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ABSTRACT 

A “Just-In-Time” (JIT) Java compiler produces native code from 
Java byte code instructions during program execution. As such, 
compilation speed is more important in a Java JIT compiler than 
in a traditional compiler, requiring optimization algorithms to be 
lightweight and effective. We present the structure of a Java JIT 
compiler for the Intel Architecture, describe the lightweight 
implementation of JIT compiler optimizations (e.g., common 
subexpression elimination, register allocation, and elimination of 
array bounds checking), and evaluate the performance benefits 
and tradeoffs of the optimizations. This JIT compiler has been 
shipped with version 2.5 of Intel’s VTune for Java product.’ 

1. INTRODUCTION 

‘Ihe Java programming language [ 10) introduces new challenges 
to the compiler writer, because of the “Just-In-Time” (JIT) na- 
ture of the compilation model. A static compiler converts Java 
source code into a verifiably secure and compact architecture- 
neutral distribution format, called Java by& codes. A Java Vir- 
tual Machine (JVM) interprets the byte code instructions at run 
time. To improve runtime performance, a JIT compiler converts 
byte codes into native code at run time. 

Although offline compilation of byte codes into native code is 
possible, it cannot always be performed, because all Java class 
files are not guaranteed to be available at the start of program 
execution. Therefore, a byte code compiler needs to be prepared 
to execute dynamically at run time, hence the term “JIT com- 
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piler.” For this reason, overall program execution time now 
includes JIT compilation time, in contrast to the traditional 
methodology of performance measurement, in which compila- 
tion time is ignored. As a result, it is extremely important for 
the compiler optimizations to be lightweight and effective. It is 
also important for the Java JIT compiler to interact with other 
parts of the system, such as the garbage collector and perform- 
ance analysis tools (e.g., Intel’s VTune [ 131 tool). 

In this paper, we present the design and implementation of a 
production Java JIT compiler for the Intel IA32 architecture 
[11,12]. We describe our approach, called lazy code selection, 
for quickly generating good quality IA32 code. The key to the 
lazy code selection approach is that it generates native IA32 
instructions directly from the byte codes, in a single pass. Other 
than a control-flow graph used for register allocation, the JIT 
does not generate an explicit intermediate representation. 
Rather, it uses the byte codes themselves to represent expres- 
sions and maintains additional structures that are managed on- 
the-fly. This is in contrast to other Java JIT implementations 
which transform byte codes to an explicit intermediate repre- 
sentation [21,16]. We describe our lightweight implementations 
of several standard compiler optimizations-lightweight in 

terms of both execution time and auxiliary data structures. We 
use several benchmark programs to show the impact of the op- 
timizations on overall runtime performance. 

The JIT that we describe in this paper interfaces with the Micro- 
soft JVM from SDK 1.5.1 [20] and is currently being shipped 
with version 2.5 of the Intel VTune for Java product [ 131, an 
application profiling tool for Java. The performance of the Intel 
JIT is comparable to that of the Microsoft m, the running times 
of several benchmarks, measured in seconds, are summarized in 
the table below (full results for the benchmarks are presented in 
Section 4). 

MSJIT 1 IntelJIT 1 MSJIT 1 IntelJIT 

The rest of this paper is organized as follows. In Section 2, we 
describe the details of the code generator and of our optimiza- 
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tion algorithms. In Section 3, we describe our technique for 
tracking the location of object references, so that the code gen- 
erator can compute the root set of references at garbage collec- 
tion sites. In Section 4, we present measurements of the effec- 
tiveness of the JIT’s optimizations. Finally, in Section 5 we 
present our conclusions. 

2. CODE GENERATION DETAILS 
Figure 1 shows the five major phases of the Intel JIT. The pre- 
pass phase performs a linear-time traversal of the byte codes to 
collect information needed for the global register allocation and 

lazy code selection phases, and for implementing garbage col- 
lection support. The global register allocation phase assigns 
physical registers to local variables. The code generation phase 
generates IA32 instructions using the lazy code selection algo- 
rithm described in Section 2.2 and performs several optimiza- 
tions: common subexpression elimination, array bounds check 
elimination, peephole optimizations, and frame pointer elimina- 
tion. The code emission phase copies the generated code and 
data sections to their final locations in memory. The patching 
phase fries up relocations in the emitted code and data sections; 
for instance, offsets of forward branches, addresses of code la- 
bels in switch table entries, and the address of switch tables in 
the read-only data section. With the exception of the global 
register allocation phase, all phases are linear in time and space. 

I 
4 

Code emission I 

1 
Code and data patching 

Figure 1: Compiler passes. 

