
Fast, Effective Code Generation
in a Just-In-Time Java Compiler

Ali-Reza Ad-Tabataba?, Michal Cierniak, Guei-Yuan Lueh,

Vishesh M. Parikh, James M. Stichnoth

Intel Corporation

2200 Mission College Blvd.

Santa Clara, CA 95052

ABSTRACT

A “Just-In-Time” (JIT) Java compiler produces native code from
Java byte code instructions during program execution. As such,
compilation speed is more important in a Java JIT compiler than
in a traditional compiler, requiring optimization algorithms to be
lightweight and effective. We present the structure of a Java JIT
compiler for the Intel Architecture, describe the lightweight
implementation of JIT compiler optimizations (e.g., common
subexpression elimination, register allocation, and elimination of
array bounds checking), and evaluate the performance benefits
and tradeoffs of the optimizations. This JIT compiler has been
shipped with version 2.5 of Intel’s VTune for Java product.’

1. INTRODUCTION

‘Ihe Java programming language [10) introduces new challenges
to the compiler writer, because of the “Just-In-Time” (JIT) na-
ture of the compilation model. A static compiler converts Java
source code into a verifiably secure and compact architecture-
neutral distribution format, called Java by& codes. A Java Vir-
tual Machine (JVM) interprets the byte code instructions at run
time. To improve runtime performance, a JIT compiler converts
byte codes into native code at run time.

Although offline compilation of byte codes into native code is
possible, it cannot always be performed, because all Java class
files are not guaranteed to be available at the start of program
execution. Therefore, a byte code compiler needs to be prepared
to execute dynamically at run time, hence the term “JIT com-

t Author’s current affiliation is Oracle Corporation, 500 Oracle
Parkway, Redwood Shores, CA 94065.

’ All third party trademarks, tradenames, and other brands are
the property of their respective owners.

Psrmie&n fc make digital or hard copier of all or part of this work for

parsonal or clansroom use is granted without fee provided that

copies are not made or distributed for profit or commercial sdvan-

tape and that copiee bear this notice and the full citation on the fir81 pat~a.

To copy othenvi~s. to rapubliah, 10 p-1 on wwven w 10

radi8tributs to limts. requires prior specific pwmis4on and/or a fee.

SlGPfAN ‘98 Montraal, Canada

Q 1998 ACM 0.89791.987-4/96/0006...(6.00

piler.” For this reason, overall program execution time now
includes JIT compilation time, in contrast to the traditional
methodology of performance measurement, in which compila-
tion time is ignored. As a result, it is extremely important for
the compiler optimizations to be lightweight and effective. It is
also important for the Java JIT compiler to interact with other
parts of the system, such as the garbage collector and perform-
ance analysis tools (e.g., Intel’s VTune [131 tool).

In this paper, we present the design and implementation of a
production Java JIT compiler for the Intel IA32 architecture
[11,12]. We describe our approach, called lazy code selection,
for quickly generating good quality IA32 code. The key to the
lazy code selection approach is that it generates native IA32
instructions directly from the byte codes, in a single pass. Other
than a control-flow graph used for register allocation, the JIT
does not generate an explicit intermediate representation.
Rather, it uses the byte codes themselves to represent expres-
sions and maintains additional structures that are managed on-
the-fly. This is in contrast to other Java JIT implementations
which transform byte codes to an explicit intermediate repre-
sentation [21,16]. We describe our lightweight implementations
of several standard compiler optimizations-lightweight in

terms of both execution time and auxiliary data structures. We
use several benchmark programs to show the impact of the op-
timizations on overall runtime performance.

The JIT that we describe in this paper interfaces with the Micro-
soft JVM from SDK 1.5.1 [20] and is currently being shipped
with version 2.5 of the Intel VTune for Java product [131, an
application profiling tool for Java. The performance of the Intel
JIT is comparable to that of the Microsoft m, the running times
of several benchmarks, measured in seconds, are summarized in
the table below (full results for the benchmarks are presented in
Section 4).

MSJIT 1 IntelJIT 1 MSJIT 1 IntelJIT

The rest of this paper is organized as follows. In Section 2, we
describe the details of the code generator and of our optimiza-

280

tion algorithms. In Section 3, we describe our technique for
tracking the location of object references, so that the code gen-
erator can compute the root set of references at garbage collec-
tion sites. In Section 4, we present measurements of the effec-
tiveness of the JIT’s optimizations. Finally, in Section 5 we
present our conclusions.

2. CODE GENERATION DETAILS
Figure 1 shows the five major phases of the Intel JIT. The pre-
pass phase performs a linear-time traversal of the byte codes to
collect information needed for the global register allocation and

lazy code selection phases, and for implementing garbage col-
lection support. The global register allocation phase assigns
physical registers to local variables. The code generation phase
generates IA32 instructions using the lazy code selection algo-
rithm described in Section 2.2 and performs several optimiza-
tions: common subexpression elimination, array bounds check
elimination, peephole optimizations, and frame pointer elimina-
tion. The code emission phase copies the generated code and
data sections to their final locations in memory. The patching
phase fries up relocations in the emitted code and data sections;
for instance, offsets of forward branches, addresses of code la-
bels in switch table entries, and the address of switch tables in
the read-only data section. With the exception of the global
register allocation phase, all phases are linear in time and space.

