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Abstract. We present a method for the fast computation of the eigenpairs of a bijective pos-
itive symmetric linear operator \scrL . The method is based on a combination of operator adapted
wavelets (gamblets) with hierarchical subspace correction. First, gamblets provide a raw but fast
approximation of the eigensubspaces of \scrL by block-diagonalizing \scrL into sparse and well-conditioned
blocks. Next, the hierarchical subspace correction method computes the eigenpairs associated with
the Galerkin restriction of \scrL to a coarse (low-dimensional) gamblet subspace and then corrects those
eigenpairs by solving a hierarchy of linear problems in the finer gamblet subspaces (from coarse to
fine, using multigrid iteration). The proposed algorithm is robust to the presence of multiple (a
continuum of) scales and is shown to be of near-linear complexity when \scrL is an (arbitrary local,
e.g., differential) operator mapping \scrH s

0(Ω) to \scrH −s(Ω) (e.g., an elliptic PDE with rough coefficients).
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1. Introduction. Solving large scale eigenvalue problems is one of the most
fundamental and challenging tasks in modern science and engineering. Although
high-dimensional eigenvalue problems are ubiquitous in physical sciences, data and
imaging sciences, and machine learning, the class of eigensolvers is not as diverse as
that of linear solvers (which comprises many efficient algorithms such as geometric
and algebraic multigrid [11, 20], approximate Gaussian elimination [33], etc.). In
particular, eigenvalue problems may involve operators with nonseparable multiple
scales, and the nonlinear interplay between those coupled scales and the eigenvalue
problem poses significant challenges for numerical analysis and scientific computing
[4, 14, 59, 37].

Krylov subspace type methods remain the most reliable and efficient tools for large
scale eigenproblems, and alternative approaches such as optimization based methods
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and nonlinear solver based methods have been pursued in the recent years. For ex-
ample, the Implicitly Restarted Lanczos/Arnoldi Method (IRLM/IRAM) [49], the
Preconditioned INVerse ITeration (PINVIT) method [19, 10, 24], the Locally Opti-
mal Block Preconditioned Conjugate Gradient (LOBPCG) method [25, 28], and the
Jacobi-Davidson-type techniques [7] have been developed. For those state-of-the-art
eigensolvers, the efficient application of preconditioning [24] is often crucial for the
faster convergence and the reduction of computation cost, especially for multiscale
eigenproblems.

Recently, two-level [57, 37] and multilevel [34, 35, 36, 55, 56] correction methods
have been proposed to reduce the complexity of solving eigenpairs associated with low
eigenvalues by first solving a coarse mesh/scale approximation, which can then be cor-
rected by solving linear systems (corresponding to linearized eigenvalue problems) on
a hierarchy of finer meshes/scales. Although the multilevel correction approach has
been extended to multigrid methods for linear and nonlinear eigenvalue problems
[16, 34, 35, 36, 23, 55, 56], the regularity estimates required for linear complexity
do not hold for PDEs with rough coefficients and a naive application of the correc-
tion approach to multiscale eigenvalue problems may converge very slowly. For two-
level methods [57] this lack of robustness can be alleviated by numerical homogeniza-
tion techniques [37], e.g., the so-called Localized Orthogonal Decomposition (LOD)
method. For multilevel methods, gamblets [41, 42, 44, 48, 43] (operator-adapted
wavelets satisfying three desirable properties: scale orthogonality, well-conditioned
multiresolution decomposition, and localization) provide a natural multiresolution
decomposition ensuring robustness for multiscale eigenproblems. As described in [43,
sect. 5.1.3], these three properties are analogous to those required of Wannier func-
tions [29, 54], which can be characterized as linear combinations \chi i =

\sum 
j ci,jvj of

eigenfunctions vj associated with eigenvalues \lambda j such that the size of ci,j is large for
\lambda j close to \lambda i and small otherwise, and such that the resulting linear combinations \chi i

are concentrated in space.
The aim of this paper is, therefore, to design a fast multilevel numerical method

for multiscale eigenvalue problems (e.g., for PDEs that may have rough and highly
oscillatory coefficients) associated with a bijective positive symmetric linear operator
\scrL , by integrating the multilevel correction approach with the gamblet multiresolution
decomposition. In this merger, the gamblet decomposition supplies a hierarchy of
coarse (sub)spaces for the multilevel correction method. The overall computational
cost is that of solving a sequence of linear problems over this hierarchy (using a gamblet
based multigrid approach [41]). Recently, Hou et. al. [21] proposed computing the
leftmost eigenpairs of a sparse symmetric positive matrix by combining the implicitly
restarted Lanczos method with a gamblet-like multiresolution decomposition where
local eigenfunctions are used as measurement functions. This paper shows that the
gamblet multilevel decomposition (1) enhances the convergence rate of eigenvalue
solvers by enabling (through a gamblet based multigrid method) the fast and robust
convergence of inner iterations (linear solves) in the multilevel correction method,
and (2) provides efficient preconditioners for state-of-the-art eigensolvers such as the
LOBPCG method.

Outline. This paper is organized as follows: We summarize the gamblet decom-
position, its properties, and the gamblet based multigrid method in section 2 (see
[41, 42, 44, 48, 43] for the detailed construction). We present the gamblet based mul-
tilevel method for multiscale eigenvalue problems and its rigorous analysis in section
3. Our theoretical results are numerically illustrated in section 4 where the proposed
method is compared with state-of-the-art eigensolvers (such as LOBPCG).
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Notation. The symbol C denotes generic positive constant that may change from
one line of an estimate to the next. C will be independent from the eigenvalues
(otherwise a subscript \lambda will be added), and the dependencies of C will normally be
clear from the context or stated explicitly.

2. Gamblet decomposition and gamblet based multigrid method. Al-
though multigrid methods [11, 20] have been highly successful in solving elliptic PDEs,
their convergence rates can be severely affected by the lack of regularity of the PDE
coefficients [53]. Although classical wavelet based methods [13, 17] enable a multi-
resolution decomposition of the solution space, their performance can also be affected
by their lack of adaptation to the coefficients of the PDE. The introduction of gam-
blets in [41] addressed the problem of designing multigrid/multiresolution methods
that are provably robust with respect to rough (L\infty ) PDE coefficients.

Gamblets are derived from a game theoretic approach to numerical analysis [41,
42]. They are (1) elementary solutions of hierarchical information games associated
with the process of computing with partial information and limited resources, (2)
have a natural Bayesian interpretation under the mixed strategy emerging from the
game theoretic formulation, and (3) induce a multiresolution decomposition of the
solution space that is adapted to the numerical discretization of the underlying PDE.
The (fast) gamblet transform has \scrO (N log2d+1N) complexity for the first solve and
\scrO (N logd+1N) for subsequent solves to achieve grid-size accuracy in H1-norm for
elliptic problems [43].

2.1. The abstract setting. We introduce the formulation of gamblets with an
abstract setting since its application is not limited to scalar elliptic problems such as
Examples 2.1 and 2.2. Let (V, \| \cdot \| ), (V \ast , \| \cdot \| \ast ), and (V0, \| \cdot \| 0) be Hilbert spaces such
that V \subset V0 \subset V \ast and such that the natural embedding i : V0 \rightarrow V \ast is compact and
dense. Let (V \ast , \| \cdot \| \ast ) be the dual of (V, \| \cdot \| ) using the dual pairing obtained from
the Gelfand triple.

Let the operator \scrL be a symmetric positive linear bijection mapping V to V \ast .
Write [\cdot , \cdot ] for the duality pairing between V \ast and V (derived from the Riesz duality
between V0 and itself) such that

(2.1) \| u\| 2 = [\scrL u, u] for u \in V .

The corresponding inner product on V is defined by

(2.2)
\bigl\langle 
u, v
\bigr\rangle 
:= [\scrL u, v] for u, v \in V,

and \| \cdot \| \ast is the corresponding dual-norm on V \ast , i.e.,

(2.3) \| \phi \| \ast = sup
v\in V,v \not =0

[\phi , v]

\| v\| for \phi \in V \ast .

Given g \in V \ast , we will consider the solution u of the variational problem

(2.4)
\bigl\langle 
u, v
\bigr\rangle 
= [g, v] for v \in V .

Example 2.1. Let Ω be a bounded open subset of R
d (of arbitrary dimension

d \in N
\ast ) with uniformly Lipschitz boundary. Given s \in N, let

(2.5) \scrL : \scrH s
0(Ω) \rightarrow \scrH  - s(Ω)
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2522 HEHU XIE, LEI ZHANG, AND HOUMAN OWHADI

be a continuous linear bijection between \scrH s
0(Ω) and \scrH  - s(Ω), where \scrH s

0(Ω) is the
Sobolev space of order s with zero trace, and \scrH  - s(Ω) is the topological dual of \scrH s

0(Ω)
[1]. Assume \scrL to be symmetric, positive, and local, i.e., [\scrL u, v] = [u,\scrL v] and [\scrL u, u] \geq 
0 for u, v \in \scrH s

0(Ω) and [\scrL u, v] = 0 if u, v have disjoint supports in Ω. In this example
V, V \ast and V0 are \scrH s

0(Ω), \scrH  - s(Ω), and L2(Ω) endowed with the norms \| u\| 2 =
\int 
Ω
u\scrL u,

\| \phi \| 2\ast =
\int 
Ω
\phi \scrL  - 1\phi , and \| u\| 0 = \| u\| L2(Ω).

Example 2.2. Consider Example 2.1 with s = 1, \scrL =  - div
\bigl( 
a(x)\nabla \cdot 

\bigr) 
, and a(x) is

a symmetric, uniformly elliptic d \times d matrix with entries in L\infty (Ω) such that for all
x \in Ω and \ell \in R

d,

(2.6) \lambda min(a)| \ell | 2 \leq \ell Ta(x)\ell \leq \lambda max(a)| \ell | 2.

Note that

(2.7) \| v\| 2 =

\int 

Ω

(\nabla v)Ta\nabla v for v \in \scrH 1
0(Ω) ,

and the solution of (2.4) is the solution of the PDE

(2.8)

\Biggl\{ 
 - div

\bigl( 
a(x)\nabla u(x)

\bigr) 
= g(x) x \in Ω,

u = 0 on \partial Ω .

2.2. Gamblets. Here we give a brief reminder of the construction of gamblets.
See Example 2.4 for a concrete example for scalar elliptic equation and section 4.1 for
the numerical implementation, and also [41, 42, 44, 48, 43] for more details.

Measurement functions. Let \scrI (1), . . . , \scrI (q) be a hierarchy of labels, and let \phi 
(k)
i

be a hierarchy of nested elements of V \ast such that

(2.9) \phi 
(k)
i =

\sum 

j\in \scrI (k+1)

\pi 
(k,k+1)
i,j \phi 

(k+1)
j for k \in \{ 1, . . . , q  - 1\} and i \in \scrI (k)

for some rank | \scrI (k)| , \scrI (k)\times \scrI (k+1) matrices \pi (k,k+1) and such that the (\phi 
(k)
i )i\in \scrI (k) are

linearly independent and \pi (k,k+1)\pi (k+1,k) = I\scrI (k) for k \in \{ 1, . . . , q  - 1\} (writing I\scrJ 
for the \scrJ \times \scrJ identity matrix and \pi (k+1,k) for (\pi (k,k+1))T ). Although not required

in the general theory of gamblets [43] in this paper we assume that the \phi 
(k)
i are

elements of V0 and have uniformly well conditioned mass matrices in the sense that

C - 1| x| 2 \leq \| 
\sum 

i xi\phi 
(k)
i \| 20 \leq C| x| 2 (for all x and k).

