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Abstract. Dynamic textures can be considered to be spatio-temporally varying
visual patterns in image sequences with certain temporal regularity. We propose
a novel and efficient approach to explore the violation of the brightness con-
stancy assumption, as an indication of presence of dynamic texture, using simple
optical flow techniques. We assume that dynamic texture regions are those that
have poor spatio-temporal optical flow coherence. Further, we propose a second
approach that uses robust global parametric motion estimators that effectively
and efficiently detect motion outliers, and which we exploit as powerful cues to
localize dynamic textures. Experimental and comparative studies on a range of
synthetic and real-world dynamic texture sequences show the feasibility of the
proposed approaches, with results which are competitive to or better than recent
state-of-art approaches and significantly faster.

Keywords: Dynamic texture; optical flow; brightness constancy assumption;
global parametric motion.

1 Introduction

Dynamic textures (DTs) can be considered to be spatio-temporally varying visual pat-
terns in image sequences, such as fire, waterfalls, crops in wind, shaking leaves, and
many other instances of moving, structured or unstructured patterns. There has been
a multitude of research works in DT segmentation, detection, recognition and synthe-
sis, for example [1,2,3]. DT analysis has been found useful in a number of real-world
applications, such as particle measurements [4], smoke detection in surveillance sce-
narios [5], and facial expression recognition [6].

DTs not only exhibit complex appearance but also commonly lack distinctive local
features, for example due to transparency and challenging spatio-temporal variability.
Linear models, particularly auto-regressive (AR) techniques, have been widely used
in modeling DTs [7,8,9]. Most of the proposed AR models are first-order, which may
prevent oscillations and higher-order temporal dependencies be correctly captured, but
higher-order AR models such as [8] can improve the accuracy of synthesized sequences
by capturing complex patterns over multiple frames. A DT constancy constraint was in-
troduced in [10] as an analogy to the brightness constancy assumption for DTs. Very
recently, layered models [11] have been proposed to deal with multiple different DTs
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in a single sequence. However, in general, AR models have been found mainly success-
ful on synthetic DT sequences, in which the spatial extent of the DTs remains largely
constant. For some DTs, such as smoke and fire, it is difficult for AR techniques to gen-
eralize. Furthermore, these methods rely on costly learning procedures and complicated
mathematical and conceptual schemes [12].

Fractals [13], local binary patterns (LBP) [6], and spatio-temporal multiresolution
histograms [14] have also been applied to DT analysis. These are illustrative examples
of attempts to properly model the spatio-temporal nature of DTs. Campisi et al. [13]
extend to the temporal dimension the self-similarity model which is known to be present
in natural images. Zhao and Pietikäinen [6] use LBP in three planes (XY , Y T , XT ),
allowing them to consider the spatio-temporal domain. Lu et al. [14] use histograms of
velocity and acceleration at four levels of an image pyramid, applying spatio-temporal
Gaussian filters to perform spatial and temporal multiresolution analysis.

Recently, Markov random fields have been used to model DT spatio-temporal dy-
namics, e.g. [15,16]. For example, in [16], the authors adopted two three-state hidden
Markov models to model DT and non-DT moving objects. However, their focus was on
one particular type of object, i.e. swaying leaves. Several other authors have also pro-
posed specific models for specific DTs, e.g. steam [17], smoke [5,18], fire [19], or gen-
eral fluids [20]. For example, steam is considered to blur image details and a supervised
method using wavelets and other local features are applied in [17] for DT classification.
Similarly, smoke smoothes image edges, a scenario which can be detected by monitor-
ing the abrupt change of some local energy measure [5] just after the appearance of DT.
Flickering and turbulence phenomena of smoke are exploited in [18]. Although some
of these methods such as [21,18] perform in real-time, they are clearly not applicable
to other kinds of DTs. An added restriction is that these techniques often assume the
background scene to be known in advance.