I
4

Code emission I

1
Code and data patching

Figure 1: Compiler passes.

2.1 The Prepass Phase
The prepass phase builds a control-flow graph, and collects three
pieces of information: (1) the depth of the Java operand stack at
the entry of each basic block; (2) the static reference count of
each local variable; (3) the Java operand stack locations con-
taining references at each point where garbage collection may
occur; and (4) a list of those variables that alternately hold refer-
ence and non-reference values at different points in the method.
The stack depth information is needed by the code selector to
initialize the locations of operands on the Java operand stack at
the beginning of a basic block. The static reference count in-
formation is needed by the global register allocator to assign
priorities to variables. The information collected for garbage
collection allows the JIT to compute the root set of live objects
reachable from stack frame locations and from registers. Vari-
ables that hold reference and non-reference values are treated in

a special way by the garbage collector. We discuss the details of
garbage collection in Section 3.

2.2 Lazy Code Selection
The lazy code selection algorithm is a single pass code selection
algorithm. It emits assembled native instructions directly into a
temporary code buffer that is later copied by the code emission
phase. ‘lbe code selector also uses a temporary data buffer to
assemble read-only constant data, such as floating-point con-
stants and switch tables.

The goal of the lazy code selection algorithm is twofold: (1) to
keep intermediate values (i.e., Java operand stack values) in
scratch registers, and (2) to reduce register pressure and take
advantage of the IA32 addressing modes by folding loads of
immediate operands and accesses to memory operands into the
compute instructions that use them. Lazy code selection
achieves these goals by propagating information about source
operands via an auxiliary data structure called the mimic stack.
‘Ihe mimic stack simulates the Java runtime operand stack at JIT
time: for each byte code’s selected instruction sequence, the
source operands of the instruction sequence are popped from the
mimic stack and the result operand of the instruction sequence is
pushed onto the mimic stack.

Instruction operands are modeled in a C++ class hierarchy (Fig-
ure 2); the base of this hierarchy is the Operand class. There are
four main types of operands: (1) register operands (Register),
which are values in physical integer registers and directly ad-
dressable by most integer compute instructions, (2) immediate
operands (Immediate), which are constant values that can be
folded into the immediate fields of integer compute instructions,
(3) memory operands (Memory), which are values in memory
that can be folded into floating-point or integer compute in-

structions using one of L432’s memory addressing modes, and
(4) floating point operands (FP), which are values on top of the
IA32 floating-point register stack. Memory operands are further
classified according to the kind of data being accessed: (1) ob-
ject field references (Field), which use the offset addressing
mode (base register plus constant offset), (2) array elements
(Array), which use the indexed addressing mode (base register
plus scaled index register), (3) static class variables that are not
declared as final (Static), which use the absolute addressing

mode, (4) floating point constants and static class variables that
are declared as final (Constant), which also use the absolute
addressing mode (IA32 floating-point instructions do not have
an immediate form), and (5) stack frame locations (Stack),
which use the offset addressing with either the stack or frame
pointer register as the base. Stack frame locations are used for
spilling and for those local variables that are not allocated a
register. The JIT eliminates the frame pointer in most cases so
that most Stack operands use the stack pointer register as the
base register. Frame pointer elimination frees up an additional
register for use by the global register allocator, and reduces the
number of instructions executed in a method’s Prolog.

281

I I I I I
Field hY St& stack co-t

Figure 2: Opaand class hierarchy.

To select code for a byte code B that pops source values from
the Java operand stack, the code selector first pops the corre-
sponding source operands from the mimic stack, and then tries
to fold the source operands into the compute instruction selected
for B. If the attempt is successful, then the folded compute in-
struction is selected. Otherwise, if an operand 0 cannot be
folded into the compute instruction, the code selector selects an
instruction that loads 0 into a scratch register R, and then gener-
ates a compute instruction that uses R as the source operand.
The result of the compute instruction (which often is a register)
is pushed onto the mimic stack to make it available for folding
into subsequent instructions. The register manager, which we
discuss in Section 2.4.1, handles allocation of scratch registers.

‘Ihe floating-point registers of IA32 are organized as a stack
ill]; a floating-point compute instruction pops one operand
from the register stack (the other operand can be a memory op-
erand or another location on the register stack) and pushes its
result onto the register stack. This maps perfectly to the Java
Virtual Machine’s stack-based architecture: whenever an FP
operand is popped from the mimic stack, this operand must rep-
resent the top of the floating-point register stack. The only
complication is that the code selector needs to keep track of the
floating-point register stack depth and generate spill code if
overflow occurs. The floating-point register stack has only 8
registers but we have found that none of our applications cause
floating-point register stack overflow.

At a call site, the code selector generates spills for those oper-
ands on the mimic stack that are live across the call site, since
the calling conventions consider the FP stack to be caller-saved.
Only those operands that may be killed by the call need to be
saved; that is, mimic stack operands that are of type Field, Ar-
ray, Static, FP, and caller-saved Register; operands of type Im-
mediate, Constant, Stack, and callee-saved Register do not need
to be spilled.

One problem for the code generator is that the Java operand
stack can be non-empty at the entry or exit of a basic block. This
condition occurs mainly because of conditional expressions (i.e.,
question mark colon expressions such as a>b?a :b). The
problem is that the code generator must guarantee that the oper-
ands on the mimic stack are the same at the merge point of two
paths.