Operator adapted prewavelets. For k \in \{ 1, . . . , q\} , let Θ(k) be the symmetric

positive definite matrix with entries Θ
(k)
i,j := [\phi 

(k)
i ,\scrL  - 1\phi 

(k)
j ], and (writing Θ(k), - 1

for the inverse of Θ(k)) let

(2.10) \psi 
(k)
i =

\sum 

j\in \scrI (k)

Θ
(k), - 1
i,j \phi 

(k)
j for i \in \scrI (k) .

The elements \psi 
(k)
i form a biorthogonal system with respect to the elements \phi 

(k)
i , i.e.,

[\phi 
(k)
j , \psi 

(k)
i ] = \delta i,j and

(2.11) u(k) :=
\sum 

i\in \scrI (k)

[\phi 
(k)
i , u]\psi 

(k)
i
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is the
\bigl\langle 
\cdot , \cdot 
\bigr\rangle 
orthogonal projection of u \in V onto

(2.12) V
(k) := span\{ \psi (k)

i | i \in \scrI (k)\} .

Furthermore, A(k) := Θ(k), - 1 can be identified as the stiffness matrix of the \psi 
(k)
i , i.e.,

(2.13) A
(k)
i,j =

\bigl\langle 
\psi 
(k)
i , \psi 

(k)
j

\bigr\rangle 
for i, j \in \scrI (k) .

The \psi 
(k)
i are nested prewavelets in the sense that V(k) \subset V

(k+1) and

(2.14) \psi 
(k)
i =

\sum 

j\in \scrI (k+1)

R
(k,k+1)
i,j \psi 

(k+1)
j ,

where R(k,k+1) = A(k)\pi (k,k+1)Θ(k+1) acts as an interpolation matrix.
Gamblets (operator adapted wavelets). Let (\scrJ (k))2\leq k\leq q be a hierarchy of labels

such that (writing | \scrJ (k)| for the cardinal of \scrJ (k)) | \scrJ (k)| = | \scrI (k)|  - | \scrI (k - 1)| . For
k \in \{ 2, . . . , q\} , let W (k) be a \scrJ (k) \times \scrI (k) matrix such that (writing W (k),T for the
transpose of W (k))

(2.15) Ker(\pi (k - 1,k)) = Im(W (k),T ) and W (k)W (k),T = I\scrJ (k) .

Define

(2.16) \chi 
(k)
i :=

\sum 

j\in \scrI (k)

W
(k)
i,j \psi 

(k)
j k \in \{ 2, . . . , q\} and i \in \scrJ (k) .

Then u(k)  - u(k - 1) is the
\bigl\langle 
\cdot , \cdot 
\bigr\rangle 
orthogonal projection of u \in V onto

(2.17) W
(k) := span\{ \chi (k)

i | i \in \scrJ (k)\} .

We will also write \scrJ (1) := \scrI (1), \chi 
(1)
i := \psi 

(1)
i , W(1) := V

(1). We call those operator

adapted wavelets \chi 
(k)
i , gamblets. Furthermore, W(k) is the

\bigl\langle 
\cdot , \cdot 
\bigr\rangle 
-orthogonal comple-

ment of V(k - 1) in V
(k), i.e. V(k) = V

(k - 1) \oplus W
(k) ,

(2.18) V
(q) = V

(1) \oplus W
(2) \oplus \cdot \cdot \cdot \oplus W

(q) ,

and writing W
(q+1) for the

\bigl\langle 
\cdot , \cdot 
\bigr\rangle 
-orthogonal complement of V(q) in V , u = u(1) +

(u(2)  - u(1)) + \cdot \cdot \cdot + (u(q+1)  - u(q)) is the multiresolution decomposition of u over
V = V

(1) +W
(2) + \cdot \cdot \cdot +W

(q+1), namely, the gamblet decomposition of u.

For k \in \{ 2, . . . , q\} , B(k) =W (k)A(k)W (k),T is the stiffness matrix of the \chi 
(k)
i , i.e.,

(2.19) B
(k)
i,j =

\bigl\langle 
\chi 
(k)
i , \chi 

(k)
j

\bigr\rangle 
for i, j \in \scrJ (k)

and B(1) := A(1).
Quantitative estimates. Under general stability conditions on the \phi 

(k)
i [41, 44, 42,

48, 43] these operator adapted wavelets satisfy the quantitative estimates of Property
2.3, we will first state those estimates and provide an example of their validity in the
general setting of Example 2.1.

Property 2.3. The following properties are satisfied for some constant C > 0
and H \in (0, 1).
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1. Approximation:

(2.20) \| u - u(k)\| 0 \leq CHk\| u - u(k)\| for u \in V,

and

(2.21) \| u - u(k)\| \leq CHk\| \scrL u\| 0 for u \in \scrL  - 1V0 .

2. Uniform bounded condition number: Writing Cond(B) for the condition num-
ber of a matrix B we have for k \in \{ 1, . . . , q\} ,

(2.22) C - 1H - 2(k - 1)I\scrJ (k) \leq B(k) \leq CH - 2kI\scrJ (k) and Cond(B(k)) \leq CH - 2

and

(2.23) C - 1I\scrI (k) \leq A(k) \leq CH - 2kI\scrI (k) .

3. Near linear complexity: The wavelets \psi 
(k)
i , \chi 

(k)
i and stiffness matrices A(k), B(k)

can be computed to precision \varepsilon (in \| \cdot \| -energy norm for elements of V and
in Frobenius norm for matrices) in O(N polylog N

\varepsilon ) complexity.

Fig. 1. Nested partition of Ω = (0, 1)2 such that the kth level corresponds to a uniform partition

of Ω into 2−k \times 2−k squares. The top row shows the entries of π
(1,2)
i,· and π

(2,3)
j,· . The bottom row

shows the support of φ
(1)
i , φ

(2)
j , and φ

(3)
s . Note that j(1) = s(1) = i and s(2) = j.

Example 2.4. Consider Example 2.1. Let \scrI (q) be the finite set of q-tuples of the
form i = (i1, . . . , iq). For 1 \leq k < q and a r-tuple of the form i = (i1, . . . , iq), write
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i(k) := (i1, . . . , ik). For 1 \leq k \leq q and i = (i1, . . . , iq) \in \scrI (q), write \scrI (k) := \{ i(k) : i \in 
\scrI (q)\} . Let \delta , h \in (0, 1). Let (\tau 

(k)
i )i\in \scrI (k) be uniformly Lipschitz convex sets forming

a nested partition of Ω, i.e., such that Ω = \cup i\in \scrI (k)\tau 
(k)
i , k \in \{ 1, . . . , q\} is a disjoint

union except for the boundaries, and \tau 
(k)
i = \cup j\in \scrI (k+1):j(k)=i\tau 

(k+1)
j , k \in \{ 1, . . . , q - 1\} .

Assume that each \tau 
(k)
i contains a ball of center x

(k)
i and radius \delta hk, and is contained

in the ball of center x
(k)
i and radius \delta  - 1hk. Writing | \tau (k)i | for the volume of \tau 

(k)
i , take

(2.24) \phi 
(k)
i := 1

\tau 
(k)
i

| \tau (k)i |  - 1
2 .

The nesting relation (2.9) is then satisfied with \pi 
(k,k+1)
i,j := | \tau (k+1)

j | 12 | \tau (k)i |  - 1
2 for j(k) =

i and \pi 
(k,k+1)
i,j := 0, otherwise. Observe also that \| \sum i xi\phi 

(k)
i \| 2L2(Ω) = | x| 2. For

i := (i1, . . . , ik+1) \in \scrI (k+1) write i(k) := (i1, . . . , ik) \in \scrI (k) and note that \pi (k,k+1) is

cellular in the sense that \pi 
(k,k+1)
i,j = 0 for j(k) \not = i. Choose (\scrJ (k))2\leq k\leq q to be a finite

set of k-tuples of the form j = (j1, . . . , jk) such that j(k - 1) := (j1, . . . , jk - 1) \in \scrI (k - 1)

and | \scrJ (k)| = | \scrI (k)|  - | \scrI (k - 1)| . See Figure 1 for an illustration. Choose W (k) as in

(2.15) and cellular in the sense that W
(k)
i,j = 0 for i(k - 1) \not = j(k - 1) (see [41, 42, 43, 44]

for examples). Equation (2.18) then corresponds to a multiresolution decomposition
of \scrH s

0(Ω) that is adapted to the operator \scrL .
We have the following theorem [42, 43, 48].

Theorem 2.5. The properties in Property 2.3 are satisfied for Examples 2.1 and
2.4 with H = hs and a constant C depending only on \delta ,Ω, d, s,

(2.25) \| \scrL \| := sup
u\in \scrH s

0(Ω)

\| \scrL u\| \scrH −s(Ω)

\| u\| \scrH s
0(Ω)

and \| \scrL  - 1\| := sup
u\in \scrH s

0(Ω)

\| u\| \scrH s
0(Ω)

\| \scrL u\| \scrH −s(Ω)

.

Furthermore, the wavelets \chi 
(k)
i and \psi 

(k)
i are exponentially localized, i.e.,

(2.26)

\| \psi (k)
i \| \scrH s(Ω\setminus B(x

(k)
i

,nhk))
\leq Ch - ske - n/C and \| \chi (k)

i \| \scrH s(Ω\setminus B(x
(k)
i

,nhk−1))
\leq Ch - ske - n/C ,

and the wavelets \psi 
(k)
i , \chi 

(k)
i and stiffness matrices A(k), B(k) can be computed to pre-

cision \varepsilon (in \| \cdot \| -energy norm for elements of V and in Frobenius norm for matrices)
in O(N log2d+1 N

\varepsilon ) complexity [43].

Remark 2.6. Rigorous exponential decay/localization results such as (2.26) have
been pioneered in [38] for the LOD basis functions. Although gamblets are derived
from a different perspective (namely, a game theoretic approach), from the numerical
point of view, gamblets can be seen as a multilevel generalization of optimal recovery
splines [39] and of numerical homogenization basis functions such as RPS (rough
polyharmonic splines) [45] and variational multiscale/LOD basis functions [22, 38].

Remark 2.7. For Examples 2.1 and 2.4, the wavelets \psi 
(k)
i , \chi 

(k)
i and stiffness matri-

ces A(k), B(k) can also be computed in O(N log2d N
\varepsilon ) complexity using the incomplete

Cholesky factorization approach of [48].

Discrete case. From now on we will consider the situation where V is finite-
dimensional and V

(q) = V . In the setting of Example 2.1 we will identify V with the
linear space spanned by the finite-elements \psi i (e.g., piecewise linear or bilinear tent
functions on a fine mesh/grid in the setting of Example 2.2) used to discretize the
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2526 HEHU XIE, LEI ZHANG, AND HOUMAN OWHADI

operator \scrL , use \scrI (q) to label the elements \psi i and set \psi 
(q)
i = \psi 

(q)
i for i \in \scrI (q). The

gamblet transform [41, 42, 43] is then summarized in Algorithm 2.1 and we have the
decompsoition

(2.27) V = W
(1) \oplus W

(2) \oplus \cdot \cdot \cdot \oplus W
(q) .

Algorithm 2.1 The gamblet transform.

