
 

Article

Reference

Fast dynamic brain PET imaging using stochastic variational
prediction for recurrent frame generation

SANAAT, Amirhossein, et al.

Abstract

Purpose: We assess the performance of a recurrent frame generation algorithm for prediction
of late frames from initial frames in dynamic brain PET imaging. Methods: Clinical dynamic
18F-DOPA brain PET/CT studies of 46 subjects with ten folds cross-validation were
retrospectively employed. A novel stochastic adversarial video prediction model was
implemented to predict the last 13 frames (25–90 minutes) from the initial 13 frames (0–25
minutes). The quantitative analysis of the predicted dynamic PET frames was performed for
the test and validation dataset using established metrics. Results: The predicted dynamic
images demonstrated that the model is capable of predicting the trend of change in
time-varying tracer biodistribution. The Bland-Altman plots reported the lowest tracer uptake
bias (−0.04) for the putamen region and the smallest variance (95% CI: −0.38, +0.14) for the
cerebellum. The region-wise Patlak graphical analysis in the caudate and putamen regions for
eight subjects from the test and validation dataset showed that the average bias for and
distribution volume was 4.3%, 5.1% and 4.4%, 4.2%, (P-value [...]
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1 |  INTRODUCTION

Positron emission tomography (PET) has ingrained 

wide clinical acceptance, particularly for its role in mon-

itoring events at the molecular, and cellular levels in a 

number of diseases including neurological disorders.1,2 

In clinical setting, PET image interpretation is com-

monly carried out through visual analysis by comparing 

patient's image textures to typical patterns associated 

with various brain disorders. This is accompanied 
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Abstract

Purpose: We assess the performance of a recurrent frame generation algorithm 

for prediction of late frames from initial frames in dynamic brain PET imaging.

Methods: Clinical dynamic 18F- DOPA brain PET/CT studies of 46 subjects with 

ten folds cross- validation were retrospectively employed. A novel stochastic ad-

versarial video prediction model was implemented to predict the last 13 frames 

(25– 90 minutes) from the initial 13 frames (0– 25 minutes). The quantitative anal-

ysis of the predicted dynamic PET frames was performed for the test and valida-

tion dataset using established metrics.

Results: The predicted dynamic images demonstrated that the model is capa-

ble of predicting the trend of change in time- varying tracer biodistribution. The 

Bland-Altmanplotsreportedthelowesttraceruptakebias(−0.04)fortheputa-

menregionandthesmallestvariance(95%CI:−0.38,+0.14)forthecerebellum.
The region- wise Patlak graphical analysis in the caudate and putamen regions 

for eight subjects from the test and validation dataset showed that the average 

bias for Ki and distribution volume was 4.3%, 5.1% and 4.4%, 4.2%, (P- value 

<0.05), respectively.

Conclusion: We have developed a novel deep learning approach for fast dy-

namic brain PET imaging capable of generating the last 65 minutes time frames 

from the initial 25 minutes frames, thus enabling significant reduction in scanning 

time.
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by quantitative analysis through either comparison 