Amongst many other motion cues [22,23], optical flow has been particularly useful
in DT analysis. For example, in [24,1], optical flow is shown to be effective in discrim-
inating different types of DTs. Regarding the optical flow, it is common to rely on the
brightness constancy assumption (BCA) which states that a change of brightness at an
image location has motion as its only cause. However, this has been found insufficient
in dealing with DTs in real-world sequences [25], and alternative flow models to BCA,
such as gradient constancy, color constancy and brightness conservation, were recently
explored in [25], where an approach based on level-sets was formulated to segment
image regions obeying either the BCA or some of these alternative flow models.

In contrast, a different, simpler route is explored in this paper. Since DT pixels do
not follow the BCA, the dynamic texture can be located by detecting those pixels at
which the estimated optical flow is not correct. In order to detect these optical flow
“failures”, two alternative approaches, as instances of a proposed general scheme for DT
detection, are investigated (Sect. 2). One method is based on the fact that optical flow in
DTs will exhibit changes in a local spatio-temporal neighborhood (Sect. 2.1). The other
approach is based on using the motion outliers as detected by a robust global parametric
2D motion estimator (Sect. 2.2). In comparison to the state-of-the-art (Sect. 3), we
obtain similarly accurate, if not better, results with methods which are both conceptually
simpler and substantially faster (Sect. 4).
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Algorithm 1. DT detection for pixel (i, j) at time t
Input: v: past value,

x: new value,
λ: weight of past and new information, and
DT : DT probability at previous time t − 1

Output: updated v and
DT (i, j): updated DT probability at current time t

1: ε ⇐ evidenceOfDT(v, x)
2: v ⇐ updateVisualCue(v, x, ε)
3: DT (i, j) ⇐ temporalSmooth(DT (i, j), ε, λ)
4: DT (i, j) ⇐ spatialSmooth(DT , i, j)

2 Proposed Methods

A general framework to detect dynamic textures in video sequences is proposed. It has
as its core procedure the approach shown in Algorithm 1, which encapsulates a simple
idea and admits a number of reasonable variants. For each pixel, information is kept on
past visual data v, and new visual cues x is computed at a given time step t. With v and
x, spatio-temporal evidence ε of DT is gained, and used to update the DT likelihood
map DT at the corresponding pixel (i, j). The evidence ε is also used to update v with
the current value x. Then, in order to disregard short-time noisy detections and get more
stable DT regions over time, the DT is temporally filtered. In particular, we use:

DT (i, j) ⇐ λ · DT (i, j) + (1 − λ) · ε, (1)

where the value for λ ∈ (0, 1) can be chosen as a tradeoff between stability and reactiv-
ity of the detection. As a last step, the dynamic texture map DT is spatially smoothed
with a k × k Gaussian kernel (where k = 25 was determined empirically). This spatial
filtering is intended to remove small regions and provide smoother and more compact
DT regions. The map is finally thresholded at 0.5 (which is also established empirically)
to get a binary DT mask.

From this general description, a number of specific methods can be instantiated by
defining the various elements of the algorithm: the visual information used for v and
x, how the evidence for DT is predicted, and how the updating of v is done (if at all).
Two possible approaches, with their associated merits and shortcomings, are presented
in this paper.

2.1 Optical-Flow-Based DT Detection (OFDT)

A characteristic of DT is that its visual appearance changes over time, and hence, de-
tecting temporal changes is a reasonable approach to detect DT. In our first approach,
based on optic flow, and referred to as OFDT, the evidenceOfDT(v, x) function can
be defined as

H(θs − S(v,x)), (2)

where S(·, ·) ∈ [0, 1] is a similarity measure, θs is a similarity threshold, and H(x)
is the Heaviside (step) function (i.e. H(x) = 1 for x > 0, and H(x) = 0 for x < 0).
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Smooth approximations of the step function can also be defined. Therefore, the evidence
for DT is high when similarity between past and current visual data is low, which means
a change is detected.