2.1 The Prepass Phase 
The prepass phase builds a control-flow graph, and collects three 
pieces of information: (1) the depth of the Java operand stack at 
the entry of each basic block; (2) the static reference count of 
each local variable; (3) the Java operand stack locations con- 
taining references at each point where garbage collection may 
occur; and (4) a list of those variables that alternately hold refer- 
ence and non-reference values at different points in the method. 
The stack depth information is needed by the code selector to 
initialize the locations of operands on the Java operand stack at 
the beginning of a basic block. The static reference count in- 
formation is needed by the global register allocator to assign 
priorities to variables. The information collected for garbage 
collection allows the JIT to compute the root set of live objects 
reachable from stack frame locations and from registers. Vari- 
ables that hold reference and non-reference values are treated in 

a special way by the garbage collector. We discuss the details of 
garbage collection in Section 3. 

2.2 Lazy Code Selection 
The lazy code selection algorithm is a single pass code selection 
algorithm. It emits assembled native instructions directly into a 
temporary code buffer that is later copied by the code emission 
phase. ‘lbe code selector also uses a temporary data buffer to 
assemble read-only constant data, such as floating-point con- 
stants and switch tables. 

The goal of the lazy code selection algorithm is twofold: (1) to 
keep intermediate values (i.e., Java operand stack values) in 
scratch registers, and (2) to reduce register pressure and take 
advantage of the IA32 addressing modes by folding loads of 
immediate operands and accesses to memory operands into the 
compute instructions that use them. Lazy code selection 
achieves these goals by propagating information about source 
operands via an auxiliary data structure called the mimic stack. 
‘Ihe mimic stack simulates the Java runtime operand stack at JIT 
time: for each byte code’s selected instruction sequence, the 
source operands of the instruction sequence are popped from the 
mimic stack and the result operand of the instruction sequence is 
pushed onto the mimic stack. 

Instruction operands are modeled in a C++ class hierarchy (Fig- 
ure 2); the base of this hierarchy is the Operand class. There are 
four main types of operands: (1) register operands (Register), 
which are values in physical integer registers and directly ad- 
dressable by most integer compute instructions, (2) immediate 
operands (Immediate), which are constant values that can be 
folded into the immediate fields of integer compute instructions, 
(3) memory operands (Memory), which are values in memory 
that can be folded into floating-point or integer compute in- 

structions using one of L432’s memory addressing modes, and 
(4) floating point operands (FP), which are values on top of the 
IA32 floating-point register stack. Memory operands are further 
classified according to the kind of data being accessed: (1) ob- 
ject field references (Field), which use the offset addressing 
mode (base register plus constant offset), (2) array elements 
(Array), which use the indexed addressing mode (base register 
plus scaled index register), (3) static class variables that are not 
declared as final (Static), which use the absolute addressing 

mode, (4) floating point constants and static class variables that 
are declared as final (Constant), which also use the absolute 
addressing mode (IA32 floating-point instructions do not have 
an immediate form), and (5) stack frame locations (Stack), 
which use the offset addressing with either the stack or frame 
pointer register as the base. Stack frame locations are used for 
spilling and for those local variables that are not allocated a 
register. The JIT eliminates the frame pointer in most cases so 
that most Stack operands use the stack pointer register as the 
base register. Frame pointer elimination frees up an additional 
register for use by the global register allocator, and reduces the 
number of instructions executed in a method’s Prolog. 

281 



I I I I I 
Field hY St& stack co-t 

Figure 2: Opaand class hierarchy. 

To select code for a byte code B that pops source values from 
the Java operand stack, the code selector first pops the corre- 
sponding source operands from the mimic stack, and then tries 
to fold the source operands into the compute instruction selected 
for B. If the attempt is successful, then the folded compute in- 
struction is selected. Otherwise, if an operand 0 cannot be 
folded into the compute instruction, the code selector selects an 
instruction that loads 0 into a scratch register R, and then gener- 
ates a compute instruction that uses R as the source operand. 
The result of the compute instruction (which often is a register) 
is pushed onto the mimic stack to make it available for folding 
into subsequent instructions. The register manager, which we 
discuss in Section 2.4.1, handles allocation of scratch registers. 

‘Ihe floating-point registers of IA32 are organized as a stack 
ill]; a floating-point compute instruction pops one operand 
from the register stack (the other operand can be a memory op- 
erand or another location on the register stack) and pushes its 
result onto the register stack. This maps perfectly to the Java 
Virtual Machine’s stack-based architecture: whenever an FP 
operand is popped from the mimic stack, this operand must rep- 
resent the top of the floating-point register stack. The only 
complication is that the code selector needs to keep track of the 
floating-point register stack depth and generate spill code if 
overflow occurs. The floating-point register stack has only 8 
registers but we have found that none of our applications cause 
floating-point register stack overflow. 

At a call site, the code selector generates spills for those oper- 
ands on the mimic stack that are live across the call site, since 
the calling conventions consider the FP stack to be caller-saved. 
Only those operands that may be killed by the call need to be 
saved; that is, mimic stack operands that are of type Field, Ar- 
ray, Static, FP, and caller-saved Register; operands of type Im- 
mediate, Constant, Stack, and callee-saved Register do not need 
to be spilled. 

