are non-negative), weight matrix , with, for ,

if and only if, , and .

Denote by , where is the ideal con-

sensus matrix.We let , where is the diagonal ma-

trix with , and is the matrix of

the eigenvectors of .With D–NC, we impose Assumption1(a)

below; with D–NG, we require both Assumptions 1(a) and (b).

Recall —the second largest singular value of

Assumption 1 (Weight Matrix): We assume that (a)

; and (b) , where is an arbi-

trarily small positive quantity.

Note that Assumption 1 (a) can be fulfilled only by a con-

nected network. Assumption 1 (a) is standard and is also needed

with the existing algorithms in [8], [14]. For a connected net-

work, nodes can assign the weights and fulfill Assumption

1 (a), e.g., through the Metropolis weights [28]; to set the

Metropolis weights, each node needs to know its own degree

and its neighbors’ degrees. Assumption 1 (b) required by

D–NG is not common in the literature. We discuss the impact

of Assumption 1 (b) in Section VII-A.

3) Distributed Optimization Model: The nodes solve the un-

constrained problem

(1)

The function is known only to node . We impose

Assumptions 2 and 3.

Assumption 2 (Solvability; Lipschitz Continuous Gradient):

a) There exists a solution with

.

b) , is convex, differentiable, with Lipschitz contin-

uous derivative with constant :

.

Assumption 3 (Bounded Gradients): such that,

, , .

Examples of ’s that satisfy Assumptions 2–3 include the lo-

gistic and Huber losses (See Section VIII), or the “fair” loss in

robust statistics, , ,

where is a positive parameter, e.g., [29]. Assumption 2 is pre-

cisely the assumption required by [17] in the convergence anal-

ysis of the (centralized) Nesterov gradient method. With respect

to the centralized Nesterov gradient method [17], we addition-

ally require bounded gradients as given by Assumption 3. We

explain the need for Assumption 3 in Section VII-B.

III. DISTRIBUTED NESTEROV BASED ALGORITHMS

We now consider our two proposed algorithms. Section III-A

presents algorithm D–NG, while Section III-B presents algo-

rithm D–NC.

A. Distributed Nesterov Gradient Algorithm (D–NG)

Algorithm D–NG generates the sequence ,

, at each node , where is an auxiliary variable.

D–NG is initialized by , for all . The update

at node and is

(2)

(3)

Here, are the averaging weights (the entries of), and

is the neighborhood set of node (including). The step-size

and the sequence are:

(4)

With algorithm (2)–(3), each node , at each iteration , per-

forms the following: 1) broadcasts its variable to

all its neighbors ; 2) receives from all its

neighbors ; 3) updates by weight-averaging its

own and its neighbors variables , and per-

forms a negative gradient step with respect to ; and 4) up-

dates via the inexpensive update in (3). To avoid notation

explosion in the analysis further ahead, we assume throughout

the paper, with both D–NG and D–NC, equal initial estimates

for all e.g., nodes can set

them to zero.

We adopt the sequence as in the centralized fast gradient

method by Nesterov [17]; see also [30], [31]. With the central-

ized Nesterov gradient, is constant along the iterations.

However, under a constant step-size, algorithm (2)–(3) does not

converge to the exact solution, but only to a solution neighbor-

hood. More precisely, in general, does not converge to

(See [32] for details.) We force to converge to

with (2)–(3) by adopting a diminishing step-size , as in (4).

The constant in (4) can be arbitrary (See also ahead

Theorem 5.)

1) Vector Form: Let

, and

introduce as:

. Then, given initialization ,

D–NG in vector form is

(5)

(6)

where the identity matrix is of size – the dimension of the

optimization variable in (1).

Algorithm D–NC

Algorithm D–NC uses a constant step-size and

operates in two time scales. In the outer (slow time scale) iter-

ations , each node updates its solution estimate , and

updates an auxiliary variable (as with the D–NG); in the

inner iterations , nodes perform two rounds of consensus with

the number of inner iterations given in (7) and (13) below, re-

spectively. D–NC is Summarized in Algorithm 1.

1134 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 59, NO. 5, MAY 2014

Algorithm 1 Algorithm D–NC

1: Initialization: Node sets: ; and

.

2: Node calculates:

3: (First consensus) Nodes run average consensus initialized

by :

(7)

and set .

4: Node calculates

5: (Second consensus) Nodes run average consensus

initialized by :

(8)

and set .

6: Set and go to step 2.

The number of inner consensus iterations in (7) increases as

and depends on the underlying network through .

Note an important difference between D–NC and D–NG. D–NC

uses explicitly a number of consensus steps at each . In con-

trast, D–NG does not explicitly use multi-step consensus at each

; consensus occurs implicitly, similarly to [8], [14].

2) Vector Form: Using the same compact notation for ,

, and as with D–NG, D–NC in vector form is

(9)

(10)

The power in (9) corresponds to the first consensus

in (7), and the power in (10) corresponds to the

second consensus in (8). The connection between D–NC and

the (centralized) Nesterov gradient method becomes clearer in

Section IV-B. The matrix powers (9)–(10) are implemented in

a distributed way through multiple iterative steps – they require

respectively and iterative (distributed) consensus

steps. This is clear from the representation in Algorithm 1.

IV. INTERMEDIATE RESULTS: INEXACT NESTEROV

GRADIENT METHOD

We will analyze the convergence rates of D–NG and

D–NC by considering the evolution of the global averages

and . We will

show that, with both distributed methods, the evolution of

and can be studied through the framework of the inexact

(centralized) Nesterov gradient method, essentially like the one

in [33]. Section IV-A introduces this framework and gives the

relation for the progress in one iteration. Section IV-B then

demonstrates that we can cast our algorithms D–NG and D–NC

in this framework.

A. Inexact Nesterov Gradient Method

We next introduce the definition of a (pointwise) inexact first

order oracle.

Definition 1 (Pointwise Inexact First Order Oracle): Con-

sider a function that is convex and has Lips-

chitz continuous gradient with constant . We say that a pair

is a inexact oracle of at point

if:

(11)

For any , the pair satisfies Definition 1

with . If is a inexact oracle

at , then it is also a inexact oracle at , with .

Remark: The prefix pointwise in Definition 1 emphasizes that

we are concerned with finding that satisfy (11) with

at a fixed point . This differs from the conventional

definition (Definition 1) in [33]. Throughout, we always refer

to the inexact oracle in the sense of Definition 1 here and drop

the prefix pointwise.

