
EURASIP Journal on Image
and Video Processing

Li et al. EURASIP Journal on Image and Video

Processing         (2019) 2019:51 

https://doi.org/10.1186/s13640-019-0442-7

RESEARCH Open Access

Fast distributed video deduplication via
locality-sensitive hashing with similarity
ranking
Yeguang Li1,2, Liang Hu1, Ke Xia3 and Jie Luo3*

Abstract

The exponentially growing amount of video data being produced has led to tremendous challenges for video

deduplication technology. Nowadays, many different deduplication approaches are being rapidly developed, but

they are generally slow and their identification processes are somewhat inaccurate. Till now, there is rare work that

studies the generic hash-based distributed framework and the efficient similarity ranking strategy for video

deduplication. This paper proposes a flexible and fast distributed video deduplication framework based on hash

codes. It is able to support the hash table indexing using any existing hashing algorithm in a distributed environment

and can efficiently rank the candidate videos by exploring the similarities among the key frames over multiple tables

using MapReduce strategy. Our experiments with a popular large-scale dataset demonstrate that the proposed

framework can achieve satisfactory video deduplication performance.

Keywords: Video deduplication, Distributed computing, Locality sensitive hashing, Hash table indexing, Similarity

ranking

1 Introduction
Due to the increasing popularity of mobile devices and

social networks, huge numbers of videos are being cre-

ated and shared online. This explosive growth in the

amount of video data being produced has made storing

and rapidly searching it all very challenging. In practice,

many videos are duplicates, or near-duplicates, so detect-

ing these copies has become a very important technique

for reducing the storage and computation required.

In recent years, many content-based duplicate detec-

tion techniques have been developed that aim to identify

such copies automatically in massive datasets. For exam-

ple, a million-video-scale near-duplicate video retrieval

system [1] has been developed that quantizes the key

frames’ features into visual words and uses an inverted

file index to implement rapid search. In contrast to prior

research, Song et al. [2] presented a near-duplicate video

retrieval method based on compact hash codes learnt

*Correspondence: luojie@nlsde.buaa.edu.cn
3State Key Lab of Software Development Environment, Beihang University,

Beijing, China

Full list of author information is available at the end of the article

from multiple visual features, a promising solution that

enables fast signature generation based on binary codes

from multiple views.

Hashing-based approximate nearest-neighbor search

has attracted much attention in the literature, owing

to its high search performance and low computational

requirements [3–6]. Locality-sensitive hashing (LSH) is

the most fundamental concept in such hashing research

[7], which has led many studies to focus on find-

ing ways to generate compact hash codes by exploit-

ing different techniques, including (semi-) supervised

learning [8–10], non-linear mapping [5, 8, 11–15], dis-

crete optimization [12, 16–18], multiple features [2, 19],

and bit selection [20, 21].

Most of the existing hashing methods have been pro-

posed to handle the popular vectorial data like the images.

They can also be directly applied to indexing the gigan-

tic video data by treating frames as images [11, 22–25].

Song et al. [2] proposed a multiple feature-based hashing

to capture different aspects of visual content. Cao et al.

[23] effectively selected a number of informative features

to characterize the video content under a submodular

hashing framework. Xia et al. and Wang et al. [26, 27]

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13640-019-0442-7&domain=pdf
mailto: luojie@nlsde.buaa.edu.cn
http://creativecommons.org/licenses/by/4.0/


Li et al. EURASIP Journal on Image and Video Processing         (2019) 2019:51 Page 2 of 11

further employed the subspace representation to generate

framewise hash code by considering local structure of the

consecutive frames. However, these video hashing solu-

tions only take the video frames as the still images and

generate their binary codes independently. In practice, it

is well known that videos are quite different from images

with more complex semantic and temporal information.

The video deduplication should take the temporal order

of the frames into the consideration.

Despite this progress of the highly developed hashing

techniques, little attention has been paid to methods of

building efficient indexes with hash codes or generating

good ranking lists by aggregating results from multiple

indexes. There are a few studies that attempt to address

the image indexing by learning a number of the comple-

mentary hash tables [19, 28, 29]. However, these tech-

niques heavily rely on the specific and usually expensive

learning algorithms, which can hardly be compatible to

the generic scenarios and existing hashing algorithms.