One problem for the code generator is that the Java operand 
stack can be non-empty at the entry or exit of a basic block. This 
condition occurs mainly because of conditional expressions (i.e., 
question mark colon expressions such as a>b?a :b). The 
problem is that the code generator must guarantee that the oper- 
ands on the mimic stack are the same at the merge point of two 
paths. 

To guarantee that mimic stack operands are the same at the 
merge point of several paths, all values that remain on the mimic 
stack at the end of a basic block are spilled to canonical spill 

locations in the stack frame. Similarly, if the Java operand stack 
depth is non-zero at a label (i.e., branch target), then for each 
Java operand stack location that contains a value, the corre- 
sponding mimic stack location is initialized to its canonical spill 
location. This is the reason the prepass phase computes the Java 
operand stack depth. 

The lazy code selector performs several simple optimizations 
during code selection. First, if one of the operands of a compute 
instruction is an Immediate or Constant operand, then the code 
selector attempts to perform strength reduction (for multiply, 
divide, and mod operators) or constant folding on the compute 
instruction. Second, the code selector detects compare followed 
by branch byte code sequences so that it can generate the corm- 
sponding IA32 compare and branch instruction sequence. Third, 
the code selector performs redundant load-after-store elimina- 
tion by tracking values loaded into registers; this optimization 
replaces the use of a memory operand with the use of a register 
that already contains the memory value. 

Although the design of the lazy code selector is tailored to take 
advantage of IA32’s CISC architecture, this style of code selec- 
tion can also benefit a RISC architecture. Computation instruc- 
tions in RISC architectures cannot operate directly on memory 
operands; thus the code selector needs to propagate only register 
and immediate operands. The benefits for a RISC architecture 
are that the code selector will eliminate unnecessary moves from 
registers assigned to local variables and unnecessary loads of 
immediate operands. Since only register and immediate oper- 
ands are propagated, an implementation for a RISC architecture 
may not require an operand class hierarchy. 

2.3 Common Subexpression Elimination 
Traditional common subexpression elimination (CSE) algo- 
rithms, which are based on data flow analysis [7, 151 and value 

numbering [7, 21, are expensive in both time and space, and we 
prefer to avoid them in a JIT compiler. We have developed a 
fast, lightweight CSE algorithm that focuses on common subex- 
pressions within extended basic blocks. 

Our CSE algorithm uses the Java byte codes themselves as a 
compact representation of expressions. Consider the expression 
“x+y”. Assuming x and y are local variables 1 and 2, respec- 
tively, the expression’s byte code sequence is [iload-1, 

iload-2, iadd]. Because the byte codes of the iload-1, 

iload-2, and iadd instructions are Oxlb, Oxlc, and 0x60, 
respectively, the value 0x1 blc60 represents me expression 
“x+y”. Note that the value Oxlblc60 appears as a subsequence 
in the byte code instruction stream; as such, the expression can 
be represented using the pair <o$set,length>, which we call an 
expression tag. To detect whether the tags afietl,n> and <off- 
set2,n> represent the same syntactic expression, we simply 
compare the subsequences of length n starting at o$ketl and 
oJj%et2. Because the maximum size of the stream is 2 [17], an 
expression tag can be represented concisely using a single word 
(16 bits for the offset and 16 bits for the length). 

To detect common subexpressions, the code selector tracks the 
expression values held in the scratch registers by annotating 
each scratch register R with the tag of the expression that R 
contains. Before selecting code for a byte code B, the code se- 
lector looks ahead in the stream to see whether the expression 

starting from B matches one already associated with a scratch 
register; if so, it pushes the register onto the mimic stack and 



skips over the common subexpression in the byte code stream. 
The registers are checked in decreasing order of subsequence 
length to match the largest sized expression. To keep the com- 
pilation time linear, expression lengths are limited to 16 byte 
codes, an empirically sufficient limit. If a match is not found, the 
code selector selects an instruction sequence for the byte code B 
and updates the expression tag of the register R containing the 
result of the instruction sequence. The expression tags are ini- 
tialized to hold no values at the beginning of basic blocks that 
have branch labels. 

There are two ways that the availability of an expression E held 
in a register R is killed: 

1. By instructions that modify the value of R. If register R is 
a caller-saved register, then a call site kills the availability 
of E in R; in this case, the expression tag of R is updated to 
indicate that R contains no value. The availability of E in 
R is also killed when the register manager allocates R for 
reuse by the code selector; in this case, the code selector 
updates the expression tag of R to indicate that it contains a 
new expression (or no value if R was used to hold a tempo- 
rary value). 