1: \psi 
(q)
i = \psi i

2: A
(q)
i,j =

\bigl\langle 
\psi 
(q)
i , \psi 

(q)
j

\bigr\rangle 

3: for k = q to 2 do

4: B(k) =W (k)A(k)W (k),T

5: \chi 
(k)
i =

\sum 
j\in \scrI (k) W

(k)
i,j \psi 

(k)
j

6: R(k - 1,k) = \pi (k - 1,k)(I(k)  - A(k)W (k),TB(k), - 1W (k))
7: A(k - 1) = R(k - 1,k)A(k)R(k,k - 1)

8: \psi 
(k - 1)
i =

\sum 
j\in \scrI (k) R

(k - 1,k)
i,j \psi 

(k)
j

9: end for

Fast gamblet transform. The acceleration of Algorithm 2.1 to O(N log2d+1 N
\varepsilon )

complexity is based on the truncation and localization of the computation of the
interpolation matrices R(k,k+1) that is enabled by the exponential decay of gamblets
and the uniform bound on Cond(B(k)). In the setting of Examples 2.1 and 2.4, this

acceleration is equivalent to localizing the computation of each gamblet \psi 
(k)
i to a sub-

domain centered on \tau 
(k)
i and of diameter \scrO (Hk log 1

Hk ). We refer to [41, 42, 43] for a
detailed description of this acceleration.

Higher order problems. Although the local linear elliptic operators of Example 2.1
are used as prototypical examples, the proposed theory and algorithms is presented
in the abstract setting of linear operators on Hilbert spaces to not only emphasize the
generality of the proposed method (which could also be applied to Graph Laplacians
with well behaved gamblets) but also to clarify/simplify its application to higher order
eigenvalue problems. For such applications the method is directly applied to the SPD
matrix representation A of the discretized operator as described in [43, Chap. 21].

The identification of level q gamblets \psi 
(q)
i in step 1 of Algorithm 2.1 with the finite

elements \psi i used to discretize the operator is, when the gamblet transform is applied

to the SPD matrix A, equivalent to the identification of level q gamblets \psi 
(q)
i with

the unit vectors of RN . The nesting matrices \pi (k - 1,k) remain those associated with
the Haar prewavelets of Example 2.4 (the algorithm does not require the explicit
input of measurement functions, only those nesting matrices are used as inputs and
they remain unchanged). Of course, fine scale finite elements \psi i (used to discretize the
operator) have to be of sufficient accuracy for the approximation of the required eigen-
pairs (see [12, 60] and references therein for further discussion of the discretization
issue).

2.3. Gamblet based multigrid method. The gamblet decomposition enables
the construction of efficient multigrid solvers and preconditioners. Suppose we have
computed the decomposition (2.27), the stiffness matrices A(k) and interpolation ma-
trices R(k - 1,k) in Algorithm 2.1, or more precisely their numerical approximations
using the fast gamblet transform [41, 42, 48, 43], to a degree that is sufficient to ob-
tain grid-size accuracy in the resolution of the discretization of (2.4). We will write
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R(k,k - 1) := (R(k - 1,k))T for the restriction matrix associated with the interpolation
matrix R(k - 1,k).

For g(k) \in R
\scrI (k)

consider the linear system

(2.28) A(k)z = g(k).

Algorithm 2.2 provides a multigrid approximation MG(k, z0, g
(k)) of the solution z of

(2.28) based on an initial guess z0 and a number of iterations k. In that algorithm,
m1 and m2 are nonnegative integers (and p = 1 or 2. p = 1 corresponds to a \scrV -cycle
method and p = 2 corresponds to a \scrW -cycle method). Λ(k) is an upper bound for the
spectral radius of A(k). Under Property 2.3 we take Λ(k) = CH - 2k where C and H
are the constants appearing in the bound A(k) \leq CH - 2kI\scrI (k) .

Remark 2.8. We use the simple Richardson iteration in the smoothing step of
Algorithm 2.2. In practice, Gauss–Seidel and CG can also be used as a smoother.

Remark 2.9. The number of operations required in the kth level iteration defined
by Algorithm 2.2 is \scrO (Nk(log

Nk

\varepsilon )2d+1), where Nk := dim(V(k)).

Algorithm 2.2 Gamblet based multigrid (kth level iteration).

For k = 1, MG(1, z0, g
(1)) is the solution obtained from a direct method. Namely

A(1) MG(1, z0, g
(1)) = g(1).(2.29)

For k > 1, MG(k, z0, g
(k)) is obtained recursively in three steps.

1. Presmoothing: For 1 \leq \ell \leq m1, let

z\ell = z\ell  - 1 +
1

Λ(k)
(g(k)  - A(k)z\ell  - 1).(2.30)

2. Error correction: Let g(k - 1) := R(k - 1,k)(g(k)  - A(k)z0) and q
(k - 1)
0 = 0. For

1 \leq i \leq p, let

q
(k - 1)
i = MG(k  - 1, q

(k - 1)
i - 1 , g(k - 1)).(2.31)

Then zm1+1 := zm1
+R(k,k - 1)q

(k - 1)
p .

3. Postsmoothing: For m1 + 2 \leq \ell \leq m1 +m2 + 1, let

z\ell = z\ell  - 1 +
1

Λ(k)
(g(k)  - A(k)z\ell  - 1).(2.32)

Then the output of the kth level iteration is

MG(k, z0, g
(k)) := zm1+m2+1.(2.33)

Items 1 and 2 of Property 2.3 (i.e., the bounds on approximation errors and
condition numbers) imply the following result of \scrV -cycle convergence.

Theorem 2.10 (convergence of the kth level iteration). Let m1 = m2 = m/2,
and k be the level number of Algorithm 2.2, and p = 1. For any 0 < \theta < 1, there
exists m independent from k such that

(2.34) \| z  - MG(k, z0, g)\| A(k) \leq \theta \| z  - z0\| A(k) .
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Proof. Theorem 2.10 follows from the following smoothing and approximation
properties introduced in [40, sect. 3.3.7].

Smoothing property: The iteration matrix on every grid level can be written as
S(k) = I  - M (k), - 1A(k), where M (k) is symmetric and satisfies

(2.35) M (k) \geq A(k).

Approximation property: It holds true that

(2.36) \| A(k), - 1  - R(k,k - 1)A(k - 1), - 1R(k - 1,k)\| 2 \leq C\| M (k)\|  - 1
2 .

Taking M (k) = A(k)I(k) = CH - 2k in Algorithm 2.2 implies the smoothing property
(2.35) by (2.23) in Property 2.3. There are two approaches to proving the approx-
imation property (2.36). The first one would be to adapt the classical approach as
presented in [40, p. 130] (in that approach (2.36) is implied by (2.20) and (2.21)
and it requires the mass matrix of the gamblets to be well conditioned which fol-
lows from [58, Thm. 6.3]). Here we present a second approach. First, observe that
D := A(k), - 1  - R(k,k - 1)A(k - 1), - 1R(k - 1,k) is symmetric and positive. Indeed, us-
ing R(k - 1,k) = A(k - 1)\pi (k - 1,k)A(k), - 1, we have for z = A(k)y, zTDz = yTA(k)y  - 
yT\pi (k,k - 1)A(k - 1)\pi (k - 1,k)y = \| u(k)  - u(k - 1)\| 2 with u(k) =

\sum 
i\in \scrI (k) yi\psi 

(k)
i (see [43,

Prop. 13.30] for details). Therefore, \| D\| 2 = sup| x| =1 x
TDx. Now take g =

\sum 
i xi\phi 

(k)
i

and u = \scrL  - 1g. Then xTA(k), - 1x = \| u\| 2 and xTR(k,k - 1)A(k - 1), - 1R(k - 1,k)x =
\| u(k - 1)\| 2. Therefore xTDx = \| u\| 2  - \| u(k - 1)\| 2 = \| u  - u(k - 1)\| 2. Using (2.21) in
Property 2.3 we have \| u - u(k - 1)\| 2 \leq CH2(k - 1)\| g\| 20. Using \| g\| 20 \leq C| x| 2 we deduce
that \| D\| 2 \leq CH2(k - 1) which implies the result for M (k) = A(k)I(k) = CH - 2k (a
factor H - 2 is absorbed into C).

We conclude the proof of (2.34) by applying [40, Theorem 3.9], and taking \theta \geq 
C

C+m , where C is the constant in (2.36).

Remark 2.11. The LOD [38] based Schwarz subspace decomposition/correction
method of [31, 30] also leads to a robust two-level preconditioning method for PDEs
with rough coefficients. From a multigrid perspective, a multilevel version of [31, 30]
would be closer to a domain decomposition/additive multigrid method compared to
the proposed gamblet multigrid, which is a variant of the multiplicative multigrid
method.

3. Gamblet subspace correction method for eigenvalue problem. We
will now describe the gamblet based multilevel correction method. Consider the ab-
stract setting of section 2.1 and write

\bigl\langle 
\cdot , \cdot 
\bigr\rangle 
0
for the scalar product associated with the

norm \| \cdot \| 0 placed on V0. Since [\cdot , \cdot ] is the dual product between V \ast and V induced
by the Gelfand triple V \subset V0 \subset V \ast we will also write [u, v] :=

\bigl\langle 
u, v
\bigr\rangle 
0
for u, v \in V0.

Consider the eigenvalue problem: Find (\lambda , v) \in R\times V such that \langle v, v\rangle = 1, and

\langle v, w\rangle = \lambda [v, w] \forall w \in V.(3.1)

The compact embedding property implies that the eigenvalue problem (3.1) has a
sequence of eigenvalues \{ \lambda j\} (see [6, 15]):

0 < \lambda 1 \leq \lambda 2 \leq \cdot \cdot \cdot \leq \lambda \ell \leq \cdot \cdot \cdot , lim
\ell \rightarrow \infty 

\lambda \ell = \infty ,

with associated eigenfunctions

v1, v2, . . . , v\ell , . . . ,
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where \langle vi, vj\rangle = \delta i,j (\delta i,j denotes the Kronecker function). In the sequence \{ \lambda j\} , the
\lambda j ’s are repeated according to their geometric multiplicity. For our analysis, recall
the following definition for the smallest eigenvalue (see [6, 15]):

\lambda 1 = min
0 \not =w\in V

\langle w,w\rangle 
[w,w]

.(3.2)

Define the subspace approximation problem for eigenvalue problem (3.1) on V
(k)

as follows: Find (\̄lambda (k), v̄(k)) \in R\times V
(k) such that \langle v̄(k), v̄(k)\rangle = 1 and

\langle v̄(k), w\rangle = \̄lambda (k)[v̄(k), w] \forall w \in V
(k).(3.3)

From [5, 6, 15], the discrete eigenvalue problem (3.3) has eigenvalues

0 < \̄lambda 
(k)
1 \leq \̄lambda 

(k)
2 \leq \cdot \cdot \cdot \leq \̄lambda 

(k)
j \leq \cdot \cdot \cdot \leq \̄lambda 

(k)
Nk
,

and corresponding eigenfunctions

v̄
(k)
1 , v̄

(k)
2 , . . . , v̄

(k)
j . . . , v̄

(k)
Nk
,

where \langle v̄(k)i , v̄
(k)
j \rangle = \delta i,j , 1 \leq i, j \leq Nk, and Nk := dim(V(k)).

From the min-max principle [5, 6], we have the following upper bound result:

\lambda i \leq \̄lambda 
(k)
i , 1 \leq i \leq Nk.(3.4)

Define

\eta (V(k)) = sup
f\in V0,\| f\| 0=1

inf
w\in V(k)

\| \scrL  - 1f  - w\| .(3.5)

Let M(\lambda i) denote the eigenspace corresponding to the eigenvalue \lambda i, namely,

M(\lambda i) :=
\bigl\{ 
v \in V | \langle v, w\rangle = \lambda i[v, w] \forall w \in V

\bigr\} 
,(3.6)

and define

\delta k(\lambda i) = sup
v\in M(\lambda i),\| v\| =1

inf
w\in V(k)

\| v  - w\| .(3.7)

Proposition 3.1. Property 2.3 implies

(3.8) \eta (V(k)) \leq CHk, \delta k(\lambda i) \leq C
\sqrt{} 
\lambda iH

k, and \delta k(\lambda i) \leq 
\sqrt{} 
\lambda i\eta (V

(k)) ,

for k \in \{ 1, . . . , q\} where C and H are the constants appearing in Property 2.3.