to disease- free templates reflecting normal tracer- 

specific biodistribution or extraction of image- derived 

PET metrics providing clinically relevant physiological 

parameters.3

Following the injection of a positron- emitting tracer 

to the patient, two data acquisition modes can be per-

formed, namely static and dynamic scanning.4,5 When 

the radiotracer distribution is relatively stable or quickly 

reaches an equilibrium state, a static scan is usually ac-

quired. PET data acquisition using this scanning mode 

is commonly employed for tracers with virtually con-

stant or slowly varying activity concentration over time 

within the target tissue, and is commonly acquired in 

a single frame. In clinical setting, routine [18F]- Fluoro- 

2- deoxy- 2- D- glucose (FDG) brain PET scanning is 

usually performed about 30 minutes post- injection to 

acquire a static scan. Dynamic brain PET imaging is 

commonly performed in research protocols to assess 

the time course of radiotracer uptake. In dynamic im-

aging performed to calculate blood flow or receptor 

occupancy, a sequence of dynamic frames is usually 

defined encompassing the whole duration of the PET 

scan. This imaging methodology commonly requires 

the extraction of arterial/venous samples to calculate 

the input function needed for tracer kinetic modeling to 

estimate relevant quantitative parameters,6,7 although 

simplified blood sampling- free approaches have also 

emerged as an alternative approach.8

Dynamic imaging has been used in clinical routine 

for decades in nuclear medicine, particularly in planar 

imaging, single- photon emission computed tomogra-

phy (SPECT) and, PET imaging.9,10 Numerous studies 

using dynamic imaging in planar imaging, and multi-

ple dynamic procedures continue to be employed.11,12 

For instance, bone scintigraphy, which evaluates the 

spread of active bone formation in the skeleton related 

to malignant/benign disease, is one of the most com-

mon nuclear medicine imaging procedures performed 

dynamically immediately after radiotracer injection 

to estimate perfusion.13 Dynamic SPECT is another 

technique that emerged in the 1990s, mainly on rotat-

ing gamma cameras.14,15 Dynamic and gated SPECT 

imaging has developed significantly more recently as 

it became more practical on dedicated solid- state car-

diac cameras.16 Dynamic cardiac PET imaging gained 

attention as a valuable technique in the clinic.17 Another 

application of dynamic PET imaging is in clinical on-

cology, where compartmental modelling can potentially 

improve both tumor characterization, and treatment 

response monitoring.6,18 Conventional image recon-

struction of dynamic PET data based on independent 

handling of single frames has limited performance 

particularly in the initial dynamic frames owing to the 

low statistics.7,19 Cui et al.20 proposed a reconstruction 

method for dynamic PET imaging based on a stacked 

sparse auto- encoder. The dynamic reconstruction 

problem was expressed in a deep learning represen-

tation where the encoding layers extract the prototype 

features, such as edges, whereas the decoding layers 

generate the reconstructed images through a combi-

nation of these features. Hashimoto et al.21 introduced 

a method to denoise dynamic PET images based on 

a deep image prior to enable unsupervised denoising 

without pretraining of datasets. A number of denoising 

strategies were applied to ultra- fast/low- dose whole 

body PET images.22 Furthermore, a tracer- specific 

deep denoising autoencoder (DAE)- based approach 

was developed by Klyuzhin et al. that reduces the voxel- 

level noise in simulated dynamic [11C]- raclopride brain 

PET images.23 Rubinstein et al. developed a framework 

to detect prostate cancer using an unsupervised learn-

ing method for early detection, and localization of ma-

lignant lesions.24 Their recommended method is able to 

extract features, including statistical, kinetic biological, 

and deep features from 4D imaging data through learn-

ing using a deep stacked convolutional auto- encoder.24

Although a number of applications require dynamic 

PET imaging, the long acquisition time limited the appli-

cability of this methodology in clinical setting, especially 

for elderly and pediatric patients. Various strategies at-

tempted to reduce the overall dynamic PET acquisition 

time in PET studies without using deep learning.25,26 

For instance, Torizuka et al. showed that a fast dynamic 

PET scan (30 minutes) of patients with lung cancer can 

lead to similar interpretation and compartment model-

ing results as regular 60 minutes dynamic PET scans.27 

Furthermore, Monden et al.28 demonstrated that 18F- 

FDG brain PET scanning time can be reduced from 

60 minutes to 40 minutes without significant impact on 

the estimation of kinetic parameters (K3 and Ki). The 

same approach was followed by Visser et al. to reduce 

dynamic scanning time from 50 minutes to 30 minutes 

in non- small cell lung carcinoma (NSCLC) patients.29 

More recently, Samimi et al. showed that a fast 5 min-

utes dynamic scan, accompanied with a 3 minutes static 

scan acquired 60 minutes post- injection enables to es-

timate accurately standardized uptake value (SUV) and 

2- tissue- compartmental model parameters.30 To the 

best of our knowledge, there is a lack of works using 

deep learning to decrease the acquisition time in dy-

namic PET imaging or to generate late dynamic frames 

from initial ones. In this work, we used a novel recur-

rent frame generation model, referred to as Stochastic 

Adversarial Video Prediction (SAVP), to reduce the ac-

quisition time by estimating half of the late frames of dy-

namic 18F- DOPA PET images from its first half frames. 

The SAVP model is mostly used for video prediction 

and is able to model the trend of time- varying activ-

ity distributions. To the best of our knowledge, this is 

the first work reporting on the feasibility of an approach 

enabling to reduce the scan time from 90 minutes to 

25 minutes, thus making the scanning procedure more 

comfortable.
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The main objective of this study was to decrease the 

scanning time while preserving the outcome by achiev-

ing the lowest bias. Shortening PET scanning time 

increases scanner throughput, and enhances patient 

comfort, thus reducing unwanted motion especially in 

elderly and pediatric patients.