2. By assignments or method calls that (potentially) modify a 
value loaded by E. E can contain loads of variables, array 
elements, and object fields, which can be modified by 
method calls and by assignments. At a method call, the 
code selector kills the availability of all expressions that 
contain loads of array elements or object fields. At an as- 
signment, the code selector kills the availability of all ex- 
pressions that load (or may load) the assigned variable, ob- 
ject field, or array element. 

The information about the set of variables and object fields 
loaded by an expression is held in kill sets; there is one kill set 
associated with each physical register managed by the register 
manager. Each variable has a unique index, and each object field 
has a unique constant pool index. This allows a kill set to be 
maintained as a bit vector with the fiit few bits dedicated to 
variable indices and the rest of the bits dedicated to object field 
indices. Whenever an object field assignment byte code (i.e., a 
putfield byte code) assigns a new value to an object field 
with index I, the code selector kills the availability of a register 
R if the I’th object field index is set in R’s kill set bit vector. 
The code selector performs similar bookkeeping for assignments 
to variables. To save memory space and compilation time, the 
size of each kill set bit vector is limited to 256 bits; the code 
selector gives up on CSE opportunities for indices that fall out- 
side of this limit. 

The code selector takes a more conservative approach tn killing 
expressions that load array elements. Rather than performing 
expensive alias analysis, the JIT takes advantage of the Java 
feature that there is no aliasing between arrays with different 
element types. Each register R has a fixed-size bit vector that 
contains the set of array element types loaded by the expression 
held in R. When the code selector encounters an assignment to 
an array element of type T (e.g., an assignment to an integer 
element), it kills all registers containing expressions that load 
array elements of type T. This bit vector, in conjunction with an 
additional bit flag that indicates whether an expression has any 
object field references, is used by the code selector to detect 
expressions that are killed by method calls. 

Traditional CSE approaches generate temporaries to hold the 
values of common subexpressions, which may cause high reg- 
ister pressure and introduce more spill code. Our CSE approach 
does not increase register pressure because the availability of E 
in R is killed immediately once R is used by the code selector. 

Our CSE approach has some limitations. First, it cannot re- 
associate expressions; for example, “x+y” and ‘Ly+x” are 

treated as distinct expressions because they have different sub- 
sequences. Second, the approach cannot detect expressions that 
are syntactically different but have the same value; for instance, 
“Xq ; x+y” and “w+y”. Third, the approach can only repre- 

sent expressions that are contiguous in the byte code stream (no 
bubble/gap is allowed). 

2.4 Register Allocation 
The IA32 architecture includes only 7 general-purpose integer 
registers that can be used for register allocation. By convention, 
the 7 registers are partitioned into 3 caller-saved scratch regis- 
ters (eax, ecx, and edx) and 4 callee-saved registers (ebx, 

ebp, esi, and edi). The Intel JIT uses the 3 caller-saved reg- 
isters for local register allocation and the 4 callee-saved registers 
for global register allocation. 

2.4.1 Local Register Allocation 
The local register allocator, or register manager, allocates the 
registers that the lazy code selector uses for expression evalua- 
tion. When the code selector requires a scratch register (i.e., a 
register to hold a temporary expression value), it requests one 
from the register manager. If there are multiple registers avail- 
able, the register manager returns the register that was least re- 
cently allocated (i.e., a circular allocation strategy). This simple 
heuristic benefits the CSE optimization, described in Section 
2.3, by trying to equalize the lifetimes of common subexpres- 
sions within scratch registers (i.e., afair policy). However, if the 
code selector requests a register but none are currently available, 
the register manager finds the least recently allocated register 
that can be used, generates code to spill the register to the stack 
frame, and returns that register. To find the least recently allo- 
cated register, the register manager searches the operands on the 
mimic stack, starting from the bottom-most operand; in this 
manner, the register manager spills the register with the most 
distant use in the past. After producing the instruction sequence 
for evaluating an expression, the scratch registers used in the 
source operands of the instruction sequence are given back to 
the register manager. 

2.4.2 Global Register Allocation 
The global register allocator allocates the 4 callee-saved regis- 
ters to local variables within a single method (i.e., no interpro- 
cedural register allocation). Global register allocation has been 
an active area of research resulting in several effective algo- 
rithms [6, 3, 4, 8, 5, 22, 9, 19, 181. A JIT compiler, however, 
introduces a new challenge-how to balance the cost of running 
the potentially expensive register allocation algorithm against 
the expected performance gains. The key is to use an algorithm 
that is both fast and effective. 

The Intel JIT provides two different register allocation algo- 
rithms. The fist algorithm is extremely simple and cheap to 
execute: the register allocator allocates the 4 callee-saved regis- 
ters to the 4 variables with the highest static reference counts. 
The complexity of the algorithm is O(B), where B is the number 
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of byte codes in the method. This simple allocation scheme is 
limited, however, because it does not allow two variables with 
non-overlapping live ranges to share the same register. Thus 
fewer variables may be allocated registers, and register 
save/restore costs may increase. 