1) Inexact Nesterov Gradient Method: Lemma 2 gives the

progress in one iteration of the inexact (centralized) Nesterov

gradient method for the unconstrained minimization of . Con-

sider a point , for some fixed

Let be a inexact or-

acle of the function at point and

(12)

Lemma 2 (Progress per Iteration): Consider the update rule

(12) for some Then

(13)

for any , where and

.

Lemma 2 is similar to [[33], Theorem 5], although [33] con-

siders a different accelerated Nesterov method. It is intuitive:

the progress per iteration is the same as with the exact Nesterov

gradient algorithm, except that it is deteriorated by the “gradient

direction inexactness” (). The proof follows the ar-

guments of [33] and [17], [30], [31] and is in [18].

Algorithms D–NG and D–NC in the Inexact Oracle Framework

We now cast algorithms D–NG and D–NC in the inexact or-

acle framework.

JAKOVETIĆ et al.: FAST DISTRIBUTED GRADIENT METHODS 1135

Algorithm D–NG: Recall the global averages

and , and define

(14)

Multiplying (5)–(6) from the left by , using

, letting , and using

in (14), we obtain that , evolve according to

(15)

The following Lemma shows how we can analyze convergence

of (15) in the inexact oracle framework. Define

and . Define analogously

and . We refer to and as the disagreement

vectors, as they indicate how mutually apart the estimates of

different nodes are.

Lemma 3: Let Assumption 2 hold. Then, in (14) is

a inexact oracle of at point with

constants and .

Lemma 3 implies that, if , i.e., if ,

then the progress per iteration in Lemma 2 holds for (15) with

. If , Lemma 2 applies for all

iterations ; otherwise, it holds for all .

Proof of Lemma 3: For notation simplicity, we re-write

and as and , and as .

In view of Definition 1, we need to show inequalities (11). We

first show the left one. By convexity of :

summing over , using

, and expressing

We now prove the right inequality in (11). As is convex and

has Lipschitz continuous derivative with constant , we have:

, which, after

summation over , expressing

, and using the inequality

, gives

and so satisfy the right inequality in (11) with

and

Algorithm D–NC: Consider algorithm D–NC in (9)–(10). To

avoid notational clutter, use the same notation as with D–NG

for the global averages: , and

, re-define for D–NC as in (14), and let

. Multiplying (9)–(10) from the left by

, and using , we get that

satisfy (15). As , we have , and so,

by Lemma 3, the progress per iteration in Lemma 2 applies to

of D–NC for all , with .

In summary, the analysis of convergence rates of both D–NG

and D–NC boils down to finding the disagreements and

then applying Lemma 2.

V. ALGORITHM D–NG: CONVERGENCE ANALYSIS

This section studies the convergence of D–NG. Section V-A

bounds the disagreements and with D–NG;

Section V-B combines these bounds with Lemma 2 to derive

the convergence rate of D–NG and its dependence on the

underlying network.

A. Algorithm D–NG: Disagreement Estimate

This subsection shows that and are ,

hence establishing asymptotic consensus – the differences of the

nodes’ estimates (and) converge to zero. Recall the

step-size constant in (4) and the gradient bound in

Assumption 3.

Theorem 4 (Consensus With D–NG): For D–NG in (2)–(4)

under Assumptions 1 and 3:

(16)

(17)

with .

For notational simplicity, we prove Theorem 4 for , but

the proof extends to a generic . We model the dynamics

of the augmented state as a linear time

varying system with inputs . We present here

the linear system and solve it in the Appendix. Substitute the

expression for in (5); multiply the resulting equation

from the left by ; use ;

and set by assumption. We obtain

(18)

for all , where , for , is in (4),

, and . We emphasize that system (18)

is more complex than the corresponding systems in, e.g., [8],

[14], which involve only a single state ; the upper bound

on from (18) is an important technical contribution of

this paper; see Theorem 4 and Appendix A.

1136 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 59, NO. 5, MAY 2014

B. Convergence Rate and Network Scaling

Theorem 5 (a) states the convergence rate

result for D–NG when the step-size constant ;

Theorem 5(b) (proved in [18]) demonstrates that the

convergence rate still holds if ,

with a deterioration in the convergence constant. Part (b)

assumes , , to avoid notational clutter.

Theorem 5: Consider D–NG under Assumptions 1–3. Let

, . Then:

(a) If , we have, ,

(19)

(b) Let . If , (19) holds ,

, with replaced with

, and

is a constant that depends on , and is

independent of and .

We prove here Theorem 5 (a); for part (b), see [18].

Proof of Theorem 5 (a): The proof consists of two parts.

In the Step 1 of the proof, we estimate the optimality gap

at the point using

Lemma 2 and the inexact oracle machinery. In the Step 2, we

estimate the optimality gap at any node

using convexity of the ’s and the bound on from

Theorem 4.

Step 1. Optimality Gap : Recall that, for

in (14) is a inexact oracle of

at point with and . Note

that is also a inexact oracle of at point

with , because , and so

. Now, we apply Lemma 2 to (15), with ,

and the Lipschitz constant . Recall that

. We get

(20)

Because , and , we

have

By unwinding the above recursion, and using

, gives:

. Applying Theorem 4 to

the last equation, and using ,

and the assumption , leads to, as desired

(21)

Step 2. Optimality Gap : Fix an arbitrary

node ; then, by convexity of , :

, and so:

. Summing the inequalities for

, using , subtracting from

both sides, from Theorem 4

(22)

which, with (21) where the summation variable is replaced by

, completes the proof.

1) Network Scaling: Using Theorem 5, Theorem 6 studies

the dependence of the convergence rate on the underlying net-

work – and , when: 1) nodes do not know and

before the algorithm run, and they set the step-size constant to

a constant independent of , e.g., ; and 2) nodes

know , and they set . See [14] for depen-

dence of on for commonly used models, e.g.,

expanders or geometric graphs.

Theorem 6: Consider the algorithm D–NG in (2)–(4) under

Assumptions 1–3. Then, is

where: (a) for arbitrary ; and (b) for

.

Proof of Theorem 6: Fix and (two

arbitrarily small positive constants). By Assumption 1 (b),

. We show that for in (17)

(23)

where depends only on . Consider

there exists

such that: , . Thus

for all . From the above equation, and using

, , we have

. The latter, applied to (17),

yields (23), with .