2 |  MATERIALS AND METHODS

2.1 | Brain PET/CT data acquisition

The present study was conducted on 18F- DOPA dy-

namic brain PET/CT studies collected between October 

2017, and December 2019 at Geneva University 

Hospital. 18F- DOPA (DOPAVIEW®) was obtained from 

Advanced Accelerator Applications S.A. (Geneva, 

Switzerland). The database consisted of 46 subjects 

(27 males and 19 females; age = 255± yrs) including 

12 healthy controls, 25 subjects with cannabis use dis-

order (CUD), and 9 patients with Internet gaming dis-

order (IGD). A tenfold cross- validation scheme was 

applied to prevent overfitting and selection bias and to 

check the generalizability of our model to new datasets. 

The demographic information of the subjects is sum-

marized in Table 1. The study protocol was approved 

by the institution's ethics committee, and all patients 

gave written informed content. PET/CT acquisitions 

were performed on a Biograph mCT scanner (Siemens 

Healthcare, Erlangen, Germany). A low- dose CT scan 

(120 kVp, 20 mAs) was performed for PET attenuation 

correction. The patients underwent a brain PET scan 

lasting 90- minutes after injection of 190 ± 10 MBq of 
18F- DOPA. PET data were acquired in list- mode for-

mat and then binned into sinograms, and reconstructed 

into 26 different dynamic frames (2 × 30 seconds, 

4 × 60 seconds, 3 × 120 seconds, 3 × 180 seconds, 

14 × 300 seconds) as per the requirements of the re-

search protocol using the e7 tool (an offline reconstruc-

tion toolkit provided by Siemens Healthineers). PET 

images were reconstructed into a 200 × 200 × 109 

image matrix (2.03 × 2.2 × 2.03 mm3 voxel size) 

using an ordinary Poisson- ordered subsets expecta-

tion maximization (OP- OSEM) algorithm (5 iterations, 

21 subsets) considering time- of- flight information. PET 

images underwent post- reconstruction Gaussian filter-

ing with 2 mm FWHM.

To make the model more sensitive and accurate 

and to reduce the computational time, we cropped the 

entire brain volume into two portions, each containing 

30 slices (100 × 100 × 30 voxels), and trained the model 

twice for each section separately. The first brain por-

tion was selected to contain the striatum consisting of 

the caudate nucleus and putamen, while the second 

portion was more caudal to contain the cerebellum, a 

region with negligible level of dopaminergic innerva-

tion, used as reference region to estimate nonspecific 

binding.

2.2 | Learning model

We utilized the SAVP model proposed in Ref. [31] to 

generate raw pixels of future dynamic frames, given a 

sequence of initial frames. Due to the ambiguous na-

ture of dynamic frames prediction, stochastic models 

outperform deterministic models and loss functions. 

As a result, recent research focused on Variational 

Autoencoders (VAEs) and Generative Adversarial 

Networks (GANs) for image prediction, and generation 

problems.32- 40

VAEs can explicitly model the underlying stochas-

ticity. However, the prediction distribution in the VAE 

model is factored over pixels, thus leading to pixel- 

wise mean square error (MSE) loss, which may pro-

duce blurred, and unrealistic images. The GAN model 

overcomes this limitation; however, adversarial loss 

functions are difficult to tune, and are prone to mode 

collapse. To address these challenges, the VAE- GAN 

model proposed in Ref. [41] combines VAE- based la-

tent variable model with an adversarial lose to improve 

the diversity of generated frames, thus enabling to pro-

duce realistic frames. Inspired by the above reference, 

the authors in Ref. [31] extended the results for SVP to 

predict diverse realistic frames, given the initial frames.

Based on this introduction, we now address our 

learning model. To this end, we first review the core 

idea of VAE, GAN, and Hybrid VAE- GANs.