The second register allocation algorithm is a priority-based 
scheme similar to the one described by Chow [S], but with two 
differences: our scheme does not use an interference graph 
(which is expensive in terms of time and space) and does not 
perform live range splitting. Priority-based register allocation is 
effective in allocating registers to the most important variables 
in a function and can easily take into account call costs [18]. (An 
alternative linear-time approach that does not consider priorities 
is described in [23].) Our algorithm is as follows: For each vari- 
able u, ordered by priority, the allocator performs a backwards 
depth-first search through the flow graph, starting the search at 
all basic blocks in which u is used (representing a possible end 
of the live range), and terminating the search at a basic block in 
which u is defined (representing the start of the live range). This 
depth-first search visits the set of basic blocks covering the en- 
tire live range of u, and keeps track of the callee-saved registers 
that are unavailable (i.e., already allocated) in these blocks. If 
there is a register R available in all of these basic blocks, then 
the allocator assigns R to u and marks R as unavailable in the 
basic blocks comprising the live range of u. The complexity of 
the algorithm is O(B+NV), where B is the number of byte codes 
in the method, N is the number of basic blocks, and V is the 
number of local variables considered for register allocation. 

Call cost is an important issue in register allocation [18]. If cal- 
lee-save cost is not taken into account (i.e., the cost to save and 
restore a callee-saved register at the prolog and epilog of a func- 
tion), the register allocator may assign a register with high cal- 
lee-save cost to a variable with low spill cost. Both global reg- 
ister allocation algorithms implemented in the Intel JIT assign 
registers to variables only if the spill costs are greater than the 
callee-save cost. In our priority-based approach, the first live 
range that is assigned a given callee-saved register pays the cal- 
lee-save cost; the register allocator does not include the callee- 
costs in the cost benefit analysis of subsequent live ranges that 
are assigned the same register. 

After the global register allocation is completed, there are typi- 
cally some basic blocks in which not all registers can be allo- 
cated; the code selector can use these leftover registers to reduce 
spill code. Before generating code for a basic block b, the code 
selector first notifies the register manager of the set of callee- 
saved registers that are available (i.e., not allocated to any vari- 
able) in b so that the register manager can add these registers to 
its pool of scratch registers available inside b. This has three 
benefits: First, the register manager generates less spill code. 
Second, the callee-saved registers are used as spill locations for 
operands that are live across call sites, thereby reducing the 
number of stack frame accesses around call sites. Third, more 
common subexpressions are found because registers containing 
expression values are live longer. 

2.5 Array Bounds Check Elimination 
The Java language specifies that all array accesses are checked 
at run time; an attempt to use an index that is out of bounds 
causes an exception (ArrayIndexOutOf BoundsExcep- 
tion) to be thrown. The JIT can eliminate bounds checks if it 

can prove that the index is always within the correct range, or if 
it can prove that an earlier check will throw an exception. 

The Intel JIT uses a simple mechanism to eliminate bounds 
checks of indices that are constant. For each Java operand stack 
location and variable that contains a reference to an array A, the 
code generator keeps track of the maximum constant bound for 
which no bounds check is needed for A. This information is 
updated when a bounds check is generated for a constant index 
or when an array of constant size is created. For example, if the 
code selector has already generated bounds checking for A[‘l], 
then a subsequent access to A[51 does not require bounds 
checking. In addition, when the array is created (using the ne- 

warray byte code), the JlT can use the creation size to elimi- 
nate bounds checking on subsequent array accesses. This ap- 
proach is especially effective during array initialization (e.g., 
A[O] = A[l] = . . . = A]91 = 1). 

This algorithm is limited in two ways. First, it is applied only 
locally to each extended basic block, and not globally. Second, 
only constant operands are used; more bounds checks could be 
eliminated if symbolic information were used as well. 

2.6 Out-of-Line Exception Throws 
An array reference in Java must include code to check whether 
the subscript is within the bounds of the array. The array length 
is usually stored within the array object, allowing the JIT to 
inline bounds-checking code. Assuming that the address of the 
array is in eax and the subscript is in ecx, the naive code se- 

quence for array bounds checking is as follows. 

cmp [eax + offset(length)], ecx 
ja OK ; fold two tests into one! 
. . . ; throw an exception 

OK: ; access the array element 

The code for throwing an exception is infrequently executed 
(i.e., cold code) and the above implementation has two perform- 
ance problems for the IA32 architecture: 

1. Static branch prediction on Pentium@ Pm and Pentium II 
processors predicts forward conditional branches not to be 
taken. 

2. The exception-throwing portion of the code is likely to be 
loaded into the instruction cache even though it is unlikely 
to be executed. 

The Intel JIT produces code optimized for the common case of 
the subscript being within array bounds, with the code after the 
no tOK label appearing at the end of the method: 

cmp dword ptr [eax+of f set (length) ] , ecx 
jbe notOK 
. . . ; access the array element 
. . . 