To guarantee that mimic stack operands are the same at the
merge point of several paths, all values that remain on the mimic
stack at the end of a basic block are spilled to canonical spill

locations in the stack frame. Similarly, if the Java operand stack
depth is non-zero at a label (i.e., branch target), then for each
Java operand stack location that contains a value, the corre-
sponding mimic stack location is initialized to its canonical spill
location. This is the reason the prepass phase computes the Java
operand stack depth.

The lazy code selector performs several simple optimizations
during code selection. First, if one of the operands of a compute
instruction is an Immediate or Constant operand, then the code
selector attempts to perform strength reduction (for multiply,
divide, and mod operators) or constant folding on the compute
instruction. Second, the code selector detects compare followed
by branch byte code sequences so that it can generate the corm-
sponding IA32 compare and branch instruction sequence. Third,
the code selector performs redundant load-after-store elimina-
tion by tracking values loaded into registers; this optimization
replaces the use of a memory operand with the use of a register
that already contains the memory value.

Although the design of the lazy code selector is tailored to take
advantage of IA32’s CISC architecture, this style of code selec-
tion can also benefit a RISC architecture. Computation instruc-
tions in RISC architectures cannot operate directly on memory
operands; thus the code selector needs to propagate only register
and immediate operands. The benefits for a RISC architecture
are that the code selector will eliminate unnecessary moves from
registers assigned to local variables and unnecessary loads of
immediate operands. Since only register and immediate oper-
ands are propagated, an implementation for a RISC architecture
may not require an operand class hierarchy.

2.3 Common Subexpression Elimination
Traditional common subexpression elimination (CSE) algo-
rithms, which are based on data flow analysis [7, 151 and value

numbering [7, 21, are expensive in both time and space, and we
prefer to avoid them in a JIT compiler. We have developed a
fast, lightweight CSE algorithm that focuses on common subex-
pressions within extended basic blocks.

Our CSE algorithm uses the Java byte codes themselves as a
compact representation of expressions. Consider the expression
“x+y”. Assuming x and y are local variables 1 and 2, respec-
tively, the expression’s byte code sequence is [iload-1,

iload-2, iadd]. Because the byte codes of the iload-1,

iload-2, and iadd instructions are Oxlb, Oxlc, and 0x60,
respectively, the value 0x1 blc60 represents me expression
“x+y”. Note that the value Oxlblc60 appears as a subsequence
in the byte code instruction stream; as such, the expression can
be represented using the pair <o$set,length>, which we call an
expression tag. To detect whether the tags afietl,n> and <off-
set2,n> represent the same syntactic expression, we simply
compare the subsequences of length n starting at o$ketl and
oJj%et2. Because the maximum size of the stream is 2 [17], an
expression tag can be represented concisely using a single word
(16 bits for the offset and 16 bits for the length).

To detect common subexpressions, the code selector tracks the
expression values held in the scratch registers by annotating
each scratch register R with the tag of the expression that R
contains. Before selecting code for a byte code B, the code se-
lector looks ahead in the stream to see whether the expression

starting from B matches one already associated with a scratch
register; if so, it pushes the register onto the mimic stack and

skips over the common subexpression in the byte code stream.
The registers are checked in decreasing order of subsequence
length to match the largest sized expression. To keep the com-
pilation time linear, expression lengths are limited to 16 byte
codes, an empirically sufficient limit. If a match is not found, the
code selector selects an instruction sequence for the byte code B
and updates the expression tag of the register R containing the
result of the instruction sequence. The expression tags are ini-
tialized to hold no values at the beginning of basic blocks that
have branch labels.

There are two ways that the availability of an expression E held
in a register R is killed:

1. By instructions that modify the value of R. If register R is
a caller-saved register, then a call site kills the availability
of E in R; in this case, the expression tag of R is updated to
indicate that R contains no value. The availability of E in
R is also killed when the register manager allocates R for
reuse by the code selector; in this case, the code selector
updates the expression tag of R to indicate that it contains a
new expression (or no value if R was used to hold a tempo-
rary value).

2. By assignments or method calls that (potentially) modify a
value loaded by E. E can contain loads of variables, array
elements, and object fields, which can be modified by
method calls and by assignments. At a method call, the
code selector kills the availability of all expressions that
contain loads of array elements or object fields. At an as-
signment, the code selector kills the availability of all ex-
pressions that load (or may load) the assigned variable, ob-
ject field, or array element.

The information about the set of variables and object fields
loaded by an expression is held in kill sets; there is one kill set
associated with each physical register managed by the register
manager. Each variable has a unique index, and each object field
has a unique constant pool index. This allows a kill set to be
maintained as a bit vector with the fiit few bits dedicated to
variable indices and the rest of the bits dedicated to object field
indices. Whenever an object field assignment byte code (i.e., a
putfield byte code) assigns a new value to an object field
with index I, the code selector kills the availability of a register
R if the I’th object field index is set in R’s kill set bit vector.
The code selector performs similar bookkeeping for assignments
to variables. To save memory space and compilation time, the
size of each kill set bit vector is limited to 256 bits; the code
selector gives up on CSE opportunities for indices that fall out-
side of this limit.