One visual cue which has often been used to characterize and recognize DTs is the
optical flow, which can also be used to detect DT. Here, the values used for v and x
are the two components of the flow vector, i.e. v = (v1, v2) = (vx, vy), and x =
(x1, x2) = (v′x, v′y). One of the many possible similarity measures is

SOFDT(v,x) =
1
2

2∑

i=1

exp
(
−γi · δ2i

)
, (3)

where δi = vi − xi is the difference in each component, and γi weights the squared
difference δ2i proportionally to a measure of the local variance of the corresponding
flow component. The greater the local variance, the more importance is given to the
difference. One way to set γi is given below. Other measures besides (3) were explored,
in all cases seeking their normalization in [0, 1] to set θs more easily.

The function used to update v, updateVisualCue(v, x, ε), is simply its assignment
to the current value x when ε = 1. Other sensible definitions are possible, such as a
weighted sum between past, v, and new data, x.

The key observations behind the OFDT method are: (1) the BCA does not hold on
DT; and (2) the flow computed assuming BCA exhibits a weak temporal and spatial
coherence in DT locations. Therefore, DT can be detected by detecting optical flow
“failures”. The weak temporal coherence is captured by the temporal change detection,
while the lack of spatial coherence is captured by the local measure of flow variance.
Both procedures, temporal change detection and spatial variance, are coupled through
the similarity measure S. Let (µi,σi) denote the mean and standard deviation of the
local optical flow component i ∈ {1, 2}. Then, γi is set as the relative standard devia-
tion, γi = σi

|µi| . The use of the relative standard deviation here reflects the idea that the
importance of the variance of the optical flow depends on its magnitude. For example,
this allows us to capture subtle DT in regions of small flow that would be undetected
otherwise. The values (µi,σi) are computed on 5×5 windows and, to make these local
computations faster, the concept of integral images [26] is used.

The charm of the OFDT approach is that no alternative motion models are needed at
all, and no complex procedures, such as those based on level sets, are really required.
This clearly contrasts with the conceptual and computational complexity of previous
recent approaches, e.g. [25], summarized in Sect. 3. Our approach shows that just con-
ventional optical flow methods relying on the BCA can be used, e.g. the Lucas-Kanade
and Horn-Schunck methods.

Other approaches for change detection not based on optical flow can be those that
exploit appearance cues. For instance, RGB values can be considered for v and x, and
a color-based similarity measure can be defined for S. Despite the simplicity of such
an approach, tests with this appearance-based DT detection yields very good results,
provided that the camera does not move; otherwise, changes in appearance may eas-
ily happen as a consequence of camera motion and non-uniform scene. The proposed
OFDT method is more flexible than this and can deal with egomotion conditions, as
demonstrated later in Sect. 4.
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2.2 Motion Outliers-Based DT Detection (MODT)

In this section, we present a second approach to DT detection, referred to as MODT
and also based on Algorithm 1, which exploits the global motion outliers in the image
sequence. Global image motion can be estimated with parametric 2D techniques which,
unlike optical flow methods, can deal better with larger image deformations and can be
very robust to the presence of a large amount of motion outliers, i.e. image locations not
following the motion of the main part of the image. Estimating the motion parameters
µµµ of a given motion model f(p;µµµ) is stated in [27] as minimizing error measure

E(µµµ) =
∑

p

ρ(DFDµµµ(p)), (4)

where
DFDµµµ(p) = I(f(p;µµµ), t + 1) − I(p, t) (5)

is the displaced frame difference considering the geometric transformation correspond-
ing to the motion model f(p;µµµ) which maps location p to another position for a given
motion parameter vector µµµ, ρ is an M -estimator (such as the Tukey’s biweight), and
I(p, t) is the gray-level value of image I at location p = (i, j) and time t.

To solve the M -estimator problem, iterative reweigthed least squared (IRLS) is used
so that the problem is converted into a weighted least-squares problem, E(µµµ) =∑

p w(p) · DFD2
µµµ(p). The weights w(p) are defined as w(p) = ψ(r(p))

r(p) , with ψ being
the influence function (the derivative of the ρ function), and r(p) = DFDµµµ(p) is the
residual. The minimization of this error is performed using an incremental and multires-
olution scheme that deals with larger motions and prevents falling into local minima.
At each level of the multiresolution pyramid, the IRLS process is applied.