In order to provide the error estimate for the numerical scheme (3.3), we define
the corresponding projection operator \scrP k as follows:

\langle \scrP ku,w\rangle = \langle u,w\rangle \forall w \in V
(k).(3.9)

It is obvious that

\| u - \scrP ku\| = inf
w\in V(k)

\| u - w\| .

The following Rayleigh quotient expansion of the eigenvalue error is a useful tool
to obtain error estimates for eigenvalue approximations.
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Lemma 3.2 (see [5]). Assume (\lambda , v) is an eigenpair for the eigenvalue problem
( 3.1). Then for any w \in V \setminus \{ 0\} , the following expansion holds:

(3.10)
\langle w,w\rangle 
[w,w]

 - \lambda =
\langle w  - u,w  - u\rangle 

[w,w]
 - \lambda 

[w  - u,w  - u]

[w,w]
\forall u \in M(\lambda ).

For simplicity we will from now on restrict the presentation to the identification of
a simple eigenpair (\lambda , v) (the numerical method and results can naturally be extended
to multiple eigenpairs). Let E : V \rightarrow M(\lambda i) be the spectral projection operator [5]
defined by

E =
1

2\pi i

\int 

Γ

\bigl( 
z  - \scrL 

\bigr)  - 1
dz,(3.11)

where Γ is a Jordan curve in C enclosing the desired eigenvalue \lambda i and no other
eigenvalues.

We introduce the following lemma from [50] before stating error estimates of the
subspace projection method.

Lemma 3.3 (see [50, Lemma 6.4]). For any exact eigenpair (\lambda , v) of ( 3.1), the
following equality holds:

(\̄lambda 
(k)
j  - \lambda )[\scrP kv, v̄

(k)
j ] = \lambda [v  - \scrP kv, v̄

(k)
j ], j = 1, . . . , Nk.

The following lemma gives the error estimates for the gamblet subspace approxi-
mation, which is a direct application of the subspace approximation theory for eigen-
value problems; see [5, Lemma 3.6, Theorem 4.4] and [15].

Lemma 3.4. Let (\lambda , v) denote an exact eigenpair of the eigenvalue problem ( 3.1).

Assume the eigenpair approximation (\̄lambda 
(k)
i , v̄

(k)
i ) has the property that \̄mu 

(k)
i = 1/\̄lambda 

(k)
i

is closest to \mu = 1/\lambda . The corresponding spectral projection Ei,k : V \mapsto \rightarrow span\{ v̄(k)i \} is
defined as follows:

\langle Ei,kw, v̄
(k)
i \rangle = \langle w, v̄(k)i \rangle \forall w \in V.

The eigenpair approximations (\̄lambda 
(k)
i , v̄

(k)
i ) (i = 1, 2, . . . , Nk) have the following

error estimates:

\| Ei,kv  - v\| \leq 
\sqrt{} 
1 +

1

\lambda 1\delta 
(k),2
\lambda 

\eta 2(V(k))\delta k(\lambda i),(3.12)

\| Ei,kv  - v\| 0 \leq 
\biggl( 
1 +

1

\lambda 1\delta 
(k)
\lambda 

\biggr) 
\eta (V(k))\| Ei,kv  - v\| ,(3.13)

where \delta 
(k)
\lambda is defined as follows:

\delta 
(k)
\lambda := min

j \not =i

\bigm| \bigm| \bigm| \bigm| 
1

\̄lambda 
(k)
j

 - 1

\lambda 

\bigm| \bigm| \bigm| \bigm| (3.14)

and \delta 
(k),2
\lambda = (\delta 

(k)
\lambda )2.

Proof. Following a classical duality argument found in finite element method, we
have

\| (I  - \scrP k)u\| 0 = sup
\| g\| 0=1

[(I  - \scrP k)u, g] = sup
\| g\| 0=1

\langle (I  - \scrP k)u,\scrL  - 1g\rangle 
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= sup
\| g\| 0=1

\langle (I  - \scrP k)u, (I  - \scrP k)\scrL  - 1g\rangle \leq \eta (V(k))\| (I  - \scrP k)u\| .(3.15)

Since (I - Ei,k)\scrP kv \in V
(k) and \langle (I - Ei,k)\scrP kv, v̄

(k)
i \rangle = 0, the following orthogonal

expansion holds:

(I  - Ei,k)\scrP kv =
\sum 

j \not =i

\alpha j v̄
(k)
j ,(3.16)

where \alpha j = \langle \scrP kv, v̄
(k)
j \rangle . From Lemma 3.3, we have

\alpha j = \langle \scrP kv, v̄
(k)
j \rangle = \̄lambda 

(k)
j [\scrP kv, v̄

(k)
j ] =

\̄lambda 
(k)
j \lambda 

\̄lambda 
(k)
j  - \lambda 

\bigl[ 
v  - \scrP kv, v̄

(k)
j

\bigr] 

=
1

\mu  - \̄mu 
(k)
j

\bigl[ 
v  - \scrP kv, v̄

(k)
j

\bigr] 
,(3.17)

where \mu = 1/\lambda and \̄mu 
(k)
j = 1/\̄lambda 

(k)
j .

From the property of eigenvectors v̄
(k)
1 , . . . , v̄

(k)
m , the following identities hold:

1 = \langle v̄(k)j , v̄
(k)
j \rangle = \̄lambda 

(k)
j

\bigl[ 
v̄
(k)
j , v̄

(k)
j

\bigr] 
= \̄lambda 

(k)
j \| v̄(k)j \| 20,

which leads to the following property:

\| v̄(k)j \| 20 =
1

\̄lambda 
(k)
j

= \̄mu 
(k)
j .(3.18)

From (3.3) and definitions of eigenvectors v̄
(k)
1 , . . . , ū

(k)
m , we have the following equal-

ities:

\langle v̄(k)j , v̄
(k)
i \rangle = \delta ij ,

\biggl[ 
v̄
(k)
j

\| v̄(k)j \| 0
,
v̄
(k)
i

\| v̄(k)i \| 0

\biggr] 
= \delta ij , 1 \leq i, j \leq Nk.(3.19)

Combining (3.16), (3.17), (3.18), and (3.19), the following estimates hold:

(3.20)

\| (I  - Ei,k)\scrP kv\| 2 =

\bigm\| \bigm\| \bigm\| \bigm\| 
\sum 

j \not =i

\alpha j v̄
(k)
j

\bigm\| \bigm\| \bigm\| \bigm\| 
2

=
\sum 

j \not =i

\alpha 2
j =
\sum 

j \not =i

\biggl( 
1

\mu  - \̄mu 
(k)
j

\biggr) 2\bigm| \bigm| \bigm| 
\bigl[ 
v  - \scrP kv, v̄

(k)
j

\bigr] \bigm| \bigm| \bigm| 
2

\leq 1

\delta 
(k),2
\lambda 

\sum 

j \not =i

\| v̄(k)j \| 20
\bigm| \bigm| \bigm| \bigm| 
\biggl[ 
v  - \scrP kv,

v̄
(k)
j

\| v̄(k)j \| 0

\biggr] \bigm| \bigm| \bigm| \bigm| 
2

=
1

\delta 
(k),2
\lambda 

\sum 

j \not =i

\̄mu 
(k)
j

\bigm| \bigm| \bigm| \bigm| 
\biggl[ 
v  - \scrP kv,

v̄
(k)
j

\| v̄(k)j \| 0

\biggr] \bigm| \bigm| \bigm| \bigm| 
2

\leq \̄mu 
(k)
1

\delta 
(k),2
\lambda 

\| v  - \scrP kv\| 20.

From (3.15), (3.20), and the orthogonal property \langle v  - \scrP kv, (I  - Ei,k)\scrP kv\rangle = 0, we
have the following error estimates:

\| v  - Ei,kv\| 2 = \| v  - \scrP kv\| 2 + \| (I  - Ei,k)\scrP kv\| 2
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\leq \| (I  - \scrP k)v\| 2 +
\̄mu 
(k)
1

\delta 
(k),2
\lambda 

\| v  - \scrP kv\| 20 \leq 
\biggl( 
1 +

\̄mu 
(k)
1

\delta 
(k),2
\lambda 

\eta (V(k))2
\biggr) 
\| (I  - \scrP k)v\| 2,

which is the desired result (3.12).
Similarly, combining (3.16), (3.17), (3.18), and (3.19), leads to the following esti-

mates

\| (I  - Ei,k)\scrP kv\| 20 =

\bigm\| \bigm\| \bigm\| \bigm\| 
\sum 

j \not =i

\alpha j v̄
(k)
j

\bigm\| \bigm\| \bigm\| \bigm\| 
2

0

=
\sum 

j \not =i

\alpha 2
j\| v̄

(k)
j \| 20

=
\sum 

j \not =i

\biggl( 
1

\mu  - \̄mu 
(k)
j

\biggr) 2\bigm| \bigm| \bigm| 
\bigl[ 
v  - \scrP kv, v̄

(k)
j

\bigr] \bigm| \bigm| \bigm| 
2

\| v̄(k)j \| 20

\leq 1

\delta 
(k),2
\lambda 

\sum 

j \not =i

\bigm| \bigm| \bigm| \bigm| 
\biggl[ 
v  - \scrP kv,

v̄
(k)
j

\| v̄(k)j \| 0

\biggr] \bigm| \bigm| \bigm| \bigm| 
2

\| v̄(k)j \| 40

=
1

\delta 
(k),2
\lambda 

\sum 

j \not =i

(\̄mu 
(k)
j )2
\bigm| \bigm| \bigm| \bigm| 
\biggl[ 
v  - \scrP kv,

v̄
(k)
j

\| v̄(k)j \| 0

\biggr] \bigm| \bigm| \bigm| \bigm| 
2

\leq 
\biggl( 
\̄mu 
(k)
1

\delta 
(k)
\lambda 

\biggr) 2

\| v  - \scrP kv\| 20.(3.21)

By (3.15) and (3.21), we have the following inequalities:

\| (I  - Ei,k)\scrP kv\| 0 \leq \̄mu 
(k)
1

\delta 
(k)
\lambda 

\| v  - \scrP kv\| 0 \leq \̄mu 
(k)
1

\delta 
(k)
\lambda 

\eta (V(k))\| (I  - \scrP k)v\| .(3.22)

From (3.15), (3.22), and the triangle inequality, we conclude that the following error
estimate for the eigenvector approximation in L2-norm holds:

\| v  - Ei,kv\| 0 \leq \| v  - \scrP kv\| 0 + \| (I  - Ei,k)\scrP kv\| 0

\leq \| v  - \scrP kv\| 0 +
\̄mu 
(k)
1

\delta 
(k)
\lambda 

\eta (V(k))\| (I  - \scrP k)v\| 

\leq 
\biggl( 
1 +

\̄mu 
(k)
1

\delta 
(k)
\lambda 

\biggr) 
\eta (V(k))\| (I  - \scrP k)v\| 

\leq 
\biggl( 
1 +

\̄mu 
(k)
1

\delta 
(k)
\lambda 

\biggr) 
\eta (V(k))\| (I  - Ei,k)v\| .(3.23)

This is the second desired result (3.13) and the proof is complete.