; cold code at end of method’s code space 
notOK: 

. . . ; throw an exception 

2.7 Example 
Figure 3 shows a code sequence from the MPEG Player pro- 
gram, a Java applet for viewing MPEG files. We use this exam- 
ple to illustrate the lazy code selection algorithm, common su- 
bexpression elimination, out-of-line exception throwing, and 
register allocation. The first column shows a Java byte code 
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sequence; each byte code is numbered with its index in the byte of the expression formed by the first two byte codes. Notice that 

code stream. The second column shows the native code gener- the code selector delays generating code for byte codes 490 

ated by the Intel JlT. This column also shows the point at which (getfield #44), 493 (lload IS), and 495 (Ui), until it en- 

the code selector generates instructions; for instance, the code counters byte code 496 (aaload). The values of 12i and 

selector generates the first native instruction when it encounters getfield #44 are kept in ecx and eax, respectively, and 

the thirdbyte code. ‘1 : third column shows the expression tags the expression tags of these registers are updated ac 

483: aload- 
484: getfield #34 
487: getfield #45 
490: getfield #44 
493: lload la 
495: l2i 
496: aaload 

497: getfield #16 
500: l2i 
501: istore 5 

503: aload- 
504: getfield #34 
507: getfield #45 
510: getfield #44 
513: lload 18 
515: l2i 
516: aaload 
517: getfield #49 
520: i2l 

521: lstore 20 

IA32 native code 

mov ecx, [ebp+O4h] 
mov edx, [ecx+l9Oh] 

mov eax, [edx+l8h] 
mov ecx, [esp+l28h] 
cmp [eax+04h], ecx 
jbe -throw 
mov edx, [eax+ecx*4+08h] 

mov eax, [edx+04h] 
mov [esp+l60h], eax 

mov ecx, [edx+OCh] 
mov edx, ecx 
sar edx, 1 Fh 
mov [esp+l24h], edx 
mov [esp+l20h], ecx 

eax ecx edx 

___ [483,4] --- 
--- [483,4] [483,7] 

!iiRJfiy7:;,, 

[483,18] [493,3] [483,14] 

Figure 3: Example of lazy code selection and several optimizations in the Mel JIT, 
excerpted from the MPEG Player code. 

held in the scratch registers at each point during code selection. 
In this example, global register allocation has assigned the ebp 
register to variable 0 (variables 5, 18, and 20 are in memory). 
The ebp register is typically the frame pointer, but for the 
method shown in this example, the Intel JIT eliminates the 
frame pointer allowing the global register allocator to allocate 
ebp; accesses to variables 5 and 20 are based off the stack 

pointer (esp). Note that the code for throwing the exception 
ArrayIndexOutOfBoundsException is moved out of 
line (the code that throws the exception is not shown). 

The second column illustrates the laziness of our code selection 
approach. For instance, the code generation of the byte code at 
index 484 (getfield #34) is delayed until the byte code at 
index 487 (getfield #45) and the code generation of the 
byte code at index 490 (getfield #44) is delayed until the 

byte code at index 496 (aaload) . In both cases, the code se- 
lector delays generating code for loading the object field until 
the field’s value is needed. 

At the time when the code selector generates the fast native 
instruction (mov ecx, [ebp+04h] ), it annotates ecx with 
the expression tag <483,4> to indicate that ecx holds the value 

(<493,3> and <483,10>). As the value of byte code 496 (aa- 
load) is loaded into edx, the expression tags <483,10> of 

eax and <493,3> of ecx are combined to form the expression 
tag <483,14> of edx. When the lazy code selection finishes 
generating code for byte code 501 (istore 5) and scans the 
next byte code (aload- at index .503), three expressions, 
<483,18>, <493,3> and <483,14>, are being held in the three 
scratch registers. The selector attempts to match a CSE by 
searching the expression tags in the order of <483,18>, 
<483,14>, and <493,3>. The expression d03,14> matches 
<483,14> (i.e., a CSE is detected), and the code selector pushes 
edx onto the mimic stack. Then the selector skips byte codes 
503 to 516, and continues generating code from byte code 517 
(getf ield #49). 

3. GARBAGE COLLECTION SUPPORT 
Java is a garbage collected (GC) language, moving the burden of 
memory management from the programmer to the system (i.e., 
the JVM). When the program runs low on heap space, the gar- 
bage collector determines the set of objects that the program 
may still access-the live objects-and frees the space used by 
dead objects. The garbage collector computes the set of live 
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objects by starting with the set of references in global variables, 
in registers, and on the runtime stack (the root set), and locating 
all the references that can be reached from the root set by trav- 
ersing the graph of reachable objects. Some GC algorithms 
move live objects to a new place in memory [14]. The Intel JIT 
is designed to work with moving as well as non-moving GC. 