The code selector takes a more conservative approach tn killing
expressions that load array elements. Rather than performing
expensive alias analysis, the JIT takes advantage of the Java
feature that there is no aliasing between arrays with different
element types. Each register R has a fixed-size bit vector that
contains the set of array element types loaded by the expression
held in R. When the code selector encounters an assignment to
an array element of type T (e.g., an assignment to an integer
element), it kills all registers containing expressions that load
array elements of type T. This bit vector, in conjunction with an
additional bit flag that indicates whether an expression has any
object field references, is used by the code selector to detect
expressions that are killed by method calls.

Traditional CSE approaches generate temporaries to hold the
values of common subexpressions, which may cause high reg-
ister pressure and introduce more spill code. Our CSE approach
does not increase register pressure because the availability of E
in R is killed immediately once R is used by the code selector.

Our CSE approach has some limitations. First, it cannot re-
associate expressions; for example, “x+y” and ‘Ly+x” are

treated as distinct expressions because they have different sub-
sequences. Second, the approach cannot detect expressions that
are syntactically different but have the same value; for instance,
“Xq ; x+y” and “w+y”. Third, the approach can only repre-

sent expressions that are contiguous in the byte code stream (no
bubble/gap is allowed).

2.4 Register Allocation
The IA32 architecture includes only 7 general-purpose integer
registers that can be used for register allocation. By convention,
the 7 registers are partitioned into 3 caller-saved scratch regis-
ters (eax, ecx, and edx) and 4 callee-saved registers (ebx,

ebp, esi, and edi). The Intel JIT uses the 3 caller-saved reg-
isters for local register allocation and the 4 callee-saved registers
for global register allocation.

2.4.1 Local Register Allocation
The local register allocator, or register manager, allocates the
registers that the lazy code selector uses for expression evalua-
tion. When the code selector requires a scratch register (i.e., a
register to hold a temporary expression value), it requests one
from the register manager. If there are multiple registers avail-
able, the register manager returns the register that was least re-
cently allocated (i.e., a circular allocation strategy). This simple
heuristic benefits the CSE optimization, described in Section
2.3, by trying to equalize the lifetimes of common subexpres-
sions within scratch registers (i.e., afair policy). However, if the
code selector requests a register but none are currently available,
the register manager finds the least recently allocated register
that can be used, generates code to spill the register to the stack
frame, and returns that register. To find the least recently allo-
cated register, the register manager searches the operands on the
mimic stack, starting from the bottom-most operand; in this
manner, the register manager spills the register with the most
distant use in the past. After producing the instruction sequence
for evaluating an expression, the scratch registers used in the
source operands of the instruction sequence are given back to
the register manager.

2.4.2 Global Register Allocation
The global register allocator allocates the 4 callee-saved regis-
ters to local variables within a single method (i.e., no interpro-
cedural register allocation). Global register allocation has been
an active area of research resulting in several effective algo-
rithms [6, 3, 4, 8, 5, 22, 9, 19, 181. A JIT compiler, however,
introduces a new challenge-how to balance the cost of running
the potentially expensive register allocation algorithm against
the expected performance gains. The key is to use an algorithm
that is both fast and effective.

The Intel JIT provides two different register allocation algo-
rithms. The fist algorithm is extremely simple and cheap to
execute: the register allocator allocates the 4 callee-saved regis-
ters to the 4 variables with the highest static reference counts.
The complexity of the algorithm is O(B), where B is the number

283

of byte codes in the method. This simple allocation scheme is
limited, however, because it does not allow two variables with
non-overlapping live ranges to share the same register. Thus
fewer variables may be allocated registers, and register
save/restore costs may increase.

The second register allocation algorithm is a priority-based
scheme similar to the one described by Chow [S], but with two
differences: our scheme does not use an interference graph
(which is expensive in terms of time and space) and does not
perform live range splitting. Priority-based register allocation is
effective in allocating registers to the most important variables
in a function and can easily take into account call costs [18]. (An
alternative linear-time approach that does not consider priorities
is described in [23].) Our algorithm is as follows: For each vari-
able u, ordered by priority, the allocator performs a backwards
depth-first search through the flow graph, starting the search at
all basic blocks in which u is used (representing a possible end
of the live range), and terminating the search at a basic block in
which u is defined (representing the start of the live range). This
depth-first search visits the set of basic blocks covering the en-
tire live range of u, and keeps track of the callee-saved registers
that are unavailable (i.e., already allocated) in these blocks. If
there is a register R available in all of these basic blocks, then
the allocator assigns R to u and marks R as unavailable in the
basic blocks comprising the live range of u. The complexity of
the algorithm is O(B+NV), where B is the number of byte codes
in the method, N is the number of basic blocks, and V is the
number of local variables considered for register allocation.

Call cost is an important issue in register allocation [18]. If cal-
lee-save cost is not taken into account (i.e., the cost to save and
restore a callee-saved register at the prolog and epilog of a func-
tion), the register allocator may assign a register with high cal-
lee-save cost to a variable with low spill cost. Both global reg-
ister allocation algorithms implemented in the Intel JIT assign
registers to variables only if the spill costs are greater than the
callee-save cost. In our priority-based approach, the first live
range that is assigned a given callee-saved register pays the cal-
lee-save cost; the register allocator does not include the callee-
costs in the cost benefit analysis of subsequent live ranges that
are assigned the same register.