JAKOVETIĆ et al.: FAST DISTRIBUTED GRADIENT METHODS 1137

A scaling result , , readily fol-

lows by substitution of (23) in Theorem 5 (a) and (b), respec-

tively. To prove Theorem 6, we modify the argument of (22).

We first prove claim (b). Namely, at any node , using Lipschitz

continuity of (with constant),

, and thus

(24)

where we use . From (21),

. Using again Lipschitz conti-

nuity of (with constant)

Consider (24). Subtracting from both sides, dividing by ,

and substituting the above bound on while using

Theorem 5 (a), we obtain

(25)

We now apply (23) to (25). Claim (b) is proved after setting

. The proof for claim (a) is completely analo-

gous; the argument only replaces the term in (21) with

, see also [18], and sets .

VI. ALGORITHM D–NC: CONVERGENCE ANALYSIS

We now consider the D–NC algorithm. Section VI-A pro-

vides the disagreement estimate, while Section VI-A gives the

convergence rate and network scaling.

A. Disagreement Estimate

We estimate the disagreements , and with D–NC.

Theorem 7 (Consensus With D–NC): Let Assumptions 1 (a)

and 3 hold, and consider the algorithm D–NC. Then, for

: , and .

Proof: For notational simplicity, we perform the proof for

, but it extends to a generic . Denote by

, and fix . We want to upper

bound . Multiplying (9)–(10) by from the left, using

(26)

(27)

We upper bound and from (26), (27). Recall

; from (7) and (13), we have

and . From (26), using the sub-additive

and sub-multiplicative properties of norms, and using

, ,

,

(28)

(29)

Clearly, from (28) and (29): Next,

using , unwind the latter recursion for , to

obtain, respectively: and , and

so the bound in Theorem 7 holds for . Further, for

unwinding the same recursion for

where we use ,

B. Convergence Rate and Network Scaling

We are now ready to state the Theorem on the convergence

rate of D–NC.

Theorem 8: Consider the algorithm D–NC under Assump-

tions 1 (a), 2, and 3. Let , . Then, after

communication rounds, i.e., after outer iterations, at any node

(30)

Proof Outline: The proof is very similar to the proof

of Theorem 5 (a) (for details see [18], second version v2);

first upper bound , and then .

To upper bound , recall that the evolution

(15) with for is the inexact Nes-

terov gradient with the inexact oracle in (14), and

. Then, apply Lemma 2 with

and , and use Theorem 7, to obtain

(31)

1138 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 59, NO. 5, MAY 2014

Finally, find the bound on analogously to the

proof of Theorem 5 (a).

1) Network Scaling: We now give the network scaling for

algorithm D–NC in Theorem 9. We assume that nodes know

and before the algorithm run.

Theorem 9: Consider D–NC under Assumptions 1 (a), 2,

and 3 with step-size . Then, after outer iterations

and communication rounds, at any node ,

is and

.

Proof: Fix , and let be the number

of elapsed communication rounds after outer it-

erations. There exists , such that,

.

The latter, combined with ,

, and the upper bound bound on in Theorem 8,

gives: . Plugging the latter in the

optimality gap bound in Theorem 8 gives a scaling result

and . To prove

Theorem 9, we proceed analogously to the proof of Theorem 6.

From Theorem 8 and ,

. Consider (24). Subtracting ,

dividing by , and using and (31),

we obtain .

Finally, substitute in the last bound.

VII. COMPARISONS WITH THE LITERATURE AND

DISCUSSION OF THE ASSUMPTIONS

Section VII-A compares D–NG, D–NC, and the distributed

(sub)gradient algorithms in [8], [14], [19], from the aspects of

implementation and convergence rate; Section VII-B gives a

detailed discussion on Assumptions 1–3.

A. Comparisons of D–NG and D–NC With the Literature

We first set up the comparisons by explaining how to account

for Assumption 1 (b) and by adapting the results in [19], [20] to

our framework.

Assumption 1(b): To be fair, we account for Assumption 1(b)

with D–NG as follows. Suppose that the nodes are given arbi-

trary symmetric, doubly stochastic weights with

– thematrix required byD–NC and [8], [14], [19]. (For example,

the Metropolis weights .) As the nodes may not be allowed to

check whether the given obeys Assumption 1 (b) or not, they

modify the weights to , where

can be taken arbitrarily small. The matrix obeys Assump-

tion 1 (b), whether obeys it or not. The modification is done

without any required knowledge of the system parameters nor

inter-node communication; node sets: 1) , for

, ; 2) , for , ; and

3) . To be fair, when we compare D–NG

with other methods (either theoretically as we do here or nu-

merically as done in Section VIII), we set its weights to .

For theoretical comparisons, from Theorem 5, the convergence

rate of D–NG depends on through the inverse spectral gap

. It can be shown that ,

i.e., the spectral gaps of and differ only by a constant

factor and the weight modification does not affect the conver-

gence rate (up to a numerical constant); henceforth, we express

the theoretical rate for D–NG in terms of .

1) References [19], [20]: These works develop and analyze

non-accelerated and accelerated distributed gradient and prox-

imal gradient methods for time-varying networks and convex

’s that have a differentiable component with Lipschitz contin-

uous and bounded gradient and a non-differentiable component

with bounded gradient. To compare with [20], we adapt it to our

framework of static networks and differentiable ’s. (We set the

non-differentiable components of the ’s to zero.) [19], [20]

assume deterministic time-varying networks. To adapt their re-

sults to our static network setup in a fair way, we replace the pa-

rameter in [19] (see [19, equation (7)]) with . The refer-

ences propose two variants of the accelerated algorithm: the first

(see [19, (6a)–(6d)]) has inner consensus iterations at the outer

iteration , while the second one has

(See [19, Subsection III-C].) The bounds established in [19]

for the second variant give its rate: , when

nodes know and . The first variant has a slower rate [18].

Algorithm Implementation and Convergence Rate: Table I

compares D–NG, D–NC, the algorithm in [14] and the second

algorithm in [19] with respect to implementation and the

number of communications to achieve -accuracy.