Computing the root set requires the cooperation of the JIT, be- 
cause only the JIT is capable of precisely locating references 
held by local variables and by temporaries (which are assigned 
to either stack locations or registers); the JVM keeps track of 
which classes have been loaded and thus can determine the set 
of global variables containing references, without any support 
from the JIT. Moreover, the JIT is capable of performing analy- 
sis to identify only those stack locations and registers containing 
live references. 

The JIT keeps track of Java operand stack locations that contain 
references by computing a type bit vector for each GC site dur- 
ing the prepass. The type bit vector marks those stack locations 
that contain live references at the GC site. 

Finding the set of variables (as opposed to operand stack loca- 
tions) containing references, however, is not trivial for the JIT, 
because of “ambiguous types”: the same variable may hold ref- 
erence and non-reference values at different times during the 
execution of the method. At a GC site, the JIT must distinguish 
between variables that contain references and those that do not 
contain references; that is, the JIT must precisely enumerate the 
complete set of variables containing valid references. 

In our development, we have experimented with different strate- 
gies for detecting variables containing references: 

. For each variable that is ever used as a reference, keep an 
extra bit in the method’s stack frame. The JIT generates 
code that dynamically updates the bit on every write to one 
of these variables, and that initializes the bit in the 
method’s prolog. (The bit is needed for tracking ambigu- 
ously-typed variables, as well as for tracking whether a ref- 
erence variable is initialized.) The JIT uses these tags at 
CC time to decide which variables hold references. This 
approach incurs an overhead of an extra memory reference 
for every store to one of these variables, as well as initiali- 
zation overhead upon method entry. 

. We can refine this approach by using global data flow 
analysis to statically analyze ambiguously-typed variables, 
and record the information for each GC site. Liveness and 

type analysis (which our priority-based global register allo- 
cator provides for free) allows us to determine all GC sites 
at which a variable (a) is initialized, (b) is live, and (c) 
contains a reference. However, it is not possible in general 
to analyze all variables, because the specification of the 
JVM allows the same variable to hold either a reference or 
a primitive type value at the same byte code instruction [ 17, 

Section 4.9.61. This ambiguity is due entirely to the j sr 

instruction. (The program is not allowed to reference such 
a variable at that point, but if it contains a reference, it must 
still be enumerated at a GC site.) These kinds of variables 
require other techniques, such as the dynamic tagging ap- 
proach described above, to maintain reference information 
(another solution involves variable splitting [l]). 

The dynamic approach has a higher runtime cost but a lower 
JIT-time cost than the static approach, so it is unclear which 
approach is preferable. However, experiments with our bench- 
marks show that the incidence of ambiguously-typed variables is 
small and the choice of a solution to the enumeration problem 
will likely have a negligible impact on performance. 

4. EXPERIMENTS 
We used several Java benchmark programs to test the effective- 
ness of individual optimizations described in this paper, as well 
as combinations of the optimizations. Five of the benchmarks 
(Backprop from Spec92, and Compress, Go, JPEG, and Lisp 
from Spec95) were originally C programs, hand-translated into 
Java. One benchmark, Java Cup, is a parser originally written in 
Java. We measured the wall-clock time of each application, in 
seconds, averaged over several runs; the tests were measured on 
a 233MHz Pentium II with 64 MB of RAM, running Windows 
NT4.0, Service Pack 3. Ihe Intel JIT is integrated with the Mi- 
crosoft’s JVM in both SDK 1.5.1 and SDK 2.0. 

The table below compares the running times of Microsoft’s JIT, 
Intel’s JIT with all optimizations disabled, Intel’s JIT with all 
optimizations enabled (using the simple global register allocator 
described in Section 2.4.2), and Intel’s JIT with all optimizations 
enabled (using the priority-based register allocator described in 
Section 2.4.2). The optimizations include array bounds check 
elimination, common subexpression elimination, out-of-line 
exception throwing, and global register allocation. This table 
shows that the Intel JIT’s performance is comparable to that of 
the Microsoft JIT. Note that both the Microsoft JIT and the 
JVM differ between SDK 1.5.1 and SDK 2.0, but essentially the 
same Intel JIT is used with both SDKs. 

SDK 1.5.1 SDK 2.0 

Go 14.62 15.33 11.14 11.33 9.35 11.66 8.05 8.06 

Jpeg 12.03 12.81 11.84 11.75 6.61 8.04 7.12 7.12 

Lisp 39.73 44.10 40.52 40.84 14.42 18.72 18.23 17.97 

286 



(a) Backprop 

(4 Go (c) Java Cup 

(4 Jm 

Figure 4: Effect of optim.iz,ations under SDK 1.5.1. 

Figures 4 and 5 show the performance improvement from the 
various optimizations. AU values are given as percent im- 
provements over the no-optimization case. Each figure is di- 
vided into three categories (separated by dark lines): the effect 
of a single optimization, the effect of all but one optimization, 
and the effect of all optimizations. When register allocation is 
considered, we use “(S)” and “(P)” to denote the simple and 
priority-baaed methods, respectively. 