After the global register allocation is completed, there are typi-
cally some basic blocks in which not all registers can be allo-
cated; the code selector can use these leftover registers to reduce
spill code. Before generating code for a basic block b, the code
selector first notifies the register manager of the set of callee-
saved registers that are available (i.e., not allocated to any vari-
able) in b so that the register manager can add these registers to
its pool of scratch registers available inside b. This has three
benefits: First, the register manager generates less spill code.
Second, the callee-saved registers are used as spill locations for
operands that are live across call sites, thereby reducing the
number of stack frame accesses around call sites. Third, more
common subexpressions are found because registers containing
expression values are live longer.

2.5 Array Bounds Check Elimination
The Java language specifies that all array accesses are checked
at run time; an attempt to use an index that is out of bounds
causes an exception (ArrayIndexOutOf BoundsExcep-
tion) to be thrown. The JIT can eliminate bounds checks if it

can prove that the index is always within the correct range, or if
it can prove that an earlier check will throw an exception.

The Intel JIT uses a simple mechanism to eliminate bounds
checks of indices that are constant. For each Java operand stack
location and variable that contains a reference to an array A, the
code generator keeps track of the maximum constant bound for
which no bounds check is needed for A. This information is
updated when a bounds check is generated for a constant index
or when an array of constant size is created. For example, if the
code selector has already generated bounds checking for A[‘l],
then a subsequent access to A[51 does not require bounds
checking. In addition, when the array is created (using the ne-

warray byte code), the JlT can use the creation size to elimi-
nate bounds checking on subsequent array accesses. This ap-
proach is especially effective during array initialization (e.g.,
A[O] = A[l] = . . . = A]91 = 1).

This algorithm is limited in two ways. First, it is applied only
locally to each extended basic block, and not globally. Second,
only constant operands are used; more bounds checks could be
eliminated if symbolic information were used as well.

2.6 Out-of-Line Exception Throws
An array reference in Java must include code to check whether
the subscript is within the bounds of the array. The array length
is usually stored within the array object, allowing the JIT to
inline bounds-checking code. Assuming that the address of the
array is in eax and the subscript is in ecx, the naive code se-

quence for array bounds checking is as follows.

cmp [eax + offset(length)], ecx
ja OK ; fold two tests into one!
. . . ; throw an exception

OK: ; access the array element

The code for throwing an exception is infrequently executed
(i.e., cold code) and the above implementation has two perform-
ance problems for the IA32 architecture:

1. Static branch prediction on Pentium@ Pm and Pentium II
processors predicts forward conditional branches not to be
taken.

2. The exception-throwing portion of the code is likely to be
loaded into the instruction cache even though it is unlikely
to be executed.

The Intel JIT produces code optimized for the common case of
the subscript being within array bounds, with the code after the
no tOK label appearing at the end of the method:

cmp dword ptr [eax+of f set (length)] , ecx
jbe notOK
. . . ; access the array element
. . .

; cold code at end of method’s code space
notOK:

. . . ; throw an exception

2.7 Example
Figure 3 shows a code sequence from the MPEG Player pro-
gram, a Java applet for viewing MPEG files. We use this exam-
ple to illustrate the lazy code selection algorithm, common su-
bexpression elimination, out-of-line exception throwing, and
register allocation. The first column shows a Java byte code

284

sequence; each byte code is numbered with its index in the byte of the expression formed by the first two byte codes. Notice that

code stream. The second column shows the native code gener- the code selector delays generating code for byte codes 490

ated by the Intel JlT. This column also shows the point at which (getfield #44), 493 (lload IS), and 495 (Ui), until it en-

the code selector generates instructions; for instance, the code counters byte code 496 (aaload). The values of 12i and

selector generates the first native instruction when it encounters getfield #44 are kept in ecx and eax, respectively, and

the thirdbyte code. ‘1 : third column shows the expression tags the expression tags of these registers are updated ac

483: aload-
484: getfield #34
487: getfield #45
490: getfield #44
493: lload la
495: l2i
496: aaload

497: getfield #16
500: l2i
501: istore 5

503: aload-
504: getfield #34
507: getfield #45
510: getfield #44
513: lload 18
515: l2i
516: aaload
517: getfield #49
520: i2l

521: lstore 20

IA32 native code

mov ecx, [ebp+O4h]
mov edx, [ecx+l9Oh]

mov eax, [edx+l8h]
mov ecx, [esp+l28h]
cmp [eax+04h], ecx
jbe -throw
mov edx, [eax+ecx*4+08h]

mov eax, [edx+04h]
mov [esp+l60h], eax

mov ecx, [edx+OCh]
mov edx, ecx
sar edx, 1 Fh
mov [esp+l24h], edx
mov [esp+l20h], ecx

eax ecx edx

___ [483,4] ---
--- [483,4] [483,7]

!iiRJfiy7:;,,

[483,18] [493,3] [483,14]

Figure 3: Example of lazy code selection and several optimizations in the Mel JIT,
excerpted from the MPEG Player code.

held in the scratch registers at each point during code selection.
In this example, global register allocation has assigned the ebp
register to variable 0 (variables 5, 18, and 20 are in memory).
The ebp register is typically the frame pointer, but for the
method shown in this example, the Intel JIT eliminates the
frame pointer allowing the global register allocator to allocate
ebp; accesses to variables 5 and 20 are based off the stack

pointer (esp). Note that the code for throwing the exception
ArrayIndexOutOfBoundsException is moved out of
line (the code that throws the exception is not shown).