In this paper, we address this problem by proposing a

generic, yet fast video deduplication framework based on

hash codes. This framework supports hash table indexing

and searching based on any existing binary hashing algo-

rithm, and it can adaptively combine ranking results from

multiple tables by considering key frame similarities. To

the best of our knowledge, this is the first attempt to study

a general hashing-based video deduplication framework

that can support large-scale video databases.

To handle the large-scale duplication problem, the dis-

tributed computing is popular and successful technique

in the literature. Kumar et al. [30] proposed a technique

whereby a chunking algorithm divides the data stream

into fixed-size chunks, from which hash values are gener-

ated via the MD5 algorithm and then used by a MapRe-

duce (MR) model to identify duplicates. Moise et al. [31]

proposed usingMR for efficient index creation and search,

enabling billions of descriptors to be indexed and large

batches of queries to be processed. Following the prior

research, in this paper, we further enhance our hashing-

based video deduplication method with a distributed

framework, which simultaneously exploits both the com-

puting power of the distributed nodes and the nature

distributed storage of the gigantic video data nowadays.

Note that the whole paper extends upon a previous con-

ference publication [32] with additional exploration and

experiments on the general distributed computing frame-

work for the hash-based video deduplication. The rest of

this paper is organized as follows. Section 2 introduces

the proposed hashing-based video deduplication frame-

work. Section 3 elaborates our approach to fine-grained

ranking over multiple table indexes, which attempts to

capture the videos’ similarities. Section 4 describes how

we use MapReduce to process the video data both online

and offline. Section 5 presents the results of experiments

on a popular benchmark, demonstrating the proposed

method’s effectiveness. Finally, Section 6 concludes the

paper.

2 Methods - hash-based video deduplication
framework

In this section, we first outline our framework and itsmain

components, then introduce the hashing-based video

indexing process used by the framework.

2.1 Video deduplication framework

Figure 1 gives an overview of our framework for large-

scale video deduplication. Given a query video, this can

efficiently find matches between that video and those in

the database, rapidly identifying duplicate videos. The

framework consists of four main components: video

hashing, index construction, video archiving, and video

deduplication. These components perform the following

functions.

Video hashing: In this step, we process the query video

by first extracting key frames, then generating visual

features (via the Color and Edge Directivity Descriptor

(CEDD) approach in this paper) for each one. Based on

these features, we represent each key frame by a set

of binary hash codes from different hashing functions.

Many different hash functions could be used here, such

as projection-based [16, 33] or prototype-based [34] func-

tions.

Index construction: Using multiple hash tables has been

found to be very helpful for achieving high recall per-

formance for big data search [35, 36]. In this step, we

therefore build multiple hash tables based on the binary

codes obtained above. Again, there are many possible

strategies for this, including multi-index hashing [37] and

complementary hash tables [19, 28].

Video archiving: Using the above two steps, all the

videos in the database are represented as binary codes and

imported into multiple hash tables. Figure 2 shows the

structure of these indexes, where each unique hash code

corresponds to a bucket containing similar key frames.

This step is carried out offline.

Video deduplication: The given query video is first

hashed to generate a set of binary codes for each key

frame. Then, for each hash code, we check all the buckets

in the corresponding hash table within a small Hamming

distance of it, considering the videos containing the key

frames in these buckets as candidate results. We then rank

them by similarity (Section 3), enabling duplicate videos

to be easily detected.

2.2 Hash table indexing

One of the most important parts of the above frame-

work is the hash table indexing step, as it guarantees low

memory consumption and satisfactory deduplication per-



Li et al. EURASIP Journal on Image and Video Processing         (2019) 2019:51 Page 3 of 11

Fig. 1 Proposed hash-based framework for fast video deduplication

formance. To achieve the desired performance, we com-

bine several efficient techniques, including multiple-table

indexing, multi-probe search, and Hamming distance-

based ranking.

Suppose that, for each key frame x, we generate a set

of B binary hash codes y =[ h1(x), . . . , hB(x)]∈ {−1, 1}M.

Many different hash functions hb, b = 1, . . . ,B can be

used, of which the simplest is random projection. Then,

we build L hash tables by evenly partitioning the code y

into L subcodes of length M
L , which is usually less than 32

in practice. These subcodes can then be used to build a set

of hash tables {Tl, l = 1, . . . , L}, each based on hashes of

length M
L . In these hash tables, each bucket contains key

frames from videos in the database.