2.2.1 | Variational Autoencoder (VAE)

The VAE model performs inference and generation 

by introducing a latent vector Z ∈�, in which it as-

sumes that this latent vector follows a prior distribu-

tion QZ.42 Let E� (X) ≜ P� (Z|X) denotes an encoder 

parametrized by the output of a deep neural network 

with parameters �. Let G� (Z) ≜ P� (X|Z) denotes a 

generator (decoder) parametrized by the output of 

the deep neural network with parameters �. Let PD (X)

denotes an empirical data distribution. In this case, 

TA B L E  1  Demographic characteristics of the subjects included 

in this study

Training Test Validation

Number 35 8 3

Male/Female 27/19

Age (Mean ±SD) 24±5

Weight (Mean ±SD) 67±13

Indication/Diagnosis 12 healthy controls

25 patients with Cannabis use disorder

9 patients with Internet gaming disorder
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P� (X, Z) denotes our joint inference data distribution, 

and P� (Z) = �PD(X )

[
P� (Z|X)

]
 denotes the marginal 

posterior distribution over latentace �. Finally, let 

P� (X) = �QZ

[
P� (X|Z)

]
 denotes the generated data 

distribution using the encoder E�(X), decoder G�(Z), 

and latent space prior QZ.

The �- VAE43 relaxed the regularization term by intro-

ducing a Lagrangian multiplier. Hence, averaging over 

the empirical data distribution, the Lagrangian func-

tional is defined as:

During training, we sample latent codes from two 

distributions: (a) the prior Gaussian distribution and (b) 

a posterior distribution approximated by a learned en-

coderEφ.Inordertohaveastablegradientwithrespect
to the encoder, a reparametrization trick was used to 

sample from the learned posterior distribution.42 During 

testing, we sampled the latent codes from a fixed unit 

Gaussian prior, N (0, 1), as our prior distribution Q(z). 

Since we assume Gaussian distribution, L1 loss was 

reduced to mean square error.

2.2.2 | Generative Adversarial Network 
(GAN)

The GAN44 consists of two networks: the generator 

network G�(Z) maps a latent vector Z ∈� to data space 

X̂ ∈� and a discriminator network D
�

(X) to distinguish 

whether the samples are coming from the empirical 

data distribution PD (X) or generated distribution P�(X). 

Hence, the discriminator network D
�

(X) acts like a clas-

sifier that assigns probability y = D
�

(X) ∈ [0, 1] if X is 

an actual training sample, and probability 1 − y if X is 

generated by the model through X̂ = G�(Z) with Z ∼ QZ

. The original GAN44 problem aims to maximize/mini-

mize the binary cross entropy (an adversarial game):

with respect to Discriminator/Generator. Theoretically, 

when the adversarial process reaches the Nash equilib-

rium, the mini- max game attains its global optimum.

2.2.3 | Hybrid VAE- GANs

The VAE- GAN combines the VAE and GAN models 

to utilize the appealing properties of these generative 

models. By using the reparametrization trick, back-

propagation was implemented in the encoder:

A regularization term was considered to enable sam-

pling from the prior at test time. This term promotes the 

estimated posterior to be as close as possible to the 

prior distribution:

Hence, the main goal of VAE is to minimize the sum-

mation of the above- mentioned functions:

The original VAE- GAN paper41 replaces the log- 

likelihood term ℒ
rec

 by a special similarity measure 

in the latent space which is trained through a GAN 

discriminator.

2.2.4 | Conditional VAE- GANs

The conditional VAE- GAN45 uses both the latent code Z 

and the input image X̃ to synthesize the desired output 

X̂. That is, Conditional VAE- GAN starts from a ground 

truth target image X and encodes it into the latent vec-

tor Z. Next, the generator G�(Z,
∼

X ) reconstructs X̂ using 

a sampled latent vector Z concatenated with the paired 
∼

X. Note that the conditional VAE- GAN can be viewed 

as a combination of conditional VAE and conditional 

GAN models. Although, GANs can suffer from the 

problem of mode collapse, especially in the conditional 

generation setting, conditional VAE- GAN mitigates this 

problem by introducing the prior distribution for latent 

space �.

2.3 | Learning algorithm

Our model is based on VAE- GAN and their con-

ditional variants. We used VAE- GAN in a recur-

rent setting for prediction of late frames from initial 

frames in dynamic brain PET imaging. During the 

training phase (Algorithm 1), a recurrent generator 

network G� predicts new frames x̂t, given the ran-

dom latent code ẑt−1 and the previous frame(s) 
∼

xt−1

. The generator is a convolutional Long Short Term 

Memory (LSTM). To simplify the notation, the input 
∼

xt−1 denotes the ground truth frames or the previous 

predicted frames. The encoder E� denotes a deep 

network that is conditioned on the ground truth ad-

jacent frames to encode them into a latent code zt. 