The second column illustrates the laziness of our code selection
approach. For instance, the code generation of the byte code at
index 484 (getfield #34) is delayed until the byte code at
index 487 (getfield #45) and the code generation of the
byte code at index 490 (getfield #44) is delayed until the

byte code at index 496 (aaload) . In both cases, the code se-
lector delays generating code for loading the object field until
the field’s value is needed.

At the time when the code selector generates the fast native
instruction (mov ecx, [ebp+04h]), it annotates ecx with
the expression tag <483,4> to indicate that ecx holds the value

(<493,3> and <483,10>). As the value of byte code 496 (aa-
load) is loaded into edx, the expression tags <483,10> of

eax and <493,3> of ecx are combined to form the expression
tag <483,14> of edx. When the lazy code selection finishes
generating code for byte code 501 (istore 5) and scans the
next byte code (aload- at index .503), three expressions,
<483,18>, <493,3> and <483,14>, are being held in the three
scratch registers. The selector attempts to match a CSE by
searching the expression tags in the order of <483,18>,
<483,14>, and <493,3>. The expression d03,14> matches
<483,14> (i.e., a CSE is detected), and the code selector pushes
edx onto the mimic stack. Then the selector skips byte codes
503 to 516, and continues generating code from byte code 517
(getf ield #49).

3. GARBAGE COLLECTION SUPPORT
Java is a garbage collected (GC) language, moving the burden of
memory management from the programmer to the system (i.e.,
the JVM). When the program runs low on heap space, the gar-
bage collector determines the set of objects that the program
may still access-the live objects-and frees the space used by
dead objects. The garbage collector computes the set of live

285

objects by starting with the set of references in global variables,
in registers, and on the runtime stack (the root set), and locating
all the references that can be reached from the root set by trav-
ersing the graph of reachable objects. Some GC algorithms
move live objects to a new place in memory [14]. The Intel JIT
is designed to work with moving as well as non-moving GC.

Computing the root set requires the cooperation of the JIT, be-
cause only the JIT is capable of precisely locating references
held by local variables and by temporaries (which are assigned
to either stack locations or registers); the JVM keeps track of
which classes have been loaded and thus can determine the set
of global variables containing references, without any support
from the JIT. Moreover, the JIT is capable of performing analy-
sis to identify only those stack locations and registers containing
live references.

The JIT keeps track of Java operand stack locations that contain
references by computing a type bit vector for each GC site dur-
ing the prepass. The type bit vector marks those stack locations
that contain live references at the GC site.

Finding the set of variables (as opposed to operand stack loca-
tions) containing references, however, is not trivial for the JIT,
because of “ambiguous types”: the same variable may hold ref-
erence and non-reference values at different times during the
execution of the method. At a GC site, the JIT must distinguish
between variables that contain references and those that do not
contain references; that is, the JIT must precisely enumerate the
complete set of variables containing valid references.

In our development, we have experimented with different strate-
gies for detecting variables containing references:

. For each variable that is ever used as a reference, keep an
extra bit in the method’s stack frame. The JIT generates
code that dynamically updates the bit on every write to one
of these variables, and that initializes the bit in the
method’s prolog. (The bit is needed for tracking ambigu-
ously-typed variables, as well as for tracking whether a ref-
erence variable is initialized.) The JIT uses these tags at
CC time to decide which variables hold references. This
approach incurs an overhead of an extra memory reference
for every store to one of these variables, as well as initiali-
zation overhead upon method entry.

. We can refine this approach by using global data flow
analysis to statically analyze ambiguously-typed variables,
and record the information for each GC site. Liveness and

type analysis (which our priority-based global register allo-
cator provides for free) allows us to determine all GC sites
at which a variable (a) is initialized, (b) is live, and (c)
contains a reference. However, it is not possible in general
to analyze all variables, because the specification of the
JVM allows the same variable to hold either a reference or
a primitive type value at the same byte code instruction [17,

Section 4.9.61. This ambiguity is due entirely to the j sr

instruction. (The program is not allowed to reference such
a variable at that point, but if it contains a reference, it must
still be enumerated at a GC site.) These kinds of variables
require other techniques, such as the dynamic tagging ap-
proach described above, to maintain reference information
(another solution involves variable splitting [l]).

The dynamic approach has a higher runtime cost but a lower
JIT-time cost than the static approach, so it is unclear which
approach is preferable. However, experiments with our bench-
marks show that the incidence of ambiguously-typed variables is
small and the choice of a solution to the enumeration problem
will likely have a negligible impact on performance.

4. EXPERIMENTS
We used several Java benchmark programs to test the effective-
ness of individual optimizations described in this paper, as well
as combinations of the optimizations. Five of the benchmarks
(Backprop from Spec92, and Compress, Go, JPEG, and Lisp
from Spec95) were originally C programs, hand-translated into
Java. One benchmark, Java Cup, is a parser originally written in
Java. We measured the wall-clock time of each application, in
seconds, averaged over several runs; the tests were measured on
a 233MHz Pentium II with 64 MB of RAM, running Windows
NT4.0, Service Pack 3. Ihe Intel JIT is integrated with the Mi-
crosoft’s JVM in both SDK 1.5.1 and SDK 2.0.