In order to analyze the method which will be given in this section, we state some
error estimates in the following lemma.

Lemma 3.5. Under the conditions of Lemma 3.4, the following error estimates
hold:

\| v  - v̄
(k)
i \| \leq 

\sqrt{} 
2

\biggl( 
1 +

1

\lambda 1\delta 
(k),2
\lambda 

\eta 2(V(k))

\biggr) 
\| (I  - \scrP k)v\| ,(3.24)

\| \lambda v  - \̄lambda 
(k)
i v̄

(k)
i \| 0 \leq C\lambda \eta (V

(k))\| v  - v̄
(k)
i \| ,(3.25)

\| v  - v̄
(k)
i \| \leq 1

1 - D\lambda \eta (V(k))
\| v  - \scrP kv\| ,(3.26)
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where

C\lambda = 2| \lambda | 
\biggl( 
1 +

1

\lambda 1\delta 
(k)
\lambda 

\biggr) 
+ \̄lambda 

(k)
i

\sqrt{} 
1 +

1

\lambda 1\delta 
(k),2
\lambda 

\eta 2(V(k))2,(3.27)

and

D\lambda =
1\surd 
\lambda 1

\Biggl( 
2| \lambda | 
\biggl( 
1 +

1

\lambda 1\delta 
(k)
\lambda 

\biggr) 
+ \̄lambda 

(k)
i

\sqrt{} 
1 +

1

\lambda 1\delta 
(k),2
\lambda 

\eta 2(V(k))

\Biggr) 
.(3.28)

Proof. Let us set \alpha > 0 such that Ei,kv = \alpha v̄
(k)
i . Then it implies that

1 = \| v\| \geq \| Ei,kv\| = \alpha \| v̄(k)i \| = \alpha .(3.29)

Based on the error estimates in Lemma 3.4, the property \| v\| = \| v̄(k)i \| = 1 and (3.29),
we have the following estimations

\| v  - v̄
(k)
i \| 2 = \| v  - Ei,kv\| 2 + \| v̄(k)i  - Ei,kv\| 2

= \| v  - Ei,kv\| 2 + \| v̄(k)i \| 2  - 2\langle v̄(k)i , Ei,kv\rangle + \| Ei,kv\| 2

= \| v  - Ei,kv\| 2 + 1 - 2\| v̄(k)i \| \| Ei,kv\| + \| Ei,kv\| 2

= \| v  - Ei,kv\| 2 + \| v\| 2  - 2\| v\| \| Ei,kv\| + \| Ei,kv\| 2

\leq \| v  - Ei,kv\| 2 + \| v\| 2  - 2\langle v, Ei,kv\rangle + \| Ei,kv\| 2 \leq 2\| v  - Ei,kv\| 2.(3.30)

Equations (3.12) and (3.30) lead to the desired result (3.24).

With the help of (3.13) and the property (3.29) and \| v\| 0 = 1\surd 
\lambda 
\geq \| v̄(k)i \| 0 = 1

\sqrt{} 

\̄lambda 
(k)
i

,

we have the following estimates for \| v  - v̄
(k)
i \| 0:

\| v  - v̄
(k)
i \| 0 \leq \| v  - Ei,kv\| 0 + \| Ei,kv  - v̄

(k)
i \| 0

= \| v  - Ei,kv\| 0 + \| v̄(k)i \| 0  - \| Ei,kv\| 0 = \| v  - Ei,kv\| 0 +
1\sqrt{} 
\̄lambda 
(k)
i

 - \| Ei,kv\| 0

\leq \| v  - Ei,kv\| 0 +
1\surd 
\lambda 
 - \| Ei,kv\| 0 = \| v  - Ei,kv\| 0 + \| v\| 0  - \| Ei,kv\| 0

\leq \| v  - Ei,kv\| 0 + \| v  - Ei,kv\| 0 \leq 2\| v  - Ei,kv\| 0

\leq 2

\biggl( 
1 +

1

\̄lambda 
(k)
1 \delta 

(k)
\lambda 

\biggr) 
\eta (V(k))\| v  - Ei,kv\| \leq 2

\biggl( 
1 +

1

\lambda 1\delta 
(k)
\lambda 

\biggr) 
\eta (V(k))\| v  - v̄

(k)
i \| .(3.31)

From the expansion (3.10), the definition (3.5), error estimate (3.12), and the property

\| v̄(k)i  - Ev̄
(k)
i \| = \| v  - Ei,kv\| \leq \| v  - v̄

(k)
i \| , the following error estimates hold:

| \lambda  - \̄lambda 
(k)
i | \leq \| v̄(k)i  - Ev̄

(k)
i \| 2

\| v̄(k)i \| 20
=

\| v  - Ei,kv\| 2

\| v̄(k)i \| 20

\leq \̄lambda 
(k)
i

\sqrt{} 
1 +

1

\lambda 1\delta 
(k),2
\lambda 

\eta 2(V(k))\| (I  - \scrP k)v\| \| v  - v̄
(k)
i \| 

\leq \lambda \̄lambda 
(k)
i

\sqrt{} 
1 +

1

\lambda 1\delta 
(k),2
\lambda 

\eta 2(V(k))\| (I  - \scrP k)\scrL  - 1v\| \| v  - v̄
(k)
i \| 
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\leq \lambda \̄lambda 
(k)
i

\sqrt{} 
1 +

1

\lambda 1\delta 
(k),2
\lambda 

\eta 2(V(k))\eta (V(k))\| v\| 0\| v  - v̄
(k)
i \| 

\leq 
\surd 
\lambda \̄lambda 

(k)
i

\sqrt{} 
1 +

1

\lambda 1\delta 
(k),2
\lambda 

\eta 2(V(k))\eta (V(k))\| v  - v̄
(k)
i \| .(3.32)

Then the combination of (3.31), (3.32), and the property \| v̄(k)i \| 0 = 1/

\sqrt{} 
\̄lambda 
(k)
i \leq 

1/
\surd 
\lambda leads to the following estimate:

(3.33)

\| \lambda v  - \̄lambda 
(k)
i v̄

(k)
i \| 0 \leq | \lambda | \| v  - v̄

(k)
i \| 0 + \| v̄(k)i \| 0| \lambda  - \̄lambda 

(k)
i \| 0

\leq 
\Biggl( 
2| \lambda | 
\biggl( 
1 +

1

\lambda 1\delta 
(k)
\lambda 

\biggr) 
+ \| v̄(k)i \| 0

\surd 
\lambda \̄lambda 

(k)
i

\sqrt{} 
1 +

1

\lambda 1\delta 
(k),2
\lambda 

\eta (V(k))2

\Biggr) 
\eta (V(k))\| v  - v̄

(k)
i \| 

\leq 
\Biggl( 
2| \lambda | 
\biggl( 
1 +

1

\lambda 1\delta 
(k)
\lambda 

\biggr) 
+ \̄lambda 

(k)
i

\sqrt{} 
1 +

1

\lambda 1\delta 
(k),2
\lambda 

\eta 2(V(k))2

\Biggr) 
\eta (V(k))\| v  - v̄

(k)
i \| ,

which is the desired result (3.25).

We now investigate the distance of \scrP kv from v̄
(k)
i . First, the following estimate

holds:

\| \scrP kv  - v̄
(k)
i \| 2 = \langle \scrP kv  - v̄

(k)
i ,\scrP kv  - v̄

(k)
i \rangle = \langle v  - v̄

(k)
i ,\scrP kv  - v̄

(k)
i \rangle 

= [\lambda v  - \̄lambda 
(k)
i v̄

(k)
i ,\scrP kv  - v̄

(k)
i ] \leq \| \lambda v  - \̄lambda 

(k)
i v̄

(k)
i \| 0\| \scrP kv  - v̄

(k)
i \| 0

\leq 1\surd 
\lambda 1

\| \lambda v  - \̄lambda 
(k)
i v̄

(k)
i \| 0\| \scrP kv  - v̄

(k)
i \| .(3.34)

From (3.33) and (3.34), we have the following estimate:

\| \scrP kv  - v̄
(k)
i \| \leq 1\surd 

\lambda 1
\| \lambda v  - \̄lambda 

(k)
i v̄

(k)
i \| 0

\leq 1\surd 
\lambda 1

\left( 
 2| \lambda | 

\biggl( 
1 +

1

\lambda 1\delta 
(k)
\lambda 

\biggr) 
+ \̄lambda 

(k)
i

\sqrt{}    1 +
\̄mu 
(k)
1

\delta 
(k),2
\lambda 

\eta (V(k))2

\right) 
 \eta (V(k))\| v  - v̄

(k)
i \| .(3.35)

Equation (3.35) and the triangle inequality lead to the following inequality:

\| v  - v̄
(k)
i \| \leq \| v  - \scrP kv\| + \| \scrP kv  - v̄

(k)
i \| 

\leq \| v  - \scrP kv\| 

+
1\surd 
\lambda 1

\left( 
 2| \lambda | 

\biggl( 
1 +

1

\lambda 1\delta 
(k)
\lambda 

\biggr) 
+ \̄lambda 

(k)
i

\sqrt{}    1 +
\̄mu 
(k)
1

\delta 
(k),2
\lambda 

\eta 2(V(k))

\right) 
 \eta (V(k))\| v  - v̄

(k)
i \| ,

which in turn implies that

\| v  - v̄
(k)
i \| 

\leq 1

1 - 1\surd 
\lambda 1

\biggl( 
2| \lambda | 
\Bigl( 
1 + 1

\lambda 1\delta 
(k)
\lambda 

\Bigr) 
+ \̄lambda 

(k)
i

\sqrt{} 
1 + 1

\lambda 1\delta 
(k),2
\lambda 

\eta 2(V(k))

\biggr) 
\eta (V(k))

\| v  - \scrP kv\| D
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\leq 1

1 - D\lambda \eta (V(k))
\| v  - \scrP kv\| .

This completes the proof of the desired result (3.26).

3.1. One correction step. To describe the multilevel correction method we first
present the “one correction step.” Given an eigenpair approximation (\lambda (k,\ell ), v(k,\ell ))
\in R \times V

(k), Algorithm 3.1 produces an improved eigenpair approximation (\lambda (k,\ell +1),
v(k,\ell +1)) \in R\times V

(k). In this algorithm, the superscript (k, \ell ) denotes the \ell th correction
step in the kth level gamblet space.

Algorithm 3.1 One correction step.

1. Let \widetilde v(k,\ell +1) \in V
(k) be the solution of the linear system

\langle \widetilde v(k,\ell +1), w\rangle = \lambda (k,\ell )[v(k,\ell ), w] \forall w \in V
(k).(3.36)

Approximate \widetilde v(k,\ell +1) by \widehat v(k,\ell +1) = MG(k, v(k,\ell ), \lambda (k,\ell )v(k,\ell )) using Algorithm
2.2.

2. Let V(1) be the coarsest gamblet space, define

V
(1,k) = V

(1) + span\{ \widehat v(k,\ell +1)\} ,

and solve the subspace eigenvalue problem: Find (\lambda (k,\ell +1), v(k,\ell +1)) \in R \times 
V

(1,k) such that \langle v(k,\ell +1), v(k,\ell +1)\rangle = 1 and

\langle v(k,\ell +1), w\rangle = \lambda (k,\ell +1)[v(k,\ell +1), w] \forall w \in V
(1,k).(3.37)

Let EigenMG be the function summarizing the action of the steps described above,
i.e.,

(\lambda (k,\ell +1), v(k,\ell +1)) = EigenMG(V(1), \lambda (k,\ell ), v(k,\ell ),V(k)).