Figure 2 shows an example hash table based on 4-bit

codes, where a total of 24 buckets each store the key

frames extracted from different videos that share the same

hash code. Using these tables, we perform separate hash

Fig. 2 Hash table structure used for the video index



Li et al. EURASIP Journal on Image and Video Processing         (2019) 2019:51 Page 4 of 11

table lookups for each key frame in the given query video

to efficiently find similar frames. Based on these search

results, we can then determine whether the query video is

a duplicate of one in the database. In the next section, we

discuss in detail how table lookups are performed and the

final results are generated.

3 Similarity ranking over multiple tables
The multiple-hash-table lookup process returns several

different result sets, so one critical problem is how to

combine these to form the final ranking list. This section

describes our similarity ranking strategy.

3.1 Frame similarity

During the online search phase, we first divide each key

frame’s hash code into L equal parts, then look up each

subcode in its corresponding table. The most common

table lookup strategy is to search all buckets within a small

radius. Therefore, given an allowed lookup radius R, the

maximum Hamming distance for each table is R
L .

To compute the similarity of two videos, we should

first capture the similarity relationships among their key

frames. For the ith key frame xqi of the query video and

thejth key frame xdj of the dth video in the database,

we combine the Hamming distance-based similarities for

each hash table to derive the overall similarity of the key

frame pair in the natural way:

sij = 2 ∗ R −

L
∑

l=1

{

αrl + (1 − α)

(

R

L
+ 1

)}

(1)

where rl is the Hamming distance between the l-th

subcodes of the query and database frames and α is a

weighting parameter that controls the contribution of the

Hamming distance. Essentially, when rl ≤ R
L , the videos

are highly likely to be duplicates, so we set α = 1; other-

wise, they are unlikely to be duplicates, so we set α = 0.

In summary, the above similarity definition is based on

the fact that when the subcode distances are smaller and

more key frames match, the videos are more likely to be

duplicates.

3.2 Video similarity

The above similarity definition ignores the videos’ tem-

poral information, but prior research has demonstrated

that including such information can improve performance

[38]. Therefore, we also consider the temporal consis-

tency between the matched frames. However, considering

high-order temporal sequences is quite complex and time-

consuming, so we simplify the problem by focusing only

on the temporal orders of pairs of frames, instead of the

full list.

Specifically, we define the order preservation ratio

(OPR) as follows:

odij =
|Idk′

i
− Idk′

j
|

|Iqki − Iqkj |
(2)

Here, we consider two pairs of matched frames, namely,

the kith and kjth frames of the query video and the corre-

sponding kith and kjth frames of the dth database video,

denoting the order of the k′
ith frame in the dth video by

Idk′
i
and defining the other variables likewise. This cap-

tures the idea that the key frames of two duplicate videos

will be consistently ordered in the fact that OPRs for

matched frame pairs will then remain constant. We can

therefore use this to filter out false positive video matches.

Based on this intuition, we refine the similarity met-

ric between the query and dth database videos by con-

sidering the temporal order of all possible pairs of two

matched frames and simply summing the similarities of

pairs with the same OPR. This means that if more frames

match in consistent order, they will contribute more to the

similarity. If we have two sequences of matched frames,
{

Iqk1 , . . . , Iqkm
}

from the query video and
{

Idk′
1
, . . . , Idk′

m

}

from the database video, we calculate the similarity matrix

Gd =

(

gdij

)

, 1 ≤ i, j ≤ m as follows. Each entry gdij sums

the similarities of the individual frames in a givenmatched

pair:

gdij = skik′
i
+ skjk′

j
. (3)

Therefore, after computing G and all the odij for the

matched video sequence, we sum all the hdij with the same

odij, forming the histogram hd =

(

hdi

)

:

hdi =
∑

odij=vdi

gdij , (4)

where vdi is an OPR value.

Figure 3 shows two cases, one where multiple matched-

frame pairs share the same OPR and another where they

do not. Here, we can see that sequences where more

frames match in a consistent order will have higher sim-

ilarities due to the summation process, helping us to

distinguish true duplicates from false positives with less-

consistent frame matches.

Based on the histogram, we obtain the final similar-

ity between the query and database videos by taking the

histogram’s maximum value, which reveals the dominant

matching order. To eliminate the effect of video length, we

normalize the similarity as follows:



Li et al. EURASIP Journal on Image and Video Processing         (2019) 2019:51 Page 5 of 11

a b

Fig. 3 Similarity histograms, showing similarity distributions based on the OPR. a same OPR. b different OPRs

Sd =
1

m
max

i
hdi (5)

where m is the number of matched key frames for the

query and database videos. Based on this similarity met-

ric, we can easily rank all candidates in descending order.