Here is the smallest number of communication

rounds after which , . Regarding

implementation, we discuss the knowledge required a priori by

all nodes for: 1) convergence (row 1); and 2) both stopping and

optimizing the step-size (s.s.) (row 2). Stopping determines a

priori the (outer) iteration such that ,

, . Optimizing the step size here means finding the

step-size that minimizes the established upper bound (in the

reference of interest) on the optimality gap (e.g., the bound for

D–NG in Theorem 5 (a).) We assume, with all methods, that

is already given (e.g., Metropolis.) Regarding ,

we neglect the logarithmic and -small factors and distinguish

two cases: 1) the nodes have no global knowledge (row 3);

and 2) the nodes know (row 4). We can see

from Table I that, without global knowledge (row 3), D–NG

has better dependence on than [14] and worse dependence

on . Under global knowledge (row 4), D–NC has better

complexity than [19] and has better dependence on than

[14] and a worse dependence on . Further, while D–NG

and [14] require no knowledge of any global parameters for

convergence (row 1), D–NC and the second algorithm in [19]

need and . The first variant in [19] requires only .

Also, Table I for [14] holds for a wider class of functions, and

in row 4, only is needed [14].

2) Global Knowledge : (as needed, e.g., by

D–NG for stopping) can be obtained as follows. Consider and

suppose each node knows a Lipschitz constant of its own

. Then, can be taken as . Thus, each

node can compute if nodes run a distributed algorithm for

maximum computation, e.g., ([34, (1)]); all nodes get after

per-node communicated scalars, where is the

JAKOVETIĆ et al.: FAST DISTRIBUTED GRADIENT METHODS 1139

TABLE I

COMPARISONS OF ALGORITHMS D–NG, D–NC, [14], AND [19] (ALGORITHMS 1 AND 2)

network diameter. Likewise, a gradient bound can be taken

as , where is a gradient bound for the

. The quantity (equal to the second largest eigenvalue

of) can be computed in a distributed way, e.g., by algorithm

DECENTRALOI, proposed in [35] and adapted to the problem

like ours in [[36, Subsection IV-A, p. 2519]]. With DECEN-

TRALOI, node obtains , the -th coordinate of the

eigenvector of that corresponds to , (up to -accu-

racy) after per-node communicated scalars

[35]; then, node obtains as: .

Consider now D–NC when nodes do not have available their

local gradient Lipschitz constants . Nodes can take a dimin-

ishing step size , , and still guarantee

convergence, with a deteriorated rate . In alterna-

tive, it may be possible to employ a “distributed line search,”

similarly to [37]. Namely, in the absence of knowledge of the

gradient’s Lipschitz constant , the centralized Nesterov gra-

dient method with a backtracking line search achieves the same

rate , with an additional computational cost per iter-

ation ; see [31], [38]. It is an interesting research direction

to develop a variant of distributed line search for D–NC type

methods and explore the amount of incurred additional com-

munications/computations per outer iteration ; due to lack of

space, this is left for future work.

3) The Lower Bound on the Worst-Case Opti-

mality Gap for [8]: We focus on the dependence on and

only (assuming a finite, fixed .) We demonstrate

that D–NG has a strictly better worst-case convergence rate in

(and) than [8], when applied to the ’s defined by Assump-

tions 2 and 3. Thus, D–NC also has a better rate.

Fix a generic, connected network with nodes and that

obeys Assumption 1. Let be the class of all -el-

ement sets of functions , such that: 1) each

is convex, has Lipschitz continuous derivative with constant ,

and bounded gradient with bound ; and 2) Assumption 2 (a)

holds. Consider (1) with , for all ; consider D–NG

with the step-size , , . De-

note by

the optimality gap at the -th iteration of D–NG for the worst

, and the worst (provided .)

From Theorem 5 (a), for any :

, with in (19). Now, consider the al-

gorithm in [8] with the step-size , ,

where , are the degrees of freedom, and

is an arbitrarily small positive number. With this algorithm,

. We show that, for the -node connected network,

the weight matrix with , , and ,

(which satisfies Assumption 1), and ,

and , with [8]

(32)

where

is the worst-case optimality gapwhen the step-size

is used. We perform the proof by constructing a “hard” example

of the functions and a “hard” initial condition to

upper bound ; for any fixed , we set:

, , where

(33)

; and . The proof of (32) is in the

Appendix. We convey here the underlying intuition. When is

-smaller (away) from one, we show

The first summand is the “optimization term,” for which a

counterpart exists in the centralized gradient method also. The

second, “distributed problem” term, arises because the gradi-

ents of the individual nodes functions are non-zero

at the solution . Note the two opposing effects with respect

to : (the smaller , the better) and (the larger

, the better.) To balance the opposing effects of the two

summands, one needs to take a diminishing step-size;

strikes the needed balance to give the bound.

B. Discussion on Assumptions

We now discuss what may occur if we drop each of the

Assumptions made in our main results–Theorems 4 and 5 for

D–NG, and Theorems 7 and 8 for D–NC.

Assumption 1(a): Consider Theorems 4 and 7. If

Assumption 1(a) is relaxed, then with both methods

may not converge to zero. Similarly, consider Theorems 5 and

1140 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 59, NO. 5, MAY 2014

8. Without Assumption 1(a), may not converge to

at any node; e.g., take , , and , , in the

next paragraph.

Assumption 1(b): Assumption 1(b) is imposed only for

D–NG – Theorems 4 and 5. We show by simulation that, if

relaxed, and may grow unbounded. Take

and , ; the

Huber losses , if

and else, ; , and

. Then, we verify by simulation [18]

that and grow unbounded.

Assumption 2: Assumption 2 is not needed for consensus

with D–NG and D–NC (Theorems 4 and 7), but we impose it

for Theorems 5 and 8 (convergence rates of D–NG and D–NC).

This Assumption is standard and widely present in the conver-

gence analysis of gradient methods, e.g., [17]. Nonetheless, we

consider what may occur if we relax the requirement on the Lip-

schitz continuity of the gradient of the ’s. For both D–NG

and D–NC, we borrow the example functions ,

, from [20, pages 29–31]: , ;

, ; and . Then, for

D–NGwith , ,

and , simulations show that

and , , grow unbounded. Similarly, with

D–NC, for the same , , and ,

simulations show that , , stays away from

zero when grows [18].

Assumption 3: First consider Theorems 5 and 8 on the con-

vergence rates of D–NG and D–NC. Define the class

to be the collection of all -element sets of convex functions

, where each has Lipschitz continuous gra-

dient with constant , and problem (2) is solvable in the sense

of Assumption 2 (a). (Assumption 3 relaxed.) With the D–NC

for the 2-node connected network, arbitrary weight matrix

obeying Assumption 1 (a), and the step-size , we

show for , , that, for any and arbitrarily

large

(34)

Note that the above means ,

, . That is, no matter how large the (outer) iteration

number is, the worst case optimality gap is still arbitrarily

large.