In our case, we are not interested in the recovery of the motion parameters (which
such methods can estimate very accurately) but rather, in their ability to detect mo-
tion outliers. We considered the affine motion model, and used four levels in the pyra-
mid. The key idea is that DT pixels can simply be identified with motion outliers. The
weights w(p) = w(i, j) ∈ [0, 1] represent how well a pixel (i, j) supports the para-
metric motion model or not. Therefore, the visual cue used for x in Algorithm 1 is just
w(i, j) and the evidence function for DT is simply 1 − x. Note, in this instantiation
of the proposed framework, the past visual information v is not used, since only the
frame-to-frame motion outliers are considered, so no updating of v is required either.

2.3 Comparison of OFDT and MODT

OFDT and MODT identify DT locations by detecting “motion failures” either as spatio-
temporally irregular optic flow or as outliers of global motion. In comparison to OFDT,
MODT is even simpler, since only the weights w(i, j), directly provided as a by-product
of the general-purpose global parametric motion estimator, are used. MODT is as fast
or faster than OFDT (depending on the particular way the optical flow is computed).
Additionally, MODT is generally very effective given that the parametric 2D motion is
estimated on a frame-to-frame basis and no analysis is done on the temporal change of
outliers, as it is done on the temporal change of the optical flow in OFDT. For instance,
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jerky camera motions are dealt with more robustly by MODT, since the frequent flow
changes induced by egomotion can be misdetected by OFDT as DT. It is possible to
explore, however, how the influence on past information, which is considered in OFDT
within S, could be removed by redefining S so that it considers only the spatial in-
homogeneity of the optical flow, not its temporal change. This is important, since the
temporal change might be due to a camera moving at non-constant speed rather than to
genuine DT’s dynamics. Future work will look into this possibility.

Additionally, it can be noticed that, in MODT, no similarity measure S has to be
defined and no critical parameter has to be set (results are quite insensitive to the single
parameter, λ). Since OFDT is a local method, it offers more flexibility, but in its current
form its performance still depends on the particular choice of the similarity measure,
the estimation of the flow vectors (which can be wrongly noisy in non-DT regions), and
on having to properly set the parameters in the specific optic flow method used. This
latter difficulty has also been experienced by other authors [4].

3 The Approach by Fazekas et al. [25]

The methods in Sect. 2 propose two approaches to exploit the spatio-temporal irregular-
ity of optical flow in DT regions. In contrast, since DT does not follow the BCA, three
alternative flow assumptions are explored in [25]: gradient constancy (GC), color con-
stancy (CC) and brightness conservation (BC). These represent different attempts to ac-
count for illumination changes to capture the dynamics of DTs. Then, the DT detection
problem is posed as that of minimizing the functional F (u, v, ũ, ṽ, C) = G(L1;Ω1) +
G(L2;Ω2) + G(S;Ω1 ∪ Ω2) + ν|C|, where G(H ;Ω) =

∫
Ω H(u, v, ũ, ṽ) dxdy; the

first term integrates a Lagrangian L1(u, v) for the flow (u, v) following the BCA over a
non-DT regionΩ1; the second term integrates a Lagrangian L2(ũ, ṽ) for the flow (ũ, ṽ)
obeying an alternative assumption (GC, CC, BC) over DT region Ω2; the third term
seeks the smoothness S(u, v, ũ, ṽ) of both flows over the whole image; and the last
term aims at penalizing long contours C separating regions Ω1 and Ω2, with ν being a
scaling parameter. The unknown discontinuity set makes the direct minimization of the
functional F hard. Thus, the authors reformulate the problem as a level-set functional