Since the candidate set is quite small relative to the size of

the database, by efficiently computing the Hamming dis-

tance and OPR, we can generate this similarity ranking

quite quickly.

4 Distributed deduplication
The distributed framework proposed in this paper is

based on the MR model, which assigns tasks equally to

each Hadoop DataNode. In this section, we will elaborate

how MR is used for distributed video processing, during

both the offline and online stages.

4.1 Offline video data processing

First, all the videos in the database are processed, and

these tasks are assigned to an average of M DataNodes,

one per video.When the initial preprocessing step is com-

plete on each DataNode, hash codes are generated for

each key frame and L DataNodes are allocated to build

hash tables. Next, the key frame hash codes generated

for the M videos are looked up in the L hash tables by

MR, and the matching results are obtained. Finally, the

video storage process is completed based on the matching

results.

The video preprocessing and hash table creation pro-

cesses are described in detail above, so now we discuss

howMR is used to perform thematching operations. Early

in the map processing phase, the input data is split into

groups by the InputSplit method and parsed into interme-

diate key/value pairs, which are then used as input to the

reduce method in order to obtain the final results.

During the map phase, we generate key/value pairs with

a subcode as the key and the ID number of the corre-

sponding key frame (VF) as the value (<subcode, VF> in

Fig. 4). The shuffle step then regroups key frames with

the same hash codes to generate an intermediate sequence

of key/value pairs (<subcode, [VF]>). Then, the reduce

phase looks up each key in the appropriate hash table,

yielding pairs of hash table entries (buckets) and key frame

groups (<bucket, [VF]>). Finally, the ID numbers [VF] of

key frame groups with same hash code are stored in the

corresponding hash table.

4.2 Online video data processing

First, we preprocess the input video to generate key frame

hash codes, then we look up these hash codes in the hash

tables and obtain the matching results using MR (Fig. 5).

Here, the keys and values are the hash table TL and the

corresponding hash code for the input video.

As shown in Fig. 6, the input data is first parsed into a

series of key/value pairs <K1, V1>, where K1 represents

the hash table TL and V1 represents the key frame’s sub-

code. The map phase creates a sequence of L key/value

pairs based on K1, namely <K2, List (V2)>, which give

the key frame IDs V2 corresponding to the subcode K2.

The reduce phase traverses the list of key frames V2

corresponding to subcode K2, as follows:

for (V2 = first, V2 != NULL, V2 = V2.next )

if V2 = lookup(K2), emit<K2,V2>;

Finally, we obtain key/value pairs <K2, V2> of hash

table entries (buckets) and key frames that give, for each

subcode K2, the similar key frames stored in the same

bucket.

Figure 6 demonstrates the case of hash table lookup for

MapReduce-based. Define the hash table TL as the key,

and corresponding queried hash code is the value . First,



Li et al. EURASIP Journal on Image and Video Processing         (2019) 2019:51 Page 6 of 11

Fig. 4 Data processing with MapReduce

Fig. 5 Overview of the online video processing



Li et al. EURASIP Journal on Image and Video Processing         (2019) 2019:51 Page 7 of 11

Fig. 6MapReduce process for online video processing

the input data is parsed into a series of key-value pairs

:<K1, V1>, K1 represents the hash table TL, V1 repre-

sents the sub hash code of key frame. Through the map

phase, a sequence of key-value pairs < K2, List (V2) > are

grouped by K1. In the reduce phase, every V2 in the corre-

sponding K2 will be traversed. For (V2=first, V2!=NULL,

V2=V2.next) if V2=lookup(K2), emit<K2,V2>. Finally,

the key-value pairs <K3,V3> of hash index entries (buck-

ets and sub hash codes) are obtained.Thus, for each V3,

there are the similar key frames stored in K3.

5 Results and discussions
In this section, we evaluate the proposed framework on a

large-scale video deduplication task.

Datasets and protocols: Here, we adopted the widely

used UQ_VIDEO [2], which is a combined video

dataset created from the CC_WEB_VIDEO [39] by

adding videos downloaded from YouTube. The YouTube

videos were selected based on the most popular queries

from the Google Zeitgeist Archives from 2004–2009.