Our encoder is a feed- forward convolutional neural 

network. During the testing phase, a recurrent gener-

ator network G� projects the initial frame(s) and a se-

quence of latent random codes ẑ0:T−1 to the predicted 

frames x̂0:T−1. The block- diagram of the model is 

(1)ℒ�−VAE

�
E�, G�

�
=�PD(X)�

�P�(Z�X)
�
logP� (X�Z)

�
−�DKL

�
P�(Z�X=x)‖QZ

��

(2)

ℒGAN

(

G�, D�

)

=�PD(X)

[

logD�(X)
]

+�QZ

[

log
(

1−D�( G�(Z) )
)]

(3)ℒ1 = �PD(X)[�P�(Z|X)
[
logP� (X|Z)

]
]

(4)ℒprior = �PD(X)[DKL

�
P� (Z�X = x)‖QZ

�
]

(5)ℒ�−VAE

(

E�, G�

)

= �1ℒ1 + �ℒprior
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depicted in Figure 1. The visual space discriminators 

DGAN and DVAE denote the corresponding discrimi-

nator D
�
 for the GAN and VAE setups respectively. 

Finally, ℒ1 denotes the �1 loss between the output 

and the ground truth frame(s). This loss encourages 

the output of the generator to match the input and 

stabilizes the training.

2.4 | Training details

The model was trained using Adam46 for 650000 itera-

tions, linearly decaying the learning rate to 0 for the 

last 20000 iterations. GAN- based variants used an 

optimizer with �1 = 0.5, �2 = 0.999, a learning rate of 

0.0002, and a batch size of 26. The VAE models used 

an optimizer with �1 = 0.9, �2 = 0.999, a learning rate of 

0.001, and a batch size of 26. For GAN- based variants, 

a �1 = 100 was used. This hyper- parameter was em-

pirically selected by computing similarity metrics on the 

validation set. During the training, the KL divergence 

weight is changed linearly from zero to the final value 

of 0.00001.

To ensure a balanced data distribution for train, vali-

dation and test datasets, we used a simple t- Distributed 

Stochastic Neighbor Embedding (t- SNE) to visualize 

high- dimensional data by assigning each data point a lo-

cation in a two-  or three- dimensional map. This enables 

to train and test models with a similar portion of data 

(normal and abnormal). For instance, we first entered 

the whole dataset (46 cases) to t- SNE model to cate-

gorize them into five major groups. In the next step, we 

collected the same portion from each group for training, 

validation, and testing. This procedure improves model 

robustness and generalizability when feeding with new 

data. The training and testing were performed on a 

personal computer running windows 10 equipped with 

NVIDIA Quadra K5200 graphics processing unit with 

8 GB of memory. The main loss function that requires 

optimization is given in Equation 5 representing the sum 

of variational and adversarial loss. The plots of these 

loss functions are shown in Supplemental Figure 1.

F I G U R E  1  Block diagram of our 

conditional VAE- GAN model for prediction 

of late frames from initial frames in 

dynamic brain PET imaging: (a) training 

phase and (b) testing phase
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2.5 | Data augmentation

To avoid over- fitting during the training and increase 

the size of the training dataset, two types of data aug-

mentation methods, including translation and zooming, 

were randomly applied to the training dataset. Applying 

the above- mentioned rigid deformation to the dataset 

enabled the network to learn features that are invariant 

to these translations.

2.6 | Valuation strategy

The accuracy of the predicted second half of the 

frames sequence (frames 14– 26) of dynamic images 

from the first half of the frames sequence (frames 1– 13) 

was evaluated for each frame using three quantitative 

metrics, namely the root- mean- square- error (RMSE), 

the peak signal- to- noise- ratio (PSNR), and the struc-

tural similarity index measure (SSIM) (Equations 6- 8, 

respectively).

In Equation (6), L is the number of voxels in the 

brain region, x represents the reference frame, and y 

the predicted frame. In Equation (7) maxj(yj) shows the 

maximum intensity of yj ∈ y, whereas MSE is the mean- 

squared- error. The m
x
, my in Equation (8) represent the 

mean value of the frames x, and y, respectively. �xy is 

the covariance of of �
x
 and �y, which in turn denotes 

the variances of x, and y images respectively. The con-

stant coefficients c1, and c2 (c1 = 0.01 and c2 = 0.02) 

were applied to avoid a separation by very tiny values.