FLS(u, v, ũ, ṽ,φ) =
∫

[T1(u, v;φ) + T2(ũ, ṽ;φ) + T3(u, v, ũ, ṽ) + T4(φ)] dxdy,

(6)
where T1 = E1(u, v) · H(φ), T2 = (γE2(ũ, ṽ) + ρ)H(−φ), T3 = S(u, v, ũ, ṽ),
and T4 = ν|∇H(φ)|. E1 and E2 are energy functions for the BCA and some of the
alternative assumptions (GC, CC, BC) respectively, φ is an indicator function the sign
of which distinguishesΩ1 fromΩ2, H(·) is the Heaviside function, and S measures the
flow smoothness. Parameter γ weights one kind of flow against the other; ρ is required
to preventΩ2 to become the whole image, which may happen since the alternative flow
assumptions are more general than the BCA; ν is used to adjust the smoothness of
the contour C; parameters α, α̃, β̃ are used in the smoothness terms for BC and CC;
parameter λ is used in the definition of the energy terms E2; and the Heaviside function
uses a parameter φ0. About a dozen parameters have to be set.
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In addition to this sophisticated level-set approach, Fazekas et al. [25] considered a
simpler non-level-set based approximation to DT, consisting of using the residual of the
optical flow (vx, vy), defined as r(vx, vy) = (I(x + vx, y + vy, t + 1) − I(x, y, t))2,
and then setting a threshold for it. This method is reported to be very sensitive to the
choice of the threshold for the residual, and fails under several conditions such as sig-
nificant egomotion. They suggest yet another idea consisting of comparing this residual
r = r(vx, vy) with the no-flow residual r0 = r(0, 0), so that DT is flagged when
r0 − r < θr, the threshold θr being obtained from a simple parametric classifier. It is
assumed that DT and non-DT regions are linearly separable in this residual difference
space. However, it is possible that one of the regions dominates the other, causing the
parametric thresholding to be no longer effective. This idea has been recently revis-
ited [28] by including a spatiotemporal median filter of optic flow residual maps. An
adaptive way to set the threshold for these maps is also suggested, which relies on the
DT occupying a “significant” part of the data in the first n frames. However, no analysis
is provided on how effective this adaptive threshold is.

4 Results

Short synthetic videos have been generated so that ground-truth dynamic texture maps
are available, which allows a quantitative comparison. Additionally, qualitative com-
parisons are performed with video sequences of real DTs. Our DT detection results are
depicted with the contours of the connected components in the DT map DT . To distin-
guish exterior from interior contours, they are depicted in white and black, respectively.
Thus, a black contour within a white one means a region that is not DT.

The outlier identification for the MODT method uses a robust parametric 2D motion
estimation algorithm [27]. Our proposed methods are compared to the level-set-based
system by Fazekas et al. [25] using an implementation provided by its authors. No
comparison is performed with their fast approximations since they are less accurate
than their level-set procedure, and we are interested in using their most accurate results.
We have focussed our comparative analysis to learning-free, motion-based methods
and in particular to studying whether alternative flow models to the BCA are actually
required. Therefore, we make no comparison with non-motion based or learning-based
methods, such as AR or Markov-based models, which are outside the scope of our
work here.

For MODT, the parameter λ = 0.5 is set for all tests. For OFDT, the Lucas-Kanade
method for optical flow computation was applied, on 5× 5-sized windows, after Gaus-
sian averaging and downsampling. The similarity threshold was θs = 0.95, and the
temporal parameter was λ = 0.9 for the synthetic sequences and λ = 0.7 for the
real ones. For Fazekas et al. [25], the parameters were in the values set in their soft-
ware and their paper [25]. For the synthetic sequences, only the size of the images was
changed accordingly, and the number of levels in the Gaussian image pyramid was set
to 3 instead of 4, as required for the smaller image sizes used (128 × 128). For the real
sequences, the results were not recomputed, but directly taken from the web page [29]
associated with [25]. In this case, interior and exterior contours are both in red.
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t = 5 t = 25 t = 46

(a) Fazekas et al. [25]

(b) OFDT

(c) MODT
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(d) Precision, recall and F-measure

Fig. 1. Exp. 1: background moving affinely, random static DT

4.1 Synthetic Sequences

Quantitative assessment based on ground-truth DT masks, uses the number of true pos-
itives p (DT correctly classified as such), false positives p̄ (non-DT misclassified as DT)
and false negatives n̄ (DT misclassified as non-DT). From these, precision π and recall
ρ are computed, respectively, as π = p

p+p̄ and ρ = p
p+n̄ . The F-measure, F = 2·π·ρ

π+ρ ,
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combines π and ρ to summarize the performance as a single value. All these measures
range in [0, 1], and the higher, the better.