The UQ_VIDEO dataset contains a total of 169,952

videos, making it the largest web video dataset designed

for experiments. In addition, it provides 3,305,525

key frames extracted from these videos. For testing,

CC_WEB_VIDEO contains 24 manually defined near-

duplicate web videos for use as queries. For each query

video, there are several ground truth videos that are iden-

tical or nearly identical, but different in terms of features

such as the file format, encoding parameters, editing oper-

ations, or length.

With regard to performance metrics, we employed

the common precision and recall metrics for hash table

lookup. Essentially, we retrieved all key frames that fell

into the buckets of any table within a given Hamming

radius of the query hash code. In most experiments, we

used the popular LSH algorithm to generate the hash

codes. However, we also investigated the effect of using

different hashing algorithms, including iterative quantiza-

tion (ITQ) [16]. We tried building several different num-

bers of hash tables from the hash codes, each using codes

of different lengths.

Code length: First, we studied the effect of changing

each table’s code length. In this experiment, we built four

tables, with code lengths of 16, 20, and 24, using 64, 80,

and 96 LSH functions. Figure 7 shows their precision-

recall performance for lookup radii of D = 0, l = 1,

. . . , 4. These precision-recall curves show the overall

video duplicate detection performance, with larger areas

under the curve indicating better performance. Here, we

can see that 96-bit hash codes achieved the best perfor-

mance in both respects, which is consistent with the fact

that the optimal code length value should close to log2 n ,



Li et al. EURASIP Journal on Image and Video Processing         (2019) 2019:51 Page 8 of 11

Fig. 7 Performance using hash codes of different lengths

where n is the number of frames [37, 40] (3,305,525 in this

case).

Even though we obtained the best performance with

96-bit functions, the results were also satisfactory with

64 and 80 bits. However, using fewer hash bits for each

table means more frames fall into each bucket, leading

to increased computation costs for the similarity ranking

process, due to the larger number of candidate-matched

frame pairs. Therefore, in practice, the ideal code length

should be a balance between high performance and fast

execution. Table 1 lists the computation times in all three

cases, showing that, as the code length increased, the

time required for similarity ranking decreased. In addi-

tion, increasing the search radius increased the time taken

significantly. This is mainly because both short codes and

large radii increase the collision probability, leading to

more candidates for similarity ranking. After balancing

the precision-recall performance with the computational

cost, we chose to use 80-bit hash functions for all other

experiments.

Table 1 Similarity rankings and encoding times using 64, 80, and

96 hash bits

Code length Similarity ranking (s) Hash coding (ms)

D = 0 D = 0

64 3.75 11.5 5.34

80 1.77 5.81 7.87

96 1.56 4.33 9.83

Lookup radius: In addition to the hash length, we also

considered the effect of changing the lookup radius.

Figure 8 shows the results of using different lookup

radii (D) with different hash lengths. Here, we can easily

see that increasing the search range improves the over-

all performance, especially the recall performance. This

is because more candidates participate in the similarity

ranking process, enabling our ranking method to distin-

guish duplicates more easily from this larger candidate

set.

Hashing algorithms: In the literature, any well-designed

hashing algorithms have been proposed and shown to

be more powerful than the basic LSH approach in many

applications. We therefore compared the LSH-based

video deduplication results above with those of state-of-

the-art hashing algorithms. Here, we examined the most

successful of them, namely, iterative quantization hash-

ing (ITQ), to demonstrate the effect of different hashing

algorithms on our task.

Figure 9 shows the relative performance of LSH and

ITQ. We can clearly see that LSH yields better perfor-

mance than ITQ, indicating that, when building multiple

tables, LSH may actually be better even than well-

designed hashing algorithms like ITQ. We believe this

is mainly because these methods were not originally

designed for multiple tables, and thus ignore table com-

plementarity [19, 28]. The computational costs of using

LSH and ITQ also emphasize this point, as LSH only

took 1.77 s, while ITQ required 12.81 s due to a lack of

discriminative power when building multiple tables.



Li et al. EURASIP Journal on Image and Video Processing         (2019) 2019:51 Page 9 of 11

a

b

c

Fig. 8 Precision-recall performance for different lookup radii, with

a 64, b 80, and c 96 LSH bits

Similarity ranking: Next, we evaluated the proposed

similarity ranking method. We compared it with a naive

baseline approach that scores the candidate videos based

on a basic voting strategy, without considering the tem-

poral order or Hamming distance. Figure 10 shows the

Fig. 9 Performance comparison for LSH and ITQ hashing

results, demonstrating that the proposed method signifi-

cantly outperformed the native solution, which has been

widely used in hash-based applications. Since our method

can be applied to arbitrary data sequences, it could be

beneficial in many similar applications in the future.