Figures 4(a) and 5(a) show the performance of Backprop. The 
key feature here is that register allocation is the most important 
optimization, and that the other optimizations have little effect 
on the overall performance. Both register allocation algorithms 
perform roughly equally well. Note that register allocation 
accounts for a huge gain in overall performance. 

Figures 4(b) and S(b) show the performance of Compress. 
While CSE and out-of-line exception throwing each contribute 
to the overall performance, once again it is register allocation 
that is the most important optimization. 

Figures 4(c) and 5(c) show the performance of Java Cup. Note 
that the performance differences are fairly small, and recall from 
the table above that the total execution time is only around 1 
second. Jn this example, it appears that the costs of executing 
the CSE and register allocation algorithms (the priority-based 
method in particular) do not make up for the resulting 
performance gains in this application. 

Figures 4(d) and 5(d) show the performance of Go. Here, 
bounds check elimination and CSE are ineffective, while 
register allocation is important. In addition, out-of-line 
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(b) Compress (a) B ackprop 

(4 Go (c) Java Cup 

07 Lisp (d Jpeg 

Figure 5: Effect of optimizations under SDK 2.0. 

exception throwing is even more important, due to the amount priority-based algorithm assigns more variables to fewer 

of array bounds checking that must be performed. registers in at least two frequently-executed methods. 

Figures 4(e) and 5(e) show the performance of JPEG. As Figure 6 shows the separation of the JIT time and execution time 
before, register allocation is an important optimization. In of each program under SDK 2.0 (the results for SDK 1.5.1 are 

addition, CSE and out-of-line exception throwing produce similar). The CSE optimization is more expensive than other 
noticeable improvements, while bounds check elimination optimizations in terms of the JIT time. One noticeable aspect 
makes virtuallv no difference. from the figure is that the JIT time of non-optimization is more 

Figure 4(f) and 5(f) show the performance of Lisp. We note that 
bounds check elimination and out-of-line execption throwing 
have little effect, whereas CSE costs more to execute than it 
gains in runtime performance. Particularly interesting is the fact 
that priority-based register allocation is noticeably more 
effective than simple register allocation; the reason is that the 

than the JIT time of turning on bounds check elimination. The 
reasoning is that our bounds check elimination is fast and avoids 
generating the internal data structures for the eliminated bounds 
checking instructions that would be needed otherwise. For com- 
putation-extensive programs (Backprop and Lisp), the JIT time 
is negligible relative to the running time. For those programs, 
the JIT compiler can afford to apply aggressive global optimiza- 
tions; e.g., bounds check elimination, code hosting, inlining, and 
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(a) B ackprop (b) Compress 

(c) Java Cup 

63 Jpeg 

code scheduling. However, for short-running applications like 
Java Cup, where JIT time dominates the total execution, fast and 
effective code generation and optimizations are critical. 

5. CONCLUDING REMARKS 
In this paper, we have presented the design and implementation 
of a Just-In-Tie Java compiler tailored for the Intel Architec- 
ture. We have described lazy code selection, the basic code gen- 
eration strategy used in this JIT. We have shown lazy code se- 
lection to be a lightweight, effective way to fold Java stack op- 
erands and instructions into addressing modes of IA32 instruc- 
tions, thus reducing register pressure and allowing more inter- 
mediate values to be kept in scratch registers. Lazy code selec- 
tion is fast (i.e., linear-time), and generates IA32 code directly 
from Java byte codes. 

(0 Lisp 

Figure 6: JIT time and execution time under SDK 2.0. 

We have also described lightweight implementations of several 
standard optimizations, including common subexpression elimi- 
nation, priority-based global register allocation, and array 
bounds check elimination. Our optimizations use memory spar- 
ingly because they do not use an explicit intermediate represen- 
tation; all optimizations operate directly on the byte codes plus 
additional data structures that are managed on the fly. Using 
several benchmark programs, we have shown our optimizations 
to have various degrees of effectiveness, ranging from small 
(e.g., CSE) to large (e.g., register allocation). The Intel JIT 
serves as a framework for the design and evaluation of these and 
other lightweight optimizations for Java programs. 

A Just-In-Tie compiler is a critical component of a high- 
performance Java Virtual Machine implementation. To achieve 
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high performance, not only must a JIT compiler generate high 
quality code, but it must also be fast because it executes as part 
of the Java application runtime. The complexity constraints on a 
JIT compiler are therefore much stricter than a traditional static 
compiler+ JIT compiler must sometimes trade off the quality 
of the generated code to achieve better compilation time and 
smaller memory space requirements. The Intel JIT is represen- 
tative of this tradeoff: it achieves high performance by being fast 
and by generating good quality IA32 code. 
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