Region- based analysis was also performed to as-

sess the agreement between predicted and reference 

frames in terms of SUV, defined as the ratio between 

activity concentration (MBq/cc) in a defined region, 

and the injected activity (MBq) normalized to subject's 

weight (g).

Using the PMOD medical image analysis soft-

ware (PMOD Technologies LLC, Switzerland) and the 

Hammers N30R83 brain atlas, five ROIs containing the 

caudate nucleus, putamen (left and right), and cere-

bellum were delineated on the reference PET frames. 

Since the PMOD software relies only an on FDG 

brain template for normalization, we replaced it with a 

18F- DOPA template available as part of the statistical 

parametric mapping package. This template is derived 

from 12 control subjects without evidence of nigrostri-

atal degeneration adjusted to Montreal Neurological 

Institute (MNI space).47 Subsequently, the delineated 

ROIs were copied onto the predicted dynamic PET 

frames to quantify the SUV in each region, and for 

each time frame. To compare the biodistribution in the 

predicted, and reference dynamic frames, region- wise 

time activity curves (TAC) were drawn.
18F- DOPA PET parametric images were generated 

using Patlak graphical analysis, and the reference tis-

sue model48 implemented in PMOD software. Maps of 

the influx rate constant (Ki in minutes−1) and distribu-

tion volume (V) were generated using the dynamic PET 

frames, and a TAC obtained over the reference region 

corresponding to the cerebellum.49 This technique is 

appropriate when the tracer is irreversibly trapped in 

tissue. We hypothesized that the bias would be higher 

at later time frames compared to early time frames. 

Therefore, the bias on parameter estimates (Ki, and V) 

generated using the Patlak model was evaluated on the 

full (90 minutes), and a truncated number of dynamic 

PET frames (65 minutes).

The MedCalc software50 was employed for the cal-

culation of the pairwise t- test for statistical analysis of 

RMSE, SSIM, and PSNR between predicted dynamic 

frames and reference dynamic frames. The significance 

level was set at a P- value <0.05 for all comparisons.

3 |  RESULTS

The predicted dynamic frames (14– 26) provided almost 

similar appearance and texture with respect to refer-

ence frames (Figure 2). The predicted frames show 

a slight gradual deterioration from the initial predicted 

frame (frame number 14) to the last predicted frame 

(frame number 26). Visual inspection revealed that 

the predicted images exhibited a similar biodistribution 

pattern of radiotracer uptake compared to reference 

images. Line profiles drawn through coronal views of 

predicted and reference images are shown in Figure 3. 

This figure shows a single slice at the middle of the 

brain containing a cross section of the caudate and pu-

tamen from the predicted and reference dynamic im-

ages (26th time frame of a single slice). Therefore, each 

slice depicts different time frames, thus presenting the 

profile as a pattern of a TAC curve.

Figure 4 depicts the PSNR, SSIM, and RMSE calcu-

lated on the test dataset for each predicted frame from 

14 to 26. Overall, the predicted images in the earlier 

frames (14– 20) provide higher image quality, better 

noise properties, and higher quantitative accuracy than 

the last frames (21– 26). Although all three metrics get 

worse gradually over time, their magnitude even in the 

final frames, is not out of range.

(6)
RMSE (x, y) =

�

∑ L
j =1

(xj − yj )
2

L

(7)PSNR (x, y) = 20 × log10

�

maxj(yj)
√

MSE(x, y)

�

(8)SSIM (x, y) =
(2mxmy + c1)(2�xy + c2)

(

m2
x
+ m2

y
+ c1

)(

�
2
x
+ �

2
y
+ c2

)
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F I G U R E  2  Comparison between reference and predicted frames for (a) a 26- year- old normal female subject and (b) a 27- year- old 

abnormal male subject. For presentation limitation, only odd frames are shown. The threshold for bias maps was kept constant (within ±5%)

F I G U R E  3  Comparison between 

predicted (a) and reference (b) time 

frames of a 26- year old female (top) 

along with line profiles drawn through the 

putamen and parietal lobe (bottom) of 

both images
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Figure 5 illustrates the TAC plots of predicted and 

reference images for three regions. The left side of the 

dashed line shows the input frames whereas the right 

side compares the reference and predicted frames.

The Bland- Altman plots, where each data point re-

flects the SUV
mean

 of each region for every time frame, 

confirmed the results obtained from parametric anal-

ysis (RMSE) where the lowest SUV bias is apparent 

in the initial frames whereas the late frames present 

the higher SUV bias (the frames'number of some data 

points 14– 26 is mentioned) (Figure 6).