Computational cost: Compared with the processing

time required by a single machine, using MR for large-

scale video data processing is more efficient. In this study,

we created an MR test environment consisting of four

physical machines, one NameNode and three DataNodes,

each configured as shown in Table 2.

The MR model must copy the data from disk to the

Hadoop Distributed File System (HDFS) when dealing

with video data, which delays processing by the time

required to copy the data across the network. We there-

fore carried out the preprocessing steps on disk instead of

copying the data to the HDFS, which greatly reduced the

time required to copy the data.

Figure 11 shows that MR had a clear processing speed

advantage when dealing with more than 100 million

Fig. 10 Performance comparison for the proposed and baseline

similarity ranking methods



Li et al. EURASIP Journal on Image and Video Processing         (2019) 2019:51 Page 10 of 11

Table 2 Node configuration used for MR

Cpu 2*Intel Xeon 4 Core E5520 2.26 GHz

Memory 8*2GB DDR3 1066 MHz

Hard disk 2*146GB SCSI

Adapter 1000MB Ethernet

OS Ubuntu 12.02 64 bits

Java version 1.6.0

Hadoop version 1.2.1

of video frames, and that this steadily increased with

the amount of video. For example, with 900 million of

video frames, MR was 44.2% faster than using a single

machine.

6 Conclusions
To achieve the fast deduplication of a large-scale video

dataset, this paper proposed a distributed framework

based on locality-sensitive hashing, which is generic

and powerful to use any existing hashing algorithm to

build multiple hash table indexes. Based on the effi-

cient indexes, we then developed an efficient similar-

ity ranking method that combines the search results

from multiple tables by considering both the Ham-

ming distances between key frames and the frames

in temporal order. By further introducing the dis-

tributed computing strategy based on the MapReduce,

the efficiency of hash-based deduplication is further

improved at both offline indexing and online search

stages. We conducted several experiments on large-

scale video datasets to evaluate the different aspects

of our method, and the results indicate that the pro-

posed method is robust and efficient for large-scale video

deduplication.

Fig. 11 Comparison between single machine and MR processing

performance

Acknowledgements

Not applicable.

Funding

This work was supported by National Natural Science Foundation of China

(61690202, 61701190 and 61872021), National Key R&D Plan of China

(2017YFA0604500), National Sci-Tech Support Plan of China (2014BAH02F00),

Youth Science Foundation of Jilin Province of China (20160520011JH and

20180520021JH), Youth Sci-Tech Innovation Leader and Team Project of Jilin

Province of China (20170519017JH), Key Technology Innovation Cooperation

Project of Government and University for the whole Industry Demonstration

(SXGJSF2017-4), and Key Scientific and Technological R&D Plan of Jilin

Province of China (20180201103GX).

Availability of data andmaterials

Please contact author for data requests. The dataset used in the current study

are available from http://staff.itee.uq.edu.au/shenht/UQ_VIDEO/.

Authors’ contributions

The first author YL contributed the main idea of this work and conducted the

experiments. The second author LH helped in supervising the experiments

and writing of the paper. The third author KX helped conduct the

experiments. The fourth author JL refined the main idea of this work and

polished the writting. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Author details
1College of Computer Science and Technology, Jilin University, Jilin, China.
2School of Economics and Management, Changchun University of

Technology, Jilin, China. 3State Key Lab of Software Development

Environment, Beihang University, Beijing, China.

Received: 7 November 2018 Accepted: 30 January 2019

References

1. Y. Cai, L. Yang, W. Ping, F. Wang, T. Mei, X.-S. Hua, S. Liu, in 19th ACM

international conference onMultimedia. Million-scale near-duplicate video

retrieval system (ACM, Scottsdale, 2011), pp. 837–838

2. J. Song, Y. Yang, Z. Huang, H. T. Shen, R. Hong, in ACM international

conference onMultimedia. Multiple feature hashing for real-time large

scale near-duplicate video retrieval (ACM, Scottsdale, 2011), pp. 423–432

3. J. L. Bentley, Multidimensional binary search trees used for associative

searching. Commun. ACM. 18, 509–517 (1975)