Influence of background motion (Experiment 1). A background image is moved
affinely, while a rectangular-shaped dynamic texture is built fully randomly (the value
for each pixel in each frame is independently drawn from a uniform distribution). Re-
sults at three frames of the 50-frame sequence are shown in Fig. 1. It can be seen that
while all approaches behave well most of the time, at the end of the sequence, the
Fazekas et al. [25] approach and OFDT have many false positives. OFDT does not
detect the DT at the beginning since, in (1), λ = 0.9 weights past information much
more than the new, and the DT likelihood map is initialized to 0. The evolution of π, ρ
and F over time is given in Fig. 1(d). Generally, MODT is more precise than Fazekas
et al. [25] and OFDT. Both of these latter methods, and particularly [25], have higher
recall, at the expense of more false detections. The overall behavior, as captured by
F , is best for MODT. This example illustrates how the global approach of MODT is
more robust against egomotion conditions than the optical flow alternatives OFDT and
Fazekas et al. [25]. As a quantitative guide, average and standard deviations of π, ρ and
F over the sequence are collected in Table 1 for this and the following experiments.

t = 5 t = 25 t = 46

(a) Fazekas et al. [25]

(b) OFDT

(c) MODT
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(d) F-measure

Fig. 2. Exp. 2: background with 5% random noise, random static DT



Fast Dynamic Texture Detection 689

Table 1. Average (µ) and standard deviation (σ) for precision (π), recall (ρ) and F-measure (F )
for all the synthetic experiments

π ρ F
Exp. Method µπ σπ µρ σρ µF σF

[25] 0.87 0.06 1.00 0.00 0.93 0.04
1 OFDT 0.70 0.27 0.86 0.33 0.77 0.29

MODT 0.96 0.14 0.94 0.14 0.97 0.02
[25] 0.57 0.04 1.00 0.00 0.73 0.03

2 OFDT 0.24 0.14 0.87 0.33 0.37 0.16
MODT 0.87 0.13 0.97 0.14 0.94 0.01

[25] 0.70 0.04 1.00 0.00 0.82 0.02
3 OFDT 0.60 0.24 0.86 0.33 0.70 0.26

MODT 0.73 0.11 0.95 0.14 0.84 0.01

Influence of image noise (Experiment 2). Random noise (5%) is added to each frame
of a sequence with a static background, and a DT region is generated randomly, as be-
fore. As shown in Fig. 2, the local methods (OFDT and Fazekas et al. [25]) exhibit
many false positives, while the misclassifications are much fewer in MODT. This bet-
ter performance by MODT is quantitatively reflected in the F-measure (Fig. 2(d) and
Table 1). OFDT results are poorer than Fazekas et al. [25], possibly because Fazekas
et al. [25] compute the flow with the Horn-Schunk (HS) method which, unlike Lucas-
Kanade (LK), enforces global smoothness of the flow. However, in agreement with [4],
we found it harder to select the right parameters for HS than for LK.

Influence of independent motion (Experiment 3). For this experiment, the background
translates at a constant speed. The values of three-quarters of a rectangle (in an L-
shaped form) is set randomly and the remaining top-right quarter has constant contents.
This constant region is equivalent to an independently moving object. As illustrated
in Fig. 3, MODT fails to detect the true extent of the DT region, as it misdetects the
constant region as DT. The reason is that, given the global parametric motion of the
background, both the true DT and the constant region are indistinguishably treated as
motion outliers. While Fazekas et al. [25] works slightly better in this case, its behavior
is unstable and surprisingly poor since, given its local nature and its elaborate design, it
should deal with this situation more successfully. In fact, Fig. 3(b) shows the results of
the (also local) OFDT approach, which exhibits quite promising results. The F-measure
for the three methods is compared in Fig. 3(d) and Table 1.