The plots show that the Putamen shows the lowest 

SUVbias(−0.04)whereasthesmallestSUVvariance
(95%CI:−0.38,+0.14)wasobservedinthecerebellum.
The SUV bias is extremely low for the initial frames, and 

thevariancedoesnotgofurther(95%CI:-0.38,+0.29),
reflecting the good quantitative accuracy. Table 2 

further confirms that the bias in parameter estimates 

(Ki, V) decreases for a representative number of sub-

jects when a truncated number of dynamic PET frames 

(65 minutes) were used for Patlak analysis compared to 

using the full number of dynamic frames (90 minutes). 

To figure out how much our model was successful in 

improving kinetic parameter estimates, we calculate 

the kinetic parameters for only 0– 25 minutes from ref-

erence frames and then compared the results with ki-

netic parameters derived from 0 to 90 minutes frames.

Figure 7 depicts the region- wise Patlak graphical 

analysis results comparing the estimated Ki from the 

predicted and reference dynamic frames for the left and 

right parts of the caudate and putamen for the test, and 

validation (Figure S2) datasets respectively. Figure 8 

(and Figure S3) shows radar plots of the bias of the 

influx rate constant (Ki) and distribution volume (V) from 

F I G U R E  4  Image quality metrics comparing the predicted and reference last 13 dynamic frames for the test dataset. (a) PSNR: peak- 

signal- to- noise- ratio, (b) SSIM: structural similarity index measure, and (c) RMSE: root- mean- square- error

F I G U R E  5  Comparison between reference and predicted time activity curves for the caudate, putamen, and cerebellum (average of 

left and right regions) for a 26- year old normal female subject. The black dotted line depicts the separation between the reference and the 

predicted frames
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F I G U R E  6  Bland & Altman plots of SUV differences in three brain regions (average of left and right) calculated for 14 predicted frames 

with respect to the reference frames in the test dataset. The dashed and solid lines denote the mean and 95% confidence interval (CI) of the 

SUV differences respectively. The colorful numbers shown near some data points show the frame numbers (from 14 to 26)

TA B L E  2  Change in average influx rate constant (Ki) and distribution volume (V) resulting from graphical Patlak analysis of dynamic 
18F- DOPA brain PET studies for eight subjects from the test dataset when using the full (0– 90 min predicted vs 0– 90 min reference) and 

truncated (25– 90 min predicted vs 25– 90 min reference) PET data. The bias for the 0– 25 min was calculated regarding full PET data (0– 

25 min reference vs 0– 90 min reference)

Brain region Average bias 0– 25 min 25– 90 min 0– 90 min

P- value

(25– 90 min vs 0– 90 min)

Caudate Average K
i
 bias (%) 36.3 ± 12% 4.3 ± 4.5 5.1 ± 3.2 <0.05

Average V bias (%) 33.7 ± 9.5% 3.3 ± 3.8 4.3 ± 2.2 <0.05

Putamen Average K
i
 bias (%) 29.9 ± 7.6% 3.3 ± 2.7 4.4 ± 1.5 <0.05

Average V bias (%) 39.4 ± 6.0% 3.8 ± 3.1 4.2 ± 2.8 <0.05

F I G U R E  7  Comparison of the influx 

rate constant (Ki) between predicted and 

reference images for four brain regions, 

including the caudate and putamen 

(left and right) with the cerebellum 

used as reference region for the test 

datasets
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the test and validation dataset respectively. The highest 

Ki and distribution volume biases for the test dataset 

are 7.14%, and 14.13% respectively.

4 |  DISCUSSION

In this work, we aimed to generate last half frames (13 

frames from 25 to 90 minutes) of dynamic brain PET 

images from the initial half frames (13 frames from 

0 to 25 minutes). The goal is to synthesize full scan 

diagnostic quality dynamic 18F- DOPA brain PET im-

ages from 27% of scanning time post- injection. The 

training of the neural network was performed using a 

SAVP model, considering initial 13 frames time series 

as input to predict the last 13 frames. The purposed 

deep learning model considers the initial time frames 

to capture the trend of the underlying biodistribution for 

F I G U R E  8  Radar plot of bias of the influx rate constant (Ki) (a and b) and distribution volume (V) (c and d) for the Caudate and 

Putamen, respectively, resulting from graphical Patlak analysis of dynamic 18F- DOPA brain PET studies for subjects from the test dataset
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the latter frames. To the best of our knowledge, this is 

the first study considering this approach to decrease 

the scanning time of long dynamic PET imaging pro-

tocols using machine learning algorithms. The synthe-

sized dynamic PET images predicted from the earlier 

half frames had comparable image quality and tracer 

uptake patterns, Ki and distribution volume values, and 

small variance relative to actual reference dynamic 

frames, especially for the first few predicted dynamic 

frames.