The table below compares the running times of Microsoft’s JIT,
Intel’s JIT with all optimizations disabled, Intel’s JIT with all
optimizations enabled (using the simple global register allocator
described in Section 2.4.2), and Intel’s JIT with all optimizations
enabled (using the priority-based register allocator described in
Section 2.4.2). The optimizations include array bounds check
elimination, common subexpression elimination, out-of-line
exception throwing, and global register allocation. This table
shows that the Intel JIT’s performance is comparable to that of
the Microsoft JIT. Note that both the Microsoft JIT and the
JVM differ between SDK 1.5.1 and SDK 2.0, but essentially the
same Intel JIT is used with both SDKs.

SDK 1.5.1 SDK 2.0

Go 14.62 15.33 11.14 11.33 9.35 11.66 8.05 8.06

Jpeg 12.03 12.81 11.84 11.75 6.61 8.04 7.12 7.12

Lisp 39.73 44.10 40.52 40.84 14.42 18.72 18.23 17.97

286

(a) Backprop

(4 Go (c) Java Cup

(4 Jm

Figure 4: Effect of optim.iz,ations under SDK 1.5.1.

Figures 4 and 5 show the performance improvement from the
various optimizations. AU values are given as percent im-
provements over the no-optimization case. Each figure is di-
vided into three categories (separated by dark lines): the effect
of a single optimization, the effect of all but one optimization,
and the effect of all optimizations. When register allocation is
considered, we use “(S)” and “(P)” to denote the simple and
priority-baaed methods, respectively.

Figures 4(a) and 5(a) show the performance of Backprop. The
key feature here is that register allocation is the most important
optimization, and that the other optimizations have little effect
on the overall performance. Both register allocation algorithms
perform roughly equally well. Note that register allocation
accounts for a huge gain in overall performance.

Figures 4(b) and S(b) show the performance of Compress.
While CSE and out-of-line exception throwing each contribute
to the overall performance, once again it is register allocation
that is the most important optimization.

Figures 4(c) and 5(c) show the performance of Java Cup. Note
that the performance differences are fairly small, and recall from
the table above that the total execution time is only around 1
second. Jn this example, it appears that the costs of executing
the CSE and register allocation algorithms (the priority-based
method in particular) do not make up for the resulting
performance gains in this application.

Figures 4(d) and 5(d) show the performance of Go. Here,
bounds check elimination and CSE are ineffective, while
register allocation is important. In addition, out-of-line

287

(b) Compress (a) B ackprop

(4 Go (c) Java Cup

07 Lisp (d Jpeg

Figure 5: Effect of optimizations under SDK 2.0.

exception throwing is even more important, due to the amount priority-based algorithm assigns more variables to fewer

of array bounds checking that must be performed. registers in at least two frequently-executed methods.

Figures 4(e) and 5(e) show the performance of JPEG. As Figure 6 shows the separation of the JIT time and execution time
before, register allocation is an important optimization. In of each program under SDK 2.0 (the results for SDK 1.5.1 are

addition, CSE and out-of-line exception throwing produce similar). The CSE optimization is more expensive than other
noticeable improvements, while bounds check elimination optimizations in terms of the JIT time. One noticeable aspect
makes virtuallv no difference. from the figure is that the JIT time of non-optimization is more

Figure 4(f) and 5(f) show the performance of Lisp. We note that
bounds check elimination and out-of-line execption throwing
have little effect, whereas CSE costs more to execute than it
gains in runtime performance. Particularly interesting is the fact
that priority-based register allocation is noticeably more
effective than simple register allocation; the reason is that the

than the JIT time of turning on bounds check elimination. The
reasoning is that our bounds check elimination is fast and avoids
generating the internal data structures for the eliminated bounds
checking instructions that would be needed otherwise. For com-
putation-extensive programs (Backprop and Lisp), the JIT time
is negligible relative to the running time. For those programs,
the JIT compiler can afford to apply aggressive global optimiza-
tions; e.g., bounds check elimination, code hosting, inlining, and

288

(a) B ackprop (b) Compress

(c) Java Cup

63 Jpeg

code scheduling. However, for short-running applications like
Java Cup, where JIT time dominates the total execution, fast and
effective code generation and optimizations are critical.

5. CONCLUDING REMARKS
In this paper, we have presented the design and implementation
of a Just-In-Tie Java compiler tailored for the Intel Architec-
ture. We have described lazy code selection, the basic code gen-
eration strategy used in this JIT. We have shown lazy code se-
lection to be a lightweight, effective way to fold Java stack op-
erands and instructions into addressing modes of IA32 instruc-
tions, thus reducing register pressure and allowing more inter-
mediate values to be kept in scratch registers. Lazy code selec-
tion is fast (i.e., linear-time), and generates IA32 code directly
from Java byte codes.

(0 Lisp

Figure 6: JIT time and execution time under SDK 2.0.

We have also described lightweight implementations of several
standard optimizations, including common subexpression elimi-
nation, priority-based global register allocation, and array
bounds check elimination. Our optimizations use memory spar-
ingly because they do not use an explicit intermediate represen-
tation; all optimizations operate directly on the byte codes plus
additional data structures that are managed on the fly. Using
several benchmark programs, we have shown our optimizations
to have various degrees of effectiveness, ranging from small
(e.g., CSE) to large (e.g., register allocation). The Intel JIT
serves as a framework for the design and evaluation of these and
other lightweight optimizations for Java programs.