We conduct the proof by making a “hard” instance for

: for a fixed , we set , ,

, to , where

and

(35)

Similarly to D–NC, with D–NG we show in [18] that (34) also

holds for the 2-node connected network, the symmetric with

(this

obeys Assumption 1), , and . The

candidate functions are in (35), where, for fixed , ,

.

We convey here the intuition why (34) holds for D–NG and

D–NC, while the proof is in the Appendix. Note that the so-

lution to (1) with the ’s in (35) is , while

, . Making and

to be far apart (by taking a large), problem (1) for D–NG and

D–NC becomes “increasingly difficult.” This is because the in-

puts to the disagreement dynamics (18)

are arbitrarily large, even when

is close to the solution .

Finally, we consider what occurs if we drop Assumption 3

with Theorems 4 and 7. We show with D–NG and the above

“hard” examples that , . Hence,

is arbitrarily large by choosing large enough. (see [18].) Simi-

larly, with D–NC: , . (see Appendix C

and [18].)

VIII. SIMULATIONS

We compare the proposed D–NG and D–NC algorithms with

[8], [14], [19] on the logistic loss. Simulations confirm the in-

creased convergence rates of D–NG and D–NC with respect to

[8], [14] and show a comparable performance with respect to

[19]. More precisely, D–NG achieves an accuracy faster than

[8], [14] for all , while D–NC is faster than [8], [14] at least for

. With respect to [19], D–NG is faster for lower accu-

racies (in the range to), while [19] becomes

faster for high accuracies (and finer); D–NC per-

forms slower than [19].

1) Simulation Setup: We consider distributed learning

via the logistic loss; see, e.g., [7] for further details.

Nodes minimize the logistic loss:

, where ,

is the node ’s feature vector, and is its

class label. The functions , , satisfy Assump-

tions 2 and 3. The Hessian ,

where . A Lipschitz constant

should satisfy , . Note that

, because , .

We thus choose . We

generate independently over ; each entry is drawn from

the standard normal distribution. We generate the “true”

vector by drawing its entries indepen-

dently from the standard normal distribution. The labels are

, where the ’s are drawn

independently from a normal distribution with zero mean

and variance 3. The network is a geometric network: nodes

are placed uniformly randomly on a unit square and the

nodes whose distance is less than a radius are connected by

an edge. There are nodes, and the relative de-

gree . We initialize all nodes by

(and with D–NG, D–NC, and [19]). With

all algorithms except D–NG, we use the Metropolis weights

[28]; with D–NG, we use , with

. The step-size is: , with D–NG;

and , with D–NC; , with [19] (both the

first and second algorithm variants – see Section VII-A); and

JAKOVETIĆ et al.: FAST DISTRIBUTED GRADIENT METHODS 1141

Fig. 1. Normalized (average) relative error versus the

number of communications (all nodes) ; Top: Logistic loss; Bottom: Huber

loss.

, with [8] and [14].1 We simulate the normalized

(average) error versus the total number of

communications at all nodes (.)

2) Results: Fig. 1 (top) compares D–NG, D–NC (with step-

sizes and), [8], [14], [19] (both first and second

variant with .) We can see that D–NG converges faster

than other methods for accuracies in the range to

. For example, for , D–NG requires about

transmissions; [19] (second variant) ; D–NC (

) , and D–NCwith ; and

[19] (first variant), [8], and [14] – at least . For high

accuracies, and finer, [19] (second variant) becomes

faster than D–NG. Finally, [19] (second) converges faster than

D–NC, while [19] (first) is slower than D–NC.

3) Further Comparisons of D–NG and D–NC: Huber Loss:

We provide an additional experiment to further compare the

D–NG and D–NC methods. We show that the relative per-

formance of D–NC with respect to D–NG improves when

the instance of (1) becomes easier (in the sense explained

below.) We consider a -node geometric network

with and Huber losses ,

if , and ,

else, with . We divide the set of nodes in two groups.

1With [8], [14], and , gave the best simulation

performance among the choices .

For the first group, , we generate the ’s as

, where is the “signal” and is the uniform

noise on . For the second group, ,

we set , with the ’s from the same uniform

distribution. Note that any is

in , while any lies

in . Intuitively, by making large, we in-

crease the problem difficulty. For a small , we are in the “easy

problem” regime, because the solutions and of the two

nodes’ groups are close; for a large , we are in the “difficult

problem” regime. Fig. 1 (bottom) plots the normalized average

error versus for for D–NG with

, D–NC with , while both algorithms

are initialized by . We can see that, with

D–NC, the decrease of makes the convergence faster, as

expected. (With D–NG, it is not a clear “monotonic” behavior.)

Also, as decreases (“easier problem”), the performance of

D–NC relative do D–NG improves. For , D–NG is

initially better, but the curves of D–NG and D–NC intersect at

the value about , while for , D–NG is better

for all accuracies as fine as (at least) .

We give an intuition on the observed behavior. Consider an

“easy” problem with very similar local costs (small). In such

scenario, over outer iterations D–NC behaves very similarly

to the exact centralized Nesterov gradient method with a con-

stant step-size . However, during each , D–NC uses

per-node communications which, for the “easy” problem,

are unnecessary and “waste” resources. (These communications

are necessary for “difficult” problems.) Hence, D–NC behaves

here as the centralized Nesterov gradient method slowed (re-

scaled) through (unnecessary) multiple consensus rounds. From

the above, it may seem intuitive that the relative performance

of D–NC over D–NG is poorer for “easy” problems due to

“wastes” in communications; but this does not occur in sim-

ulations. To explain why, consider now D–NG for the same

“easy” problem. It behaves over similarly to the exact cen-

tralized Nesterov gradient method with a diminishing step-size

. Hence, not only D–NC behaves as a suboptimal central-

ized gradient method (due to multiple consensus rounds), but

also D–NG does, with the source of sub-optimality being the di-

minishing step-size . An intuitive comparison of these two

suboptimal methods on “easy” problems is the following. For a

given network (given), it is natural to expect that D–NC

converges at a faster rate (steeper slope) than D–NG, but with

the curve “shifted” upwards due to the effect of .