Remark 3.6. Notice that in (3.37), the orthogonalization is only performed in the
coarse space V

(1,k) with dimension 1 + dimV
(1).

For simplicity of notation, we assume that the eigenvalue gap \delta 
(k)
\lambda has a uniform

lower bound which is denoted by \delta \lambda (which can be seen as the “true” separation of the
eigenvalues) in the following parts of this paper. This assumption is reasonable when
the mesh size H is small enough. We refer to [47, Theorem 4.6] for details on the
dependence of error estimates on the eigenvalue gap. Furthermore, we also assume
the concerned eigenpair approximation (\lambda (k,\ell ), v(k,\ell )) is closet to the exact eigenpair
(\̄lambda (k), v̄(k)) of (3.3) and (\lambda , v) of (3.1).

Theorem 3.7. Assume there exists exact eigenpair (\̄lambda (k), v̄(k)) such that the eigen-
pair approximation (\lambda (k,\ell ), v(k,\ell )) satisfies \| v(k,\ell )\| = 1 and

\| \̄lambda (k)v̄(k)  - \lambda (k,\ell )v(k,\ell )\| 0 \leq C1\eta (V
(1))\| v̄(k)  - v(k,\ell )\| (3.38)

for some constant C1. The multigrid iteration for the linear equation ( 3.36) has the
following uniform contraction rate:

\| \widehat v(k,\ell +1)  - \widetilde v(k,\ell +1)\| \leq \theta \| v(k,\ell )  - \widetilde v(k,\ell +1)\| (3.39)
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with \theta < 1 independent from k and \ell .
Then the eigenpair approximation (\lambda (k,\ell +1), v(k,\ell +1)) \in R\times V

(k) produced by Al-
gorithm 3.1 satisfies

\| v̄(k)  - v(k,\ell +1)\| \leq \gamma \| v̄(k)  - v(k,\ell )\| ,(3.40)

\| \̄lambda (k)v̄(k)  - \lambda (k,\ell +1)v(k,\ell +1)\| 0 \leq C̄\lambda \eta (V
(1))\| v̄(k)  - v(k,\ell +1)\| ,(3.41)

where the constants \gamma , C̄\lambda , and D\lambda are defined as follows:

\gamma =
1

1 - D̄\lambda \eta (V(1))

\biggl( 
\theta + (1 + \theta )

C1\surd 
\lambda 1
\eta (V(1))

\biggr) 
,(3.42)

C̄\lambda = 2| \lambda | 
\Bigl( 
1 +

1

\lambda 1\delta \lambda 

\Bigr) 
+ \̄lambda 

(1)
i

\sqrt{} 
1 +

1

\lambda 1\delta 2\lambda 
\eta 2(V(1))2,(3.43)

D̄\lambda =
1\surd 
\lambda 1

\Biggl( 
2| \lambda | 
\Bigl( 
1 +

1

\lambda 1\delta \lambda 

\Bigr) 
+ \̄lambda 

(1)
i

\sqrt{} 
1 +

1

\lambda 1\delta 2\lambda 
\eta 2(V(1))

\Biggr) 
.(3.44)

Proof. From (3.2), (3.3), and (3.36), we have for w \in V
(k),

\langle v̄(k)  - \widetilde v(k,\ell +1), w\rangle = [(\̄lambda (k)v̄(k)  - \lambda (k,\ell )v(k,\ell )), w]

\leq \| \̄lambda (k)v̄(k)  - \lambda (k,\ell )v(k,\ell )\| 0\| w\| 0 \leq C1\eta (V
(k))\| v̄(k)  - v(k,\ell )\| \| w\| 0

\leq 1\surd 
\lambda 1
C1\eta (V

(k))\| v̄(k)  - v(k,\ell )\| \| w\| .

Taking w = v̄(k)  - \widetilde v(k,\ell +1) we deduce from (3.38) that

\| v̄(k)  - \widetilde v(k,\ell +1)\| \leq C1\surd 
\lambda 1
\eta (V(1))\| v̄(k)  - v(k,\ell )\| .(3.45)

Using (3.39) and (3.45) we deduce that

\| v̄(k)  - \widehat v(k,\ell +1)\| \leq \| v̄(k)  - \widetilde v(k,\ell +1)\| + \| \widetilde v(k,\ell +1)  - \widehat v(k,\ell +1)\| 
\leq \| v̄(k)  - \widetilde v(k,\ell +1)\| + \theta \| \widetilde v(k,\ell +1)  - v(k,\ell )\| 
\leq \| v̄(k)  - \widetilde v(k,\ell +1)\| + \theta \| \widetilde v(k,\ell +1)  - v̄(k)\| + \theta \| v̄(k)  - v(k,\ell )\| 
\leq (1 + \theta )\| v̄(k)  - \widetilde v(k,\ell +1)\| + \theta \| v̄(k)  - v(k,\ell )\| 

\leq 
\Bigl( 
\theta + (1 + \theta )

C1\surd 
\lambda 1
\eta (V(1))

\Bigr) 
\| v̄(k)  - v(k,\ell )\| .(3.46)

The eigenvalue problem (3.37) can be seen as a low-dimensional subspace approxima-
tion of the eigenvalue problem (3.3). Using (3.26), Lemmas 3.4, 3.5, and their proof,
we obtain that

\| v̄(k)  - v(k,\ell +1)\| \leq 1

1 - D̄\lambda \eta (V(1,k))
inf

w(1,k)\in V(1,k)
\| v̄(k)  - w(1,k)\| 

\leq 1

1 - D̄\lambda \eta (V(1))
\| v̄(k)  - \widehat v(k,\ell +1)\| 

\leq \gamma \| v̄(k)  - v(k,\ell )\| (3.47)
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and

\| \̄lambda (k)v̄(k)  - \lambda (k,\ell +1)v(k,\ell +1)\| 0 \leq C̄\lambda \eta (V
(1,k))\| v̄(k)  - v(k,\ell +1)\| 

\leq C̄\lambda \eta (V
(1))\| v̄(k)  - v(k,\ell +1)\| .(3.48)

Then we have the desired results (3.40) and (3.41) and conclude the proof.

Remark 3.8. Definition (3.42), Theorem 2.10, and Lemmas 3.4 and 3.5 imply that
\gamma is less than 1 when \eta (V(1)) is small enough. If \lambda is large or the spectral gap \delta \lambda is
small, then we need to use a smaller \eta (V(1)) or H. Furthermore, we can increase the
multigrid smoothing steps m1 and m2 to reduce \theta and then \gamma . These theoretical re-
strictions do not limit practical applications where (in numerical implementations), H
is simply chosen (just) small enough so that the number of elements of corresponding
coarsest space (just) exceeds the required number of eigenpairs (H and the coarsest
space are adapted to the number of eigenpairs to be computed).

3.2. Multilevel method for eigenvalue problem. In this subsection, we in-
troduce the multilevel method based on the subspace correction method defined in
Algorithm 3.1 and the properties of gamblet spaces. This multilevel method can
achieve the same order of accuracy as the direct solve of the eigenvalue problem on
the finest (gamblet) space. The multilevel method is presented in Algorithm 3.2.

Algorithm 3.2 Multilevel correction scheme.

1. Define the following eigenvalue problem in V
(1): Find (\lambda (1), v(1)) \in R\times V

(1)

such that \langle v(1), v(1)\rangle = 1 and

\langle v(1), w(1)\rangle = \lambda (1)[v(1), w(1)] \forall w(1) \in V
(1).

(\lambda (1), v(1)) \in R\times V
(1) is the initial eigenpair approximation.

2. For k = 2, . . . , q, do the following iterations
\bullet Set \lambda (k,0) = \lambda (k - 1) and v(k,0) = v(k - 1).
\bullet Perform the following subspace correction steps for \ell = 0, . . . , \varpi  - 1:

(\lambda (k,\ell +1), v(k,\ell +1)) = EigenMG(V(1), \lambda (k,\ell ), v(k,\ell ),V(k)).

\bullet Set \lambda (k) = \lambda (k,\varpi ) and v(k) = v(k,\varpi ).
End Do

Finally, we obtain an eigenpair approximation (\lambda (q), v(q)) \in R \times V
(q) in the finest

gamblet space.

Theorem 3.9. After implementing Algorithm 3.2, the resulting eigenpair approx-
imation (\lambda (q), v(q)) has the following error estimates:

\| v̄(q)  - v(q)\| \leq 2

q - 1\sum 

k=1

\gamma (q - k)\varpi \delta k(\lambda ),(3.49)

\| v̄(q)  - v(q)\| 0 \leq 2
\Bigl( 
1 +

1

\lambda 1\delta \lambda 

\Bigr) 
\eta (V(1))\| v̄(q)  - v(q)\| ,(3.50)

| \̄lambda (q)  - \lambda (q)| \leq \lambda (q)\| v(q)  - v̄(q)\| 2,(3.51)

where \varpi is the number of subspace correction steps in Algorithm 3.2.
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2538 HEHU XIE, LEI ZHANG, AND HOUMAN OWHADI

Proof. Define ek := v̄(k) - v(k). From step 1 in Algorithm 3.2, it is obvious e1 = 0.
Then the assumption (3.38) in Theorem 3.7 is satisfied for k = 1. From the definitions
of Algorithms 3.1 and 3.2, Theorem 3.7, and the recursive argument, the assumption
(3.38) holds for each level of space V

(k) (k = 1, . . . , q) with C1 = C̄\lambda in (3.43). Then
the convergence rate (3.40) is valid for all k = 1, . . . , q and \ell = 0, . . . , \varpi  - 1.

For k = 2, . . . , q, by Theorem 3.7 and the recursive argument, we have

\| ek\| \leq \gamma \varpi \| v̄(k)  - v(k - 1)\| 
\leq \gamma \varpi 

\bigl( 
\| v̄(k)  - v̄(k - 1)\| + \| v̄(k - 1)  - v(k - 1)\| 

\bigr) 

\leq \gamma \varpi 
\bigl( 
\| v̄(k)  - v\| + \| v  - v̄(k - 1)\| + \| v̄(k - 1)  - v(k - 1)\| 

\bigr) 

= \gamma \varpi 
\bigl( 
\delta k(\lambda ) + \delta k - 1(\lambda ) + \| ek - 1\| 

\bigr) 

\leq \gamma \varpi 
\bigl( 
2\delta k - 1(\lambda ) + \| ek - 1\| 

\bigr) 
.(3.52)

By iterating inequality (3.52), the following inequalities hold:

\| eq\| \leq 2
\bigl( 
\gamma \varpi \delta q - 1(\lambda ) + \cdot \cdot \cdot + \gamma (q - 1)\varpi \delta 1(\lambda )

\bigr) 
\leq 2

q - 1\sum 

k=1

\gamma (q - k)\varpi \delta k(\lambda ),(3.53)

which leads to the desired result (3.49).
From (3.10), (3.31), (3.32), and (3.49), we have the following error estimates:

\| v̄(q)  - v(q)\| 0 \leq 2

\biggl( 
1 +

1

\lambda 1\delta \lambda 

\biggr) 
\eta (V(1))\| v̄(q)  - v(q)\| ,

| \̄lambda (q)  - \lambda (q)| \leq \| v(q)  - v̄(q)\| 2
\| v(q)\| 20

\leq \lambda (q)\| v(q)  - v̄(q)\| 2,

which are the desired results (3.50) and (3.51).