Even though not shown here, tests of OFDT with a variational optical flow compu-
tation method were conducted and, when applied to these synthetic sequences, yielded
extremely good results. While this indicates that OFDT in its current form is still sen-
sitive to how the optic flow is estimated, it also provides strong evidence of the validity
and interest of the approach.

4.2 Real Sequences

In order to test the approaches with sequences of real dynamic textures (fire, water,
steam, smoke, etc.), the DynTex database [30] has been used. Results for three arbitrar-
ily selected frames of some of these sequences are shown in Figs. 4-6. Fig. 4 illustrates
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t = 5 t = 25 t = 46

(a) Fazekas et al. [25]

(b) OFDT

(c) MODT
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Fig. 3. Exp. 3: translating background, L-shaped random DT and static constant region

the results for a waterfall sequence while the camera is moving horizontally. It can be
seen that the proposed approaches, despite their simpler design, work as well as, if not
better than, Fazekas et al. [25], at higher frame rate (see Table 2).

The results for a smoke sequence are shown in Fig. 5. While all approaches behave
reasonably well, they all have problems with detecting dense (smoke) regions, an is-
sue related with the aperture problem. However, similarly to the synthetic examples,
Fazekas et al. [25] tends to miss more true DT and misdetects some non-DT in compar-
ison to OFDT and MODT. At t = 100, OFDT misdetects some regions in the wall as
DT (lower-right part of the image), possibly because of illumination changes, a situation
which is dealt with more robustly by MODT and Fazekas et al. [25].

Finally, Fig. 6 illustrates an example where Fazekas et al. [25] offers results better
than MODT but worse than OFDT. MODT does not fare as well due to the large degree
of motion outliers or their uneven distribution. On the other hand, the duck is correctly
left undetected as DT most of the time by all methods, but all of them have problems
when it moves faster at the end of the sequence. The likely reason for this is that, as in
the third synthetic example, MODT, as a global parametric motion estimation method,
is unable to distinguish independently moving objects from true DT. Indeed, OFDT as
a local method, in this sequence (Fig. 6(c)) and others, can deal with these kinds of
scenarios as well or better than Fazekas et al. [25].
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t = 200 t = 300 t = 500

(a) Fazekas et al. [25]

(b) OFDT

(c) MODT

Fig. 4. Results with real sequence 6481i10.avi with the three methods

t = 100 t = 400 t = 700

(a) Fazekas et al. [25]

(b) OFDT

(c) MODT

Fig. 5. Results with real sequence 648ea10.avi with the three methods

t = 50 t = 250 t = 540

(a) Fazekas et al. [25]

(b) OFDT

(c) MODT

Fig. 6. Results with real sequence 644ce10.avi with the three methods
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Table 2. Computation times for the three methods

Figure DynTex sequence # frames Fazekas et al. [25] OFDT MODT
4 6481i10.avi 670 > 5 hours 9.1 min. 4.3 min.
5 648ea10.avi 884 > 7 hours 8.8 min. 5.3 min.
6 644ce10.avi 540 > 4 hours 6.0 min. 3.8 min.

Average time per frame (s) 29 0.6 0.4

The algorithms were timed running on an Intel Pentium 1.7 GHz PC for sequences
of 352 × 288-sized frames. Both OFDT and MODT perform significantly faster than
Fazekas et al. [25] as shown in Table 2. These times are only approximate measurements
of unoptimized implementations (including even I/O operations).

5 Conclusions

In comparison to recent DT methods, we proposed two simpler and much faster ap-
proaches. Unlike recently suggested in [25], we show that an alternative flow model to
the BCA is not required. The key observation is that locations of DT can be detected
as violations of the BCA either as a lack of spatio-temporal coherence of locally com-
puted optical flow (method OFDT), or as motion outliers detected with some robust
global parametric motion estimation (method MODT). Competitive results with both
synthetic and real sequences were presented. Future work for improved DT detection is
to explore the combination of the robustness of the global parametric method with the
flexibility of the local optical flow approach in a joint framework.
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