We indeed observe such behavior in Fig. 1, bottom, case

. On the other hand, for “difficult” problems (large), the

dynamics of disagreements play a significant role and cannot be

neglected. Hence, it is much harder to intuitively understand the

behavior. As our simulation example indicates, for more “dif-

ficult” problems (larger), the performance of D–NC relative

to D–NG actually deteriorates. We also performed a simulation

with a deteriorated , while all other parameters are the

same as in the above simulation. We increase by setting,

with both D–NG and D–NC, , where is

the Metropolis matrix. The relative behavior of D–NC with re-

spect to D–NG still deteriorates with the increase of . (Figure

omitted due to lack of space.)

1142 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 59, NO. 5, MAY 2014

IX. CONCLUSION

We propose fast distributed gradient algorithms for nodes in a

network to minimize the sum of their individual cost functions.

Existing literature has presented distributed gradient based al-

gorithms to solve this problem and has studied their conver-

gence rates, for a class of convex, non-differentiable costs, with

bounded gradients. We asked whether faster convergence rates

than the rates established in the literature can be achieved for

more structured costs – convex, with Lipschitz continuous gra-

dient (with constant) and bounded gradient. Building from

the centralized Nesterov gradient method, we answer affirma-

tively this question by proposing two distributed gradient algo-

rithms. Our algorithm D–NG achieves the rates and

. Our algorithm D–NC operates only if and

are available and achieves rates and . We also

found convergence constants in terms of the network param-

eters. Simulations illustrate the performance of the proposed

methods.

APPENDIX

A. Proof of Theorem 4

For notational simplicity, we let , but the proof extends

to . We outline the main steps in the proof. First, we

unwind the recursion (18) and calculate the underlying time

varying system matrices. Second, we upper bound the norms

of the time varying system matrices. Finally, we use these

bounds and a summation argument to complete the proof of the

Theorem.

1) Unwinding (18) and Calculating the System Matrices:

Define the system matrices

(36)

and . Unwinding (18), the solution to (18) is

(37)

We now show the interesting structure of the matrix in

(36) by decomposing it into the product of an orthonormal ma-

trix , a block-diagonal matrix, and . While is indepen-

dent of and , the block diagonal matrix depends on and ,

and has 2 2 diagonal blocks. Consider the matrix in (18) with

, for a generic Using

(38)

where is the permutation matrix (here

is the –th column of the identity matrix)

and is a

2 2 matrix with , ,

and . Using (38), and the fact

that is orthonormal:

, we can

express in (36) as

(39)

2) Bounding the Norm of : As is

orthonormal, has the same singular values as

, and so these two matrices also

share the same spectral norm (maximal singular value.)

Further, the matrix is block di-

agonal (with 2 2 blocks), and so:

We pro-

ceed by calculating . We distinguish two

cases: , and .

Case : As , for all , is a

constant matrix, with , and the entries ,

and of are zero. Note that , and ,

. Thus, as long as , the product

, and so

if

if .
(40)

Case : To simplify notation, let , and

recall is: , where: 1)

, , and and

2) , and .; is

diagonalizable, with , and

(Note that the matrices and are complex.) De-

note by . Then,

. By the

sub-multiplicative property of norms, and using

,

(41)

It remains to upper bound , for all We

will show that

(42)

Denote by , , and .

After some algebra, the entries of are:

,

, which gives:

,

and

. Next, interestingly:

JAKOVETIĆ et al.: FAST DISTRIBUTED GRADIENT METHODS 1143

for any ,

which is the case here because , ,

and . Thus, as for a Hermitean matrix :

.

Applying the last equation and (42) to (41), we get, for :

.

Combine the latter with (40), and use

, Assumption 1(b) and

, to obtain

(43)

3) Summation: We apply (43) to (37). Using the sub-mul-

tiplicative and sub-additive properties of norms, expres-

sion , and the inequalities

,

(44)

We now denote by . To com-

plete the proof of the Lemma, we upper bound the sum

by splitting it into two sums. With the

first sum, runs from zero to , while with the second sum,

runs from to

(45)

(46)

(47)

(48)

Inequality (45) uses the inequality

, and ; (46)

multiplies and divides the first summand on the right hand

side of (45) by ; (47) uses

, for all , and a sim-

ilar bound for the second summand in (46); the left in-

equality in (48) uses

and (note that is convex

in ; we take the derivative of with respect to

and set it to zero); and the right inequality in (48) uses

, ; ,

, and Applying the last to (44),

and using the in (17), Theorem 4 for fol-

lows. Then, as ,

we have that . Fur-

ther, by Theorem 4:

, , and (by assump-

tion). Thus, , . Thus,

, .

B. Proof of the Lower Bound in (32) on the Worst-Case

Optimality Gap for [8]

Consider the ’s in (33), the initialization ,

, and , as

we set in Section VII-A. We divide the proof in four steps. First,

we prove certain properties of (1) and the ’s in (33); second,

we solve for the state with the al-

gorithm in [8]; third, we upper bound ; finally, we use

the latter bound to derive the worst-case optimality

gap.

Step 1: Properties of the ’s: Consider the ’s in (33) for a

fixed . The solution to (1), with ,

is , and the corresponding optimal value is

. Further, the ’s belong to the class .

(Proof is in [18].)

Step 2: Solving for With the Algorithm in [8]: Now,

consider the algorithm in [8], and consider –the so-

lution estimate at node and time . Denote by

–the vector with the -th coordinate

of the estimate of both nodes, ; and

, . Then, the update rule

of [8] is, for the in (33)

(49)

Recall the “hard” initialization ,

. Under this initialization

(50)

for all , for both nodes (proof in [18].) Note that

is the region where the in (33) is quadratic. Thus, evaluating

’s in the quadratic region

(51)

1144 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 59, NO. 5, MAY 2014

, where and . We now evaluate

. Because

, , verify, using (33), and , that

(52)

By unwinding (51), and using ,

Consider the eigenvalue decomposition ,

where , , ,

and is diagonal with the eigenvalues

, . The matrix

decomposes as ;

likewise, . Then,

, and

. Using these

decompositions, and the orthogonality: , and

(53)

(54)

Step 3: Upper Bounding : Note that

, for all . Also, ,

for all . Similarly, we can show

then, ,

, and , . Thus:

Set

, where use

, ,

; and . We obtain: , and

so: where we denote and

. Further, from (54):

and we obtain:

(55)

Step 4: Upper Bounding the Optimality Gap From (55):

From (55), and using (52)

(56)

, . We further upper bound the right hand side in

(56) by taking the infimum of over ; we split

the interval into ; , and , so that

(57)

It is easy to prove that: 1) ; 2)

using , ,

that ; and 3)

. (see [18].) Combining the latter bounds with (57)

completes the proof of (32).