4. J. He, J. Feng, X. Liu, T. Cheng, T.-H. Lin, H. Chung, S.-F. Chang, in IEEE

conference on computer vision and pattern recognition. Mobile product

search with bag of hash bits and boundary reranking (IEEE, Providence,

2012), pp. 3005–3012

5. X. Liu, Z. Li, C. Deng, D. Tao, Distributed Adaptive Binary Quantization for

Fast Nearest Neighbor Search. IEEE Trans. Image Process. 26(11),

5324–5336 (2017)

6. J. Song, T. He, L. Gao, X. Xu, H. Shen, in AAAI Conference on Artificial

Intelligence. Deep region hashing for efficient large-scale instance search

from images (AAAI, New Orleans, 2018), pp. 402–409

7. M. S. Charikar, in ACM Symposium on Theory of Computing. Similarity

estimation techniques from rounding algorithms (ACM, Montreal, 2002),

pp. 380–388

8. W. Liu, J. Wang, R. Ji, Y.-G. Jiang, S.-F. Chang, in IEEE conference on

computer vision and pattern recognition. Supervised hashing with kernels

(IEEE, Providence, 2012), pp. 2074–2081

9. X. Liu, Y. Mu, B. Lang, S. Chang, Mixed image-keyword query adaptive

hashing over multilabel images. ACM Trans. Multimedia Comput.

Commun. Appl. 10(2), 1–21 (2014)

10. Y. Mu, S. Yan, in AAAI Conference on Artificial Intelligence. Non-metric

locality-sensitive hashing (AAAI, Atlanta, 2010), pp. 539–544

http://staff.itee.uq.edu.au/shenht/UQ_VIDEO/


Li et al. EURASIP Journal on Image and Video Processing         (2019) 2019:51 Page 11 of 11

11. Y. Gong, S. Kumar, H. A. Rowley, S. Lazebnik, in IEEE conference on computer

vision and pattern recognition. Learning binary codes for high-dimensional

data using bilinear projections (IEEE, Portland, 2013), pp. 484–491

12. J.-P. Heo, Y. Lee, J. He, S.-F. Chang, S.-E. Yoon, in IEEE conference on

computer vision and pattern recognition. Spherical hashing (IEEE,

Providence, 2012), pp. 2957–2964

13. B. Kulis, K. Grauman, in IEEE International Conference on Computer Vision.

Kernelized locality-sensitive hashing for scalable image search (IEEE,

Kyoto, 2009), pp. 2130–2137

14. C. Deng, Z. Chen, X. Liu, X. Gao, D. Tao, Triplet-based deep hashing

network for cross-modal retrieval. IEEE Trans. Image Process. 27(8),

3893–3903 (2018)

15. E. Yang, C. Deng, W. Liu, X. Liu, D. Tao, X. Gao, in AAAI Conference on

Artificial Intelligence. Pairwise relationship guided deep hashing for

cross-modal retrieval (AAAI, San Francisco, 2017), pp. 1618–1625

16. Y. Gong, S. Lazebnik, Iterative quantization: A procrustean approach to

learning binary codes for large-scale image retrieval. IEEE Trans. Pattern

Anal. Mach. Intell. 35(12), 2916–2929 (2013)

17. W. Liu, C. Mu, S. Kumar, S.-F. Chang, in Advances in neural information

processing systems. Discrete graph hashing (Curran Associates, Inc.,

Montreal, 2014), pp. 3419–3427

18. M. Norouzi, D. J. Fleet, in IEEE Conference on Computer Vision and Pattern

Recognition. Cartesian k-means (IEEE, Portland, 2013), pp. 2938–2945

19. X. Liu, L. Huang, C. Deng, B. Lang, D. Tao, Query-Adaptive Hash Code

Ranking for Large-Scale Multi-View Visual Search. IEEE Trans. Image

Process. 25(10), 4514–4524 (2016)

20. X. Liu, J. He, S. Chang, Hash Bit Selection for Nearest Neighbor Search. IEEE

Trans. Image Process. 26(11), 5367–5380 (2017)

21. C. Deng, H. Deng, X. Liu, Y. Yuan, Adaptive multi-bit quantization for

hashing. Neurocomputing. 151(1), 319–326 (2015)

22. C. Deng, X. Liu, Y. Mu, J. Li, Large-scale multi-task image labeling with

adaptive relevance discovery and feature hashing. Signal Process. 112(C),

137–145 (2015)

23. L. Cao, Z. Li, Y. Mu, S. Chang, in ACM international conference on

Multimedia. Submodular video hashing: a unified framework towards

video pooling and indexing (ACM, Nara, 2012), pp. 299–308

24. H. Zhang, M. Wang, R. Hong, T. Chua, in ACM international conference on

Multimedia. Play and rewind: optimizing binary representations of videos

by self-supervised temporal hashing (ACM, Amsterdam, 2016),

pp. 781–790

25. J. Song, H. Zhang, X. Li, L. Gao, M. Wang, R. Hong, Self-supervised video

hashing with hierarchical binary auto-encoder. IEEE Trans. Image Process.