Remark 3.10. The proof of Theorem 3.9 implies that the assumption (3.38) in
Theorem 3.7 holds for C1 = C̄\lambda in each level of space V

(k) (k = 1, . . . , q). The
structure of Algorithm 3.2 implies that C̄\lambda does not change as the algorithm progresses
from the initial space V

(1) to the finest one V
(q).

Corollary 3.11. Let \gamma be the constant in (3.42). Given the uniform contraction
rate 0 < \theta < 1 (obtained from Theorem 2.10) and given the bound \eta (V(1)) \leq CH
(obtained from Property 2.3, which is implied by Theorem 2.5), select 0 < H < 1
small enough so that 0 < \gamma < 1 and then choose the integer \varpi > 1 to satisfy

(3.54)
\gamma \varpi 

H
< 1 .

Then the resulting eigenpair approximation (\lambda (q), v(q)) obtained by Algorithm 3.2 has
the following error estimates:

\| v  - v(q)\| \leq CC \prime 
\lambda 

\surd 
\lambda Hq,(3.55)

\| v  - v(q)\| 0 \leq 2C2

\biggl( \Bigl( 
1 +

1

\lambda 1\delta \lambda 

\Bigr) \Bigl( 
1 +Hq - 1

\Bigr) \biggr) 
C \prime 

\lambda H
q,(3.56)

| \lambda  - \lambda (q)| \leq \lambda \lambda (q)(CC \prime 
\lambda )

2H2q,(3.57)
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where the constant C comes from Property 2.3 or Proposition 3.1 and C \prime 
\lambda is defined

as follows:

C \prime 
\lambda =

\left( 
 
\sqrt{} 
2\lambda 
\Bigl( 
1 +

1

\lambda 1\delta 2\lambda 
\eta 2(V(q))

\Bigr) 
+ 2

1 - 
\Bigl( 

\gamma \varpi 

H

\Bigr) q

1 - \gamma \varpi 

H

\right) 
 .

Proof. From Lemma 3.5, Theorem 3.9, (3.8), (3.24), and (3.54), we have the
following estimates

\| v  - v(q)\| \leq \| v  - v̄(q)\| + \| v̄(q)  - v(q)\| 

\leq 
\sqrt{} 

2

\biggl( 
1 +

1

\lambda 1\delta 2\lambda 
\eta 2(V(q))

\biggr) 
\delta q(\lambda ) + 2

q - 1\sum 

k=1

\gamma (q - k)\varpi \delta k(\lambda )

\leq C

\sqrt{} 
2

\biggl( 
1 +

1

\lambda 1\delta 2\lambda 
\eta 2(V(q))

\biggr) \surd 
\lambda Hq + 2C

q - 1\sum 

k=1

\gamma (q - k)\varpi 
\surd 
\lambda Hk

\leq C

\sqrt{} 
2\lambda 
\Bigl( 
1 +

1

\lambda 1\delta 2\lambda 
\eta 2(V(q))

\Bigr) \surd 
\lambda Hq + 2C

\surd 
\lambda Hq

q - 1\sum 

k=0

\Bigl( \gamma \varpi 
H

\Bigr) k

\leq C

\left( 
 
\sqrt{} 
2\lambda 
\Bigl( 
1 +

1

\lambda 1\delta 2\lambda 
\eta 2(V(q))

\Bigr) 
+ 2

1 - 
\Bigl( 

\gamma \varpi 

H

\Bigr) q

1 - \gamma \varpi 

H

\right) 
 \surd 

\lambda Hq.(3.58)

This is the desired result (3.55).
From (3.8), (3.31), (3.49), (3.50), and (3.58), \| v  - v(q)\| 0 has the following esti-

mates:

\| v  - v(q)\| 0 \leq \| v  - v̄(q)\| 0 + \| v̄(q)  - v(q)\| 0

\leq 2

\biggl( 
1 +

1

\lambda 1\delta \lambda 

\biggr) 
\eta (V(q))\| v  - v̄(q)\| + 2

\biggl( 
1 +

1

\lambda 1\delta \lambda 

\biggr) 
\eta (V(1))\| v̄(q)  - v(q)\| 

\leq 2C

\biggl( 
1 +

1

\lambda 1\delta \lambda 

\biggr) 
\eta (V(q))

\sqrt{} 
2

\biggl( 
1 +

1

\lambda 1\delta 2\lambda 
\eta 2(V(q))

\biggr) 
Hq

+4C

\biggl( 
1 +

1

\lambda 1\delta \lambda 

\biggr) 
\eta (V(1))

1 - 
\Bigl( 

\gamma \varpi 

H

\Bigr) q

1 - \gamma \varpi 

H

Hq

\leq 2C

\biggl( \Bigl( 
1 +

1

\lambda 1\delta \lambda 

\Bigr) \Bigl( 
1 +Hq - 1

\Bigr) \biggr) 
C \prime 

\lambda H
q.

From (3.10) and (3.55), the error estimate for | \lambda  - \lambda (q)| can be deduced as follows:

| \lambda  - \lambda (q)| \leq \| v(q)  - v\| 2
\| v(q)\| 20

\leq \lambda (q)\| v(q)  - v\| 2 \leq \lambda \lambda (q)C2C \prime 
\lambda 
2
H2q.

Then the desired results (3.56) and (3.57) are obtained and the proof is complete.

Remark 3.12. The main computational work of Algorithm 3.1 is to solve the linear
equation (3.36) by the multigrid method defined in Algorithm 2.2. Therefore, Remark
2.9 implies the bound \scrO (N(log(N\varepsilon ))

2d+1 log(\varepsilon )/ log(\gamma )) on the number of operations
required to achieve accuracy \varepsilon (see [41, 42, 44, 48, 43]).
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4. Numerical results. In this section, numerical examples are presented to
illustrate the efficiency of the gamblet based multilevel correction method for bench-
mark multiscale eigenvalue problems. Furthermore, we will show that the gamblets
can also be used as efficient preconditioner for state-of-the-art eigensolvers such as
LOBPCG method.

4.1. SPE10. In the first example, we solve the eigenvalue problem (2.8) on Ω =
[ - 1, 1]\times [ - 1, 1], and the coefficient matrix a(x) is taken from the data of the SPE10
benchmark (http://www.spe.org/web/csp/). The contrast of a(x) is \lambda max(a)/\lambda min(a)
\simeq 1 \cdot 106.

The fine mesh \scrT h is a regular square mesh with mesh size h = 2(1 + 2q) - 1 and
128 \times 128 interior nodes. At the finest level, we use continuous bilinear nodal basis
elements \varphi i spanned by \{ 1, x1, x2, x1x2\} in each element of \scrT h. a(x) is piecewise
constant over \scrT h as illustrated in Figure 2. The measurement function is chosen as in
Example 2.4. For the gamblet decomposition, we choose H = 1/2, q = 7. The pre-
wavelets \psi and the gamblet decomposition of the solution u for the elliptic equation
 - div a(x)\nabla u = sin(\pi x) sin(\pi y) are shown in Figures 3 and 4, respectively.

Fig. 2. Left: coefficient a(x) from SPE10 benchmark, in log10 scale. Right: solution u for the
elliptic equation  - div a(x)\nabla u = sin(πx) sin(πy).

Fig. 3. Prewavelets ψ at different scales.
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Fig. 4. Solution for the elliptic equation with f = sin(πx) sin(πy).

We calculate the first 12 eigenvalues using the multilevel correction method in
Algorithm 3.2; therefore, we actually take V

(2) as the coarsest subspace and the
effective mesh size is H2 = 1/4. We choose parameters m1 = m2 = 2 and p = 1 in the
multigrid iteration step defined in Algorithm 2.2 to solve the linear equation (3.36),
and use Gauss–Seidel as the smoother.

We compare the gamblet based multilevel correction method with geometric
multigrid multilevel correction method. In Table 1, we show the numerical results
for the first 12 eigenvalues. Here we take the number of subspace correction steps
\varpi = 1 for k = 3, . . . , q. For comparison, we also show the corresponding numerical re-
sults in Table 2 with the standard geometric multigrid linear solver. We observe much
faster convergence for the gamblet based multilevel correction method (106 smaller
for the first eigenvalue).

Table 1

Relative errors | (λ
(k)
i  - λi)/λi| for the gamblet based multilevel correction method. First, a few

iterations on the coarser levels.

i k = 2 k = 3 k = 4 k=5 k = 6 k = 7
1 6.1568e-2 1.3356e-2 3.0902e-3 1.2586e-3 3.8293e-4 1.5586e-8
2 1.6827e-1 3.0270e-2 4.6347e-3 1.0656e-3 2.4616e-4 5.3456e-8
3 7.9106e-1 1.1814e-1 2.3155e-2 2.8431e-3 2.9124e-4 4.7883e-6
4 5.8274e-1 1.9203e-1 4.5203e-2 7.7621e-3 7.7980e-4 4.4444e-5
5 7.5657e-1 1.6533e-1 1.6978e-2 2.8863e-3 3.3941e-4 1.0250e-5
6 9.4417e-1 2.9132e-1 5.0443e-2 7.0754e-3 7.7061e-4 4.4771e-5
7 1.7033e0 2.8337e-1 8.1393e-2 2.4187e-2 4.6014e-3 7.2897e-4
8 2.4517e0 5.0598e-1 1.3164e-1 2.4945e-2 4.6447e-3 8.7663e-4
9 6.4576e0 6.6654e-1 2.6205e-1 9.9177e-2 1.6962e-2 3.3086e-3
10 6.9955e0 6.8507e-1 2.4108e-1 4.7575e-2 1.9529e-2 9.6051e-3
11 1.0927e1 8.6987e-1 2.6043e-1 7.5851e-2 1.9996e-2 8.3358e-3
12 1.3665e1 9.5975e-1 3.3355e-1 5.9182e-2 1.9377e-2 7.5015e-3

Remark 4.1. It is shown in [37] that for approximate eigenvalues with respect to
the LOD coarse spaces on scale H, a postprocessing step can improve the eigenvalue
error from H4 to H6. The postprocessing step is a correction with exact solve on
the finest level. Since we are using an approximate solve in the correction step, this
corresponds to the multilevel correction scheme with one correction step on each level,
which is shown in Table 1. Comparing Table 1 with Table 2 in [37] shows a similar
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improvement of accuracy at the finer levels (although the coefficients a(x) are not
the same, we expect a similar behavior for the approximation errors of eigenvalues).
However, with geometric multigrid, the error reduction is very slow, which is shown
by Table 2.

Table 2

Relative errors | (λ
(k)
i  - λi)/λi| for multilevel correction with geometric multigrid. First, a few

iterations on the coarser levels.

i k = 2 k = 3 k = 4 k=5 k = 6 k = 7
1 2.6912e0 2.6698e0 2.5627e0 2.0948e0 4.4351e-1 5.0859e-2
2 2.4310e0 2.3886e0 2.3037e0 1.8812e0 4.8645e-1 5.4931e-2
3 2.3129e0 2.2749e0 2.1802e0 1.8076e0 4.9837e-1 6.4541e-2
4 2.6706e0 2.6225e0 2.5193e0 2.0636e0 5.8780e-1 9.2958e-2
5 3.1593e0 2.9673e0 2.8141e0 2.2948e0 6.2242e-1 9.8928e-2
6 2.7198e0 2.5764e0 2.4233e0 1.9427e0 5.3022e-1 7.5071e-2
7 2.9581e0 2.8158e0 2.6886e0 2.2162e0 6.1367e-1 9.9160e-2
8 2.9712e0 2.8012e0 2.6446e0 2.1981e0 6.4002e-1 9.3180e-2
9 3.7158e0 3.2765e0 3.0548e0 2.4382e0 6.8837e-1 1.1892e-1
10 3.1307e0 2.7671e0 2.5808e0 2.0749e0 5.9963e-1 8.4462e-2
11 3.0937e0 2.8429e0 2.6748e0 2.1673e0 5.7858e-1 8.8655e-2
12 3.1317e0 2.7967e0 2.6259e0 2.1068e0 5.8031e-1 8.6055e-2

If higher accuracy is pursued, we can take more correction steps at the finest level
k = q. See Figure 5 for the convergence history of both the gamblet based method
and the geometric multigrid based method up to 10 - 14. The gamblet based method
converges much faster than the geometric multigrid based method.
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Fig. 5. Convergence history for first 12 eigenvalues. Left: Gamblet based multilevel method.
Right: Geometric mutligrid based multilevel method. The iteration number corresponds to the num-
ber of correction steps, namely the outer iteration number. The first a few iterations are on the
coarse levels k = 3, . . . , q  - 1, and the following iterations are on the finest level k = q.
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Fig. 6. CPU time for Gamblet based multilevel correction and ARPACK.