C. Relaxing Bounded Gradients: Proof of (34) for D–NC

We prove (34) for D–NC while the proof for D–NG is similar

and is in [18]. Fix arbitrary and take the ’s in (35). From

(9)–(10), evaluating the ’s

(58)

for We take the initialization at the solution

. Consider the eigenvalue decomposition

, with , , ,

and is diagonal with , . Define

and . Multiplying (58) from

the left by , and using

(59)

, and . Next, note that

(60)

Further, from (59) for the first coordinate , re-

calling that

(61)

Note that (61) is analogous to (28)–(29)

with the identification , ,

; hence, analogously to the proof of Theorem

7, from (61): Using

the latter, (59), and (see (7)):

JAKOVETIĆ et al.: FAST DISTRIBUTED GRADIENT METHODS 1145

, . Thus, from (60) and the latter

inequality, , which

is, for , greater or equal for

.

ACKNOWLEDGMENT

The authors wish to thank an anonymous reviewer whose in-

structive comments led them to develop algorithm D–NC, the

anonymous reviewers and the associate editor for several useful

suggestions regarding the presentation and organization of the

paper, and J. F. C. Mota for pointing them to relevant references

and for useful discussions.

REFERENCES

[1] J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous

deterministic and stochastic gradient optimization algorithms,” IEEE

Trans. Autom. Control, vol. 31, no. 9, pp. 803–812, Sep. 1986.

[2] J. N. Tsitsiklis, “Problems in Decentralized DecisionMaking and Com-

putation,” Ph.D., Elect. Eng. Comp. Sci., MIT, Cambridge, MA, 1984.

[3] M. Rabbat and R. Nowak, “Distributed optimization in sensor net-

works,” in Proc. 3rd Int. Symp. Inform. Process. Sensor Networks

(IPSN’04), Berkeley, CA, USA, Apr. 2004, pp. 20–27.

[4] B. Johansson, A. Speranzon, M. Johansson, and K. H. Johansson, “On

decentralized negotiation of optimal consensus,” Autom., vol. 44, no.

4, pp. 1175–1179, 2008.

[5] G. Mateos, J. A. Bazerque, and G. B. Giannakis, “Distributed sparse

linear regression,” IEEE Trans. Signal Process., vol. 58, no. 11, pp.

5262–5276, Nov. 2010.

[6] I. Necoara and J. A. K. Suykens, “Application of a smoothing tech-

nique to decomposition in convex optimization,” IEEE Trans. Autom.

Control, vol. 53, no. 11, pp. 2674–2679, Dec. 2008.

[7] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed op-

timization and statistical learning via the alternating direction method

of multipliers,” Found. Trends Machine Learning, vol. 3, no. 1, pp.

1–122, 2011.

[8] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-

agent optimization,” IEEE Trans. Autom. Control, vol. 54, no. 1, pp.

48–61, Jan. 2009.

[9] S. Ram, A. Nedic, and V. Veeravalli, “Distributed stochastic subgra-

dient projection algorithms for convex optimization,” J. Optim. Theory

Appl., vol. 147, no. 3, pp. 516–545, 2011.

[10] I. Lobel and A. Ozdaglar, “Convergence analysis of distributed

subgradient methods over random networks,” in Proc. 46th Annu.

Allerton Conf. Commun., Control, Comput., Monticello, IL, Sep.

2008, pp. 353–360.

[11] I. Matei and J. S. Baras, “Performance evaluation of the consensus-

based distributed subgradient method under random communication

topologies,” IEEE J. Selected Topics Signal Process., vol. 5, no. 4, pp.

754–771, 2011.

[12] C. Lopes and A. H. Sayed, “Adaptive estimation algorithms over dis-

tributed networks,” in Proc. 21st IEICE Signal Process. Symp., Kyoto,

Japan, Nov. 2006.

[13] J. Chen and A. H. Sayed, “Diffusion adaptation strategies for dis-

tributed optimization and learning over networks,” IEEE Trans. Sig.

Process., vol. 60, no. 8, pp. 4289–4305, Aug. 2012.

[14] J. Duchi, A. Agarwal, and M. Wainwright, “Dual averaging for dis-

tributed optimization: Convergence and network scaling,” IEEE Trans.

Autom. Control, vol. 57, no. 3, pp. 592–606, Mar. 2012.

[15] K. Tsianos and M. Rabbat, “Distributed consensus and optimization

under communication delays,” in Proc. 49th Allerton Conf. Commun.,

Control, Comput., Monticello, IL, Sep. 2011, pp. 974–982.

[16] M. Zhu and S. Martínez, “On distributed convex optimization under

inequality and equality constraints,” IEEE Trans. Autom. Control, vol.

57, no. 1, pp. 151–164, Jan. 2012.

[17] Y. E. Nesterov, “A method for solving the convex programming

problem with convergence rate ,” (in Russian) Dokl. Akad.

Nauk SSSR, vol. 269, pp. 543–547, 1983.

[18] D. Jakovetic, J. Xavier, and J. M. F. Moura, Fast Distributed Gradient

Methods [Online]. Available: http://arxiv.org/abs/1112.2972

[19] A. Chen and A. Ozdaglar, “A fast distributed proximal gradient

method,” in Proc. 50th Allerton Conf. Commun., Control Comput.,

Monticello, IL, Oct. 2012, pp. 601–608.

[20] A. Chen, “Fast Distributed First-Order Methods,” M.S. thesis, Mass.

Inst. Technol. (MIT), Cambridge, 2012.

[21] D. Jakovetic, J. Xavier, and J. M. F. Moura, “Cooperative convex op-

timization in networked systems: Augmented Lagrangian algorithms

with directed gossip communication,” IEEE Trans. Signal Process.,

vol. 59, no. 8, pp. 3889–3902, Aug. 2011.

[22] J. Mota, J. Xavier, P. Aguiar, and M. Pueschel, “Basis pursuit in sensor

networks,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.