A Just-In-Tie compiler is a critical component of a high-
performance Java Virtual Machine implementation. To achieve

289

high performance, not only must a JIT compiler generate high
quality code, but it must also be fast because it executes as part
of the Java application runtime. The complexity constraints on a
JIT compiler are therefore much stricter than a traditional static
compiler+ JIT compiler must sometimes trade off the quality
of the generated code to achieve better compilation time and
smaller memory space requirements. The Intel JIT is represen-
tative of this tradeoff: it achieves high performance by being fast
and by generating good quality IA32 code.

REFERENCES

VI

PI

[31

141

I51

161

[71

PI

191

0. Agesen and D. Detlefs. Finding References in Java
Stacks. Presented at the OOPSLA’97 Workshop on Gar-
bage Collection and Memory Management, Atlanta, Octo-
ber 1997.

A. V. Aho, R. Sethi, and J. Ullman. Compilers: Principles,
Techniques, and Tools. Addison-Wesley, Reading, MA,
second edition, 1986.

D. Bernstein, D. Q. Goldin, M.C. Golumbic, H. Krawczyk,
Y. Mansour, I. Nahshon, and R.Y. Pinter. Spill code mini-
mization techniques for optimizing compilers. In Proceed-
ings of the ACM SIGPLAN ‘89 Conference on Program-
ming Language Design and Implementation, pages 258-
263. ACM, July 1989.

P. Briggs, K.D. Cooper, K. Kennedy, and L. Torczon.
Coloring heuristics for register allocation. In Proceedings
of the ACM SIGPUN ‘89 Conference on Programming
Language Design and Implementation, pages 275-284.
ACM, July 1989.

D. Callanhan and B. Koblenz. Register allocation via hier-
archical graph coloring. In Proceedings of the ACM
SIGPL4N 91 Conference on Programming Language De-
sign and Implementation, pages 192-203. ACM, June
1991.

G. J. Chaitin, M. A. Auslander, A. K. Chandra, J. Cocke,
M. E. Hopkins, and P. W. Ma&stein. Register allocation
via coloring. Computer Languages, 6~47-57, January 1981.

F. Chow. A Portable, Machine-Independent Global Opti-

mizer-Design and Measurements. PhD thesis, Stanford
University, 1984.

F. C. Chow and J. L. Hennessy. A priority-based coloring
approach to register allocation. ACM Trunsactions on Pro-
gramming Languages and Systems, 12501-535, Oct. 1990.

D. W. Goodwin and K. D. Wilken. Optimal and Near-
Optimal Global Register Allocation Using O-l Integer Pro-

gramming. Software-Practice and Experience, 26:930-965,
Aug. 1996.

[lo] J. Gosling, B. Joy and G. Steele. The Java Language
Specification. Addison-Wesley, 1996.

[ll] Intel Corp. Intel Architecture Software Developer’s Man-
ual, order number 243192. 1997.

[121 Intel Corp. Pentium Pro Family Developer’s Manual, order
number 000900-001. 1996.

[13] Intel Corp. V’Ame: Visual Tuning Environment. Available
at httv://develouer.intel.corn/desien/Derftool/vtune

[14] R. Jones and R. Lins. Garbage Collection. John Wiley &
Sons, 1996.

[15] J. Knoop, 0. Ruthing, and B. Steffen. Lazy code motion.
In Proceedings of the ACM SIGPLAN ‘92 Conference on
Programming Language Design and Implementation, pages
224-234. ACM, June 1992.

[16] A. Krall and R. Grafl. CACAO-A 64-bit Java VM Just-
in-Time Compiler. In Proceedings of the ACM PPoPP97
Workshop on Java for Science and Engineering Computa-
tion.

[17] T. Lindholm and F. Yellin The Java Virtual Machine
Specification. Addison-Wesley, 1996.

[18] G. Lueh and T. Gross. Call-cost directed register allocation.
In Proceedings of the ACM SIGPUN 97 Conference on
Programming Language Design and Implementation, pages
296-307. ACM, June 1997.

[19] G. Lueh, T. Gross, and A. Adl-Tabatabai. Global register
allocation based on graph fusion. In Proceedings of the 96
Workshop on Languages and Compilers for Parallel Com-
puting, pages 246-265. Aug. 1996. Springer-Verlag.

[20] Microsoft Corp. MS SDK 1.5.1. Available at
b-q

[21] Microsoft Corp. MS SDK 1.5.1 JIT Structure.
Available at htto://www.microsoft.com/iava/sdk/l5I/
vendor/vmOl5.htm

[22] C. Norris and L. L. Pollock. Register allocation over the
program dependence graph. In Proceedings of the ACM
SIGPLAN 94 Conference on Programming Language De-
sign and Implementation, pages 266-277. ACM, June
1994.

[23] M. Poletto, D.R. Engler and M.P. Kaashoek. tee: A System
for Fast, Flexible, and High-Level Dynamic Code Genera-
tion. In Proceedings of the ACM SIGPLAN 97 Conference
on Programming Language Design and Implementation,
pages 109-121. ACM, June 1997.

290