The RMSE calculated on synthesized images de-

grades from 0.35 for frame number 14 to 0.77 for frame 

number 26. The reason of this degradation in quantita-

tive accuracy with time finds its root in the Markovian 

dependence of time frames, and Data Processing 

Inequality (DPI) concept. From one hand, the se-

quential frames form a Markov chain such that each 

predicted frame depends on the previous frame(s). 

Conversely, according to the DPI concept, we can 

only lose information through its processing. Let us 

consider the prediction process as a channel whose 

input are the previous frame(s), and its output is the 

next predicted frame. The DPI concept states that by 

passing data through a channel, the information cannot 

be increased. Therefore, the far frames degrade more 

than the near frames with subsequent increase of the 

RMSE. Moreover, the SSIM as a metric for calculation 

of similarity between the predicted and reference dy-

namic frames varies from 0.98 for the first predicted 

frame to 0.81 for the last frame.

The quantitative analysis of five brain regions in 

terms of TACs proved the effectiveness of our model 

in finding the optimal fitting curve for the radiotracer 

distribution. The quantitative evaluation of predicted 

images showed less than 7% bias for Ki, and less than 

14% bias for V  in most brain regions. Samimi et al. re-

ported ~10% bias for kinetic parameters estimation 

when decreasing the dynamic scanning time to 5 min-

utes supplemented by a whole body PET scan 60 min-

utes postinjection.30 A similar trend was also reported 

in two other studies where the bias in Ki estimates was 

~5%28 and 9%27 when decreasing dynamic scanning 

time from 60 to 40 minutes and from 60 to 30 minutes 

respectively.

Although there is no evidence that CUD and IGD 

subjects have neurological abnormalities that could 

be reflected in differences in 18F- DOPA uptake with 

respect to normal subjects, our aim was to build a het-

erogeneous dataset including subjects with and with-

out brain disorders. Data augmentation techniques 

consisting of rotations and translation was applied to 

time series or dynamic frames to avoid overfitting and 

guarantee robust, and effective training. The Bland & 

Altman analysis showed low bias and variance in the 

three regional SUVmean values obtained from pre-

dicted dynamic PET images compared with reference 

images. The Bland & Altman plots further demonstrated 

the superior performance of the model in predicting the 

initial frames (e.g. frames 14– 20) compared to the last 

frames (e.g. frames 21– 26) resulting in SUV values 

comparable to the original images.

Dynamic PET images are commonly reconstructed 

successively using algorithms designed for static im-

aging. This approach is not optimal because the intrin-

sic temporal correlation between information present 

in dynamic series is not considered. A more thorough 

optimal approach would treat the whole dynamic data 

instead of considering them as a sequence of separate, 

and independent time frames. However, this process 

is time consuming.19 In this work, since our proposed 

model uses previous images of a certain frame for pre-

diction of that particular frame, it should learn to capture 

the noise model and biodistribution for a series of im-

ages, not a single image, and consider it for prediction 

of each new frame. In terms of computational time, the 

training took around 4 days for the dynamic 90 minutes 
18F- DOPA studies used in this work. Yet, the synthesis 

of a single dynamic PET image (after training) took only 

~2 minutes.

One of the limitations of the present study was the 

limited sample size though it was almost tripled through 

data augmentation. Moreover, subject motion is likely 

to occur during the long PET scan, which might impair 

image quality at different time frames. Lastly, we did not 

train the model for the whole brain volume to reduce 

the computational load, and to avoid divergence of 

the model in regions where there is no sensible tracer 

uptake.

5 |  CONCLUSION

We have introduced a novel application of variational 

autoencoder and generative adversarial network model 

for fast dynamic brain PET imaging which considers 

only the initial 25 minutes time frames to generate the 

last 65 minutes time frames of dynamic PET images 

using a deep learning approach for time series data. 

The model is promising, demonstrating reasonable 

performance considering the resulting good image 

quality, and relatively low PET quantification bias for 

the evaluated metrics.
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