(ICASSP’11), Prague, Czech Republic, May 2011, pp. 2916–2919.

[23] J. Mota, J. Xavier, P. Aguiar, and M. Pueschel, “Distributed basis pur-

suit,” IEEE Trans. Sig. Process., vol. 60, no. 4, pp. 1942–1956, Apr.

2012.

[24] U. V. Shanbhag, J. Koshal, and A. Nedic, “Multiuser optimization:

distributed algorithms and error analysis,” SIAM J. Control Optim., vol.

21, no. 2, pp. 1046–1081, 2011.

[25] H. Terelius, U. Topcu, and R. M. Murray, “Decentralized multi-agent

optimization via dual decomposition,” in Proc. 18th World Congr.

o Int. Fed. Autom. Control (IFAC), Milano, Italy, Aug. 2011, pp.

7391–7397.

[26] E. Ghadimi, I. Shames, and M. Johansson, “Accelerated gradient

methods for networked optimization,” in Proc. Amer. Control Conf.

(ACC’11), San Francisco, CA, Jun. 2011, pp. 1668–1673.

[27] E. Ghadimi, I. Shames, and M. Johansson, Accelerated Gradient

Methods for Networked Optimization 2012 [Online]. Available:

http://arxiv.org/abs/1211.2132

[28] L. Xiao, S. Boyd, and S. Lall, “A scheme for robust distributed sensor

fusion based on average consensus,” in Proc. Inform. Process. Sensor

Networks (IPSN’05), Los Angeles, CA, 2005, pp. 63–70.

[29] D. Blatt, A. Hero, and H. Gauchman, “A convergent incremental gra-

dient method with a constant step size,” Siam J. Optim., vol. 18, no. 1,

pp. 29–51, 2009.

[30] P. Tseng, “On accelerated proximal-gradient methods for convex-con-

cave optimization,” SIAM J. Optim, submitted for publication.

[31] L. Vandenberghe, Optimization Methods for Large-Scale Systems

2010, Lecture notes [Online]. Available: http://www.ee.ucla.edu/~van-

denbe/ee236c.html

[32] D. Jakovetic, J. M. F. Moura, and J. Xavier, “Distributed Nesterov-

like gradient algorithms,” in Proc. 51st IEEE Conf. Decision Control

(CDC’12), Dec. 2012, pp. 5459–5464.

[33] O. Devolder, F. Glineur, and Y. Nesterov, “First-order methods of

smooth convex optimization with inexact oracle,” Math. Programm.,

submitted for publication.

[34] G. Shi and K. H. Johansson, “Finite-Time and Asymptotic Conver-

gence of Distributed Averaging and Maximizing Algorithms,” Tech.

Rep., 2012 [Online]. Available: http://arxiv.org/pdf/1205.1733.pdf

[35] D. Kempe and F. McSherry, “A decentralized algorithm for spectral

analysis,” in Proc. 36th Annu. ACM Symp. Theory Comput., Chicago,

IL, Aug. 2004, pp. 561–568.

[36] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip al-

gorithms,” IEEE Trans. Inform. Theory, vol. 52, no. 6, pp. 2508–2530,

Jun. 2006.

[37] M. Zargham, A. Ribeiro, and A. Jadbabaie, “A distributed line search

for network optimization,” in Proc. Amer. Control Conf., Montréal,

QC, Canada, Jun. 2012, pp. 472–477.

[38] Y. Nesterov, “Gradient Methods for Minimizing Composite Objective

Function,” Center for Operations Research and Econometrics (CORE),

Catholic University of Louvain (UCL),, Tech. Rep. 76, 2007.

Dušan Jakovetić (S’10) received the dipl. ing.
diploma from the School of Electrical Engineering,

University of Belgrade, Belgrade, Serbia, in 2007,

and the Ph.D. degree in electrical and computer

engineering from both the Carnegie Mellon Univer-

sity, Pittsburgh, PA, and the Instituto de Sistemas

e Robótica (ISR), Instituto Superior Técnico (IST),

Lisbon, Portugal, in 2013.

Since October 2013, he has been a Research

Fellow at the BioSense Center, University of Novi

Sad, Serbia. From June to September 2013, he was

a Postdoctoral Researcher at IST. His research interests include distributed

inference and distributed optimization.

1146 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 59, NO. 5, MAY 2014

João Xavier (S’97–M’03) received the Ph.D. degree
in electrical and computer engineering from the In-

stituto Superior Técnico (IST), Lisbon, Portugal, in

2002.

Currently, he is an Assistant Professor in the De-

partment of Electrical and Computer Engineering,

IST. He is also a Researcher at the Institute of

Systems and Robotics (ISR), Lisbon, Portugal. His

current research interests are in the area of optimiza-

tion and statistical inference for distributed systems.

José M. F. Moura (S’71–M’75–SM’90–F’94)

received the engenheiro electrotécnico degree

from the Instituto Superior Técnico (IST), Lisbon,

Portugal, and the M.Sc., E.E., and D.Sc. degrees in

electrical engineering and computer science from

the Massachusetts Institute of Technology (MIT),

Cambridge, MA.

In 2013–2014, he is a Visiting Professor at New

York University (NYU) and at CUSP-NYU on

sabbatical leave from Carnegie Mellon University

(CMU), Pittsburgh, PA, where he is the Philip and

Marsha Dowd University Professor. Previously, he was on the faculty at IST

and was visiting Professor at MIT. He is Founding Director of ICTI, a large

education and research program between CMU and Portugal. He has published

over 470 papers, has 12 patents issued by the U.S. Patent Office, and cofounded

SpiralGen. His research interests include statistical, algebraic, and distributed

signal and image processing, signal processing on graphs, and data science.

Dr. Moura received the IEEE Signal Processing Society Technical Achieve-

ment Award and the IEEE Signal Processing Society Society Award. He is a

member of the U.S. National Academy of Engineering, corresponding member

of the Academy of Sciences of Portugal, and a Fellow of the AAAS. He

was IEEE Division IX Director and member of the IEEE Board of Directors

(2012–13) and has served on several IEEE Boards. He was President (2008–09)

of the IEEE Signal Processing Society, served as Editor in Chief for the IEEE

Transactions in Signal Processing, interim Editor in Chief for the IEEE

Signal Processing Letters, and member of several Editorial Boards, including

IEEE Proceedings, IEEE SP Magazine, and the ACM Transactions on Sensor

Networks.