We now compare the efficiency of the multilevel correction method with the
benchmark solver ARPACK (https://www.caam.rice.edu/software/ARPACK/). We
implement the multilevel correction method in C (with a precomputed Gamblet de-
composition), and run the code on a machine with two 6-core dual thread Intel Xeon
E5-2620 2.00GHz CPUs with 72GB memory. We solve for 12 eigenvalues, and stop the
multilevel correction method when relative errors for all eigenvalues are below 10 - 9.
For comparison, we use the ARPACK library to solve the same eigenvalue problems,
and use the geometric multigrid method to solve the corresponding linear systems.
The results in Figure 6 show that the Gamblet based multilevel correction method
achieves a ten-fold acceleration in terms of CPU time. We only plot the “online”
computing time for eigenpairs in Figure 6, the “offline” precomputing time for the
gamblet decomposition is not included since we only have a MATLAB implementation
for this part. For the MATLAB implementation of the multilevel correction method,
the running time for the “online” and “offline” parts are usually proportional, and
the a priori theoretical bound on the complexity of the gamblets precomputation is
\scrO (N ln2d+1N).

4.2. Random checkerboard. In the second example, we consider the eigen-
value problem for the random checkerboard case. Here, Ω = [ - 1, 1] \times [ - 1, 1] and
the matrix a(x) is a realization of random coefficients taking values 20 or 1/20 with
probability 1/2 at small scale \varepsilon = 1/64; see Figure 7. The coefficient a(x) has contrast
4\times 102, and is highly oscillatory.

We calculate the first 12 eigenvalues. The parameters for Algorithm 3.2 are
H = 1/2, q = 7, and we take V

(2) as the coarsest subspace. We choose m1 = m2 = 2
and p = 1, and use Gauss–Seidel as the smoother in Algorithm 2.2. We take the
number of subspace correction steps \varpi = 1 for k = 3, . . . , q  - 1, then we run the
subspace correction at the finest level k = q until convergence.

The convergence rates shown in Figure 8 suggest a ten-fold acceleration in terms of
iteration number when comparing the gamblet and based multilevel correction method
to the geometric multigrid based multilevel correction method. While it takes more
than 800 iterations for geometric multigrid based multilevel correction method to
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Fig. 7. Random Checkerboard coefficient, in log10 scale.

converge for the first 12 eigenvalues to converge to accuracy 10 - 14, the gamblet based
multilevel correction method converges to that accuracy within 70 outer iterations.

Iteration number
0 10 20 30 40 50 60 70

E
s
ti
m

a
te

d
 e

ig
e
n
v
a
lu

e
 e

rr
o
rs

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

Eigenvalue errors for Different Eigenpairs

Iteration number
0 200 400 600 800 1000 1200

E
s
ti
m

a
te

d
 e

ig
e
n
v
a
lu

e
 e

rr
o
rs

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

Eigenvalue errors for Different Eigenpairs

Fig. 8. Convergence history for first 12 eigenvalues. Left: gamblet based method. Right:
geometric mutligrid based method. The iteration number corresponds to the number of correction
steps, namely, the outer iteration number. The first a few iterations are on the coarse level k =
3, . . . , q  - 1, and the following iterations are on the finest level k = q.

4.3. Gamblet preconditioned LOBPCG method. In the previous sections,
we have proposed the Gamblet based multilevel correction scheme, proved its conver-
gence and numerically demonstrated its performance. In this section, we will show
that Gamblets can also be used as an efficient preconditioner for existing eigensolvers.
To be precise, we construct the gamblet based preconditioner for the Locally Optimal
Block Preconditioned Conjugate Gradient (LOBPCG) method [25, 28], which is a
class of widely used eigensolvers.

A variety of Krylov subspace-based methods are designed to solve a few extreme
eigenvalues of symmetric positive matrix [49, 19, 10, 24, 25, 28, 7]. Many studies have
shown that LOBPCG is one of the most effective method at this task [27, 18] and there
are various recent developments of LOBPCG for indefinite eigenvalue problems [8],
nonlinear eigenvalue problems [51], electronic structure calculation [52], and tensor
decomposition [46]. The main advantages of LOBPCG are that the costs per iteration
and the memory use are competitive with those of the Lanczos method, linear conver-
gence is theoretically guaranteed and practically observed, it allows utilizing highly
efficient matrix-matrix operations, e.g., BLAS 3, and it can directly take advantage
of preconditioning, in contrast to the Lanczos method.

LOBPCG can be seen as a generalization of the Preconditioned Inverse Iteration
(PINVIT) method [19, 10, 24]. The PINVIT method [19, 10, 24, 25, 28], can be
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motivated as an inexact Newton method for the minimization of the Rayleigh quotient.
The Rayleigh quotient \mu (x) for a vector x and a symmetric, positive definite matrix
M is defined by

\mu (x,M) := \mu (x) =
xTMx

xTx
.

The global minimum of \mu (x) is achieved at x = v1, with \lambda 1 = \mu (x), where (\lambda 1, v1)
is the eigenvalue pair of M corresponding to the smallest eigenvalue \lambda 1. This means
that minimizing the Rayleigh quotient is equal to computing the smallest eigenvalue.
With the following inexact Newton method, from

wi = B - 1(Mxi  - \mu (xi)xi),

xi+1 = xi  - wi,

we get the PINVIT. The preconditioner B for M have to satisfy \| I  - B - 1M\| M \leq 
c < 1. The inexact Newton method can be relaxed by adding a step size \alpha 

xi+1 = xi  - \alpha iwi,

Finding the optimal step size \alpha i is equivalent to solving the a small eigenvalue problem
with respect to M in the subspace \{ xi, wi\} . In [25] Knyazev used the optimal vector
in the subspace \{ xi - 1, wi, xi\} as the next iterate. The resulting method is called
LOBPCG.

In the following comparison, we adopt the MATLAB implementation of LOBPCG
by Knyazev [26]. We use the gamblet based multigrid as a preconditioner in the
LOBPCG method, and compare its performance for SPE10 example with geometric
multigrid preconditioned CG (GMGCG) and general purpose ILU based precondi-
tioner; the results are shown in Figure 9. It is clear that the gamblet preconditioned
LOBPCG as well as the gamblet multilevel correction scheme (see Figure 9) have
better performance than the GMGCG or ILU preconditioned LOBPCG in terms of
iteration number. The gamblet based LOBPCG converges with the accuracy (residu-
als) of about 10 - 15, with 56 iterations in about 30 seconds (in addition, the precom-
putation of the gamblets costs about 18 seconds). While the GMG preconditioned
LOBPCG in Figure 9 fails to converge in 1000 iterations, and the residuals are above
10 - 5 when it is stopped at 1000 iterations in about 60 seconds. Although our imple-
mentation in MATLAB is not optimized in terms of speed, the above observations
indicate that the gamblet preconditioned LOBPCG has the potential to achieve even
better performance with an optimized implementation.

Remark 4.2. The LOBPCG method has a larger subspace for the small Rayleigh–
Ritz eigenvalue problem, compared with the multilevel correction scheme in (3.37).
This could be the reason why the gamblet preconditinoed LOBPCG scheme has fewer
(but comparable) outer iterations compared with the multilevel correction scheme
shown in Figure 5. On the other hand, orthogonalization is crucial for a robust
implementation of LOBPCG, and adaptive stopping criteria needs to be used for
efficiency. Delicate strategies [18] are proposed in order to ensure the robustness of
LOBPCG. Comparing with LOBPCG, the gamblet based multilevel correction scheme
appears to be very robust in our numerical experiments: we only solve an eigenvalue
problem at the coarsest level, and still achieve an accuracy of 10 - 14 without using
any adaptive stopping criteria; for example, see Figure 5.
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(a) Eigenvalue errors for the gamblet pre-
conditioned LOBPCG.
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(b) Residuals for the gamblet precondi-
tioned LOBPCG.
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(c) Eigenvalue errors for the GMGCG
preconditioned LOBPCG.
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(d) Residuals for the GMGCG precondi-
tioned LOBPCG.
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(e) Eigenvalue errors for ILU precondi-
tioned LOBPCG.
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(f) Residuals for ILU preconditioned
LOBPCG.

Fig. 9. Eigenvalue errors and residuals for the first 12 eigenpairs of the eigenvalue problems
for SPE 10 case. Top row: gamblet preconditioned LOBPCG. Middle row: geometric multigrid
preconditioned LOBPCG. Bottom row: ILU preconditioned LOBPCG (using MATLAB command
ichol(A,struct(‘michol’,‘on’))).

Combination of multilevel correction with LOBPCG. We noticed that a “good”
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initial value is important for the convergence of the LOBPCG method. Therefore, we
propose combining the multilevel correction scheme and LOBPCG to derive a hybrid
method. In this combination, the gamblet based multilevel correction scheme is used
to compute, to a high accuracy, an initial approximation for the eigenpairs for the
gamblet preconditioned LOBPCG scheme. We use this combined method to solve
the so-called Anderson Localization eigenvalue problem in the following subsection.
Since LOBPCG is based on the so-called Ky Fan trace minimization principle, at each
step the sum of the eigenvalues are minimized [32]. Therefore, the convergence rate
of different eigenvalues will be balanced.

4.3.1. Anderson localization. Consider the linear Schrödinger operator \scrH :=
 - ∆+ V (x) with disorder potential V (x) (as presented in [2]) whose Anderson local-
ization [3] properties are analyzed in [4] and in [2] (see [9] and references therein for
the ubiquity and importance of localization in wave physics).

Let Ω := [ - 1, 1]2 be the domain of the operator. By [2], V (x) is a disorder
potential that vary randomly between two values \beta \geq 1

\varepsilon 2 \gg \alpha on a small scale \varepsilon . In
the numerical experiment, we choose \varepsilon = 0.01, \beta = 104, and \alpha = 1 (the eigenvalue
problem becomes more difficult as \varepsilon becomes smaller). See Figure 10 for results using
the gamblet based multilevel correction method, gamblet preconditioned LOBPCG,
and the hybrid method.
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Fig. 10. Convergence history for the first 12 eigenvalues. Left: using the gamblet based multi-
level correction method. Middle: using the gamblet preconditioned LOBPCG method. Right: using
the hybrid method, namely, generating the initial approximation by the gamblet based multilevel
method, then preforming the gamblet preconditioned LOBPCG method until convergence. The it-
eration number corresponds to the number of correction steps, namely, the outer iteration number.
The first few iterations are on the coarse level k = 3, . . . , q  - 1, and the following iterations are on
the finest level k = q.
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