27(7), 3210–3221 (2018)

26. K. Xia, Y. Ma, X. Liu, Y. Mu, L. Liu, in ACM international conference on

Multimedia. Temporal binary coding for large-scale video search (ACM,

Mountain View, 2017), pp. 333–341

27. B. Wang, X. Liu, K. Xia, K. Ramamohanarao, D. Tao, in Pacific Rim Conference

onMultimedia. Random angular projection for fast nearest subspace

search (Springer, Hefei, 2018), pp. 15–26

28. X. Liu, C. Deng, B. Lang, D. Tao, X. Li, Query-Adaptive Reciprocal Hash

Tables for Nearest Neighbor Search. IEEE Trans. Image Process. 25(2),

907–919 (2016)

29. Q. Fu, X. Han, X. Liu, J. Song, C. Deng, in International Joint Conferences on

Artificial Intelligence. Binary quantization for joint multiple indexing (IJCAI,

Stockholm, 2018), pp. 2114–2120

30. N. Kumar, R. Rawat, S. C. Jain, in IEEE International Conference on Infocom

Technologies and Optimization. Bucket based data deduplication

techniquefor big data storage system (IEEE, Noida, 2016), pp. 267–271

31. D. Moise, D. Shestakov, G. Gudmundsson, L. Amsaleg, in ACM International

conference onmultimedia retrieval. Indexing and searching 100M Images

with Map-Reduce (ACM, Dallas, 2013), pp. 17–24

32. Y. Li, K. Xia, in ACM International Conference on Internet Multimedia

Computing and Service. Fast video deduplication via locality sensitive

hashing with similarity ranking (ACM, Xi’an, 2016), pp. 94–98

33. X. Liu, J. He, C. Deng, B. Lang, in IEEE conference on computer vision and

pattern recognition. Collaborative hashing (IEEE, Columbus, 2014),

pp. 2147–2154

34. K. He, F. Wen, J. Sun, in IEEE conference on computer vision and pattern

recognition. K-means hashing: an affinity-preserving quantization method

for learning binary compact codes (IEEE, Portland, 2013), pp. 2938–2945

35. J. Cheng, C. Leng, J. Wu, H. Cui, H. Lu, in IEEE Conference on Computer Vision

and Pattern Recognition. Fast and accurate image matching with cascade

hashing for 3d reconstruction (IEEE, Columbus, 2014), pp. 4321–4328

36. J. He, S. Kumar, S.-F. Chang, in International Conference onMachine

Learning. On the difficulty of nearest neighbor search (ICML, Edinburgh,

2012), pp. 1–8

37. M. Norouzi, A. Punjani, D. J. Fleet, in IEEE Conference on Computer Vision

and Pattern Recognition. Fast search in hamming space with multi-index

hashing (IEEE, Providence, 2012), pp. 3108–3115

38. G. Ye, D. Liu, J. Wang, S. F. Chang, in IEEE international conference on

computer vision. Large-scale video hashing via structure learning (IEEE,

Sydney, 2013), pp. 2272–2279

39. X. Wu, A. G. Hauptmann, C.-W. Ngo, in ACM international conference on

Multimedia. Practical elimination of near-duplicates from web video

search (ACM, Augsburg, 2007), pp. 218–227

40. M. Slaney, Y. Lifshits, J. He, Optimal parameters for locality-sensitive

hashing. Proc. IEEE. 100(9), 2604–2623 (2012)


	Abstract
	Keywords

	Introduction
	Methods - hash-based video deduplication framework
	Video deduplication framework
	Hash table indexing

	Similarity ranking over multiple tables
	Frame similarity
	Video similarity

	Distributed deduplication
	Offline video data processing
	Online video data processing

	Results and discussions
	Conclusions
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Competing interests
	Publisher's Note
	Author details
	References

