
 Open access  Journal Article  DOI:10.1109/83.877214

Fast eigenspace decomposition of correlated images — Source link 

Chu-Yin Chang, Anthony A. Maciejewski, Venkataramanan Balakrishnan

Published on: 01 Jan 2000 - IEEE Transactions on Image Processing (IEEE)

Topics: Eigendecomposition of a matrix, Image processing, Circulant matrix, Subspace topology and
Matrix decomposition

Related papers:

 Visual learning and recognition of 3-D objects from appearance

 Introduction to Statistical Pattern Recognition

 Eigenfaces for recognition

 Application of the Karhunen-Loeve procedure for the characterization of human faces

 Subspace methods for robot vision

Share this paper:    

View more about this paper here: https://typeset.io/papers/fast-eigenspace-decomposition-of-correlated-images-
3uyesb1ryj

https://typeset.io/
https://www.doi.org/10.1109/83.877214
https://typeset.io/papers/fast-eigenspace-decomposition-of-correlated-images-3uyesb1ryj
https://typeset.io/authors/chu-yin-chang-8q24w7r2yx
https://typeset.io/authors/anthony-a-maciejewski-43tds9bwrz
https://typeset.io/authors/venkataramanan-balakrishnan-5fuvhxf4qb
https://typeset.io/journals/ieee-transactions-on-image-processing-2awu425s
https://typeset.io/topics/eigendecomposition-of-a-matrix-15eeetv1
https://typeset.io/topics/image-processing-22uxqmf7
https://typeset.io/topics/circulant-matrix-180pu68k
https://typeset.io/topics/subspace-topology-f4wzzyg4
https://typeset.io/topics/matrix-decomposition-2bl87ic3
https://typeset.io/papers/visual-learning-and-recognition-of-3-d-objects-from-3szedng68n
https://typeset.io/papers/introduction-to-statistical-pattern-recognition-4tk88y1a8t
https://typeset.io/papers/eigenfaces-for-recognition-1vpm5kz4jh
https://typeset.io/papers/application-of-the-karhunen-loeve-procedure-for-the-2j3tdrd6gu
https://typeset.io/papers/subspace-methods-for-robot-vision-t22jqt28o9
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/fast-eigenspace-decomposition-of-correlated-images-3uyesb1ryj
https://twitter.com/intent/tweet?text=Fast%20eigenspace%20decomposition%20of%20correlated%20images&url=https://typeset.io/papers/fast-eigenspace-decomposition-of-correlated-images-3uyesb1ryj
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/fast-eigenspace-decomposition-of-correlated-images-3uyesb1ryj
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/fast-eigenspace-decomposition-of-correlated-images-3uyesb1ryj
https://typeset.io/papers/fast-eigenspace-decomposition-of-correlated-images-3uyesb1ryj


Fast Eigenspace Decomposition of Correlated

Images Using Their Low-Resolution Properties

Kishor Saitwal and Anthony A. Maciejewski

Dept. of Electrical and Computer Eng.

Colorado State University

Fort Collins, CO 80523-1373, USA

Email: {Kishor.Saitwal, aam}@colostate.edu

Rodney G. Roberts

Dept. of Electrical and Computer Eng.

Florida A & M - Florida State University

Tallahassee, FL 32310-6046, USA

Email: rroberts@eng.fsu.edu

Abstract— Eigendecomposition is a common technique that
is performed on sets of correlated images in a number of
computer vision and robotics applications. Unfortunately,
the computation of an eigendecomposition can become pro-
hibitively expensive when dealing with very high resolution
images. While reducing the resolution of the images will
reduce the computational expense, it is not known a priori how
this will affect the quality of the resulting eigendecomposition.
The work presented here provides an analysis of how different
resolution reduction techniques affect the eigendecomposi-
tion. A computationally efficient algorithm for calculating
the eigendecomposition based on this analysis is proposed.
Examples show that this algorithm performs very well on
arbitrary video sequences.1

I. INTRODUCTION

Eigendecomposition-based techniques play an impor-

tant role in numerous image processing and computer

vision applications. The advantage of these techniques,

also referred to as subspace methods, is that they are

purely appearance based and that they require few online

computations. Variously referred to as eigenspace methods,

singular value decomposition (SVD) methods, principal

component analysis methods, and Karhunun-Loeve trans-

formation methods [1], [2], they have been used extensively

in a variety of applications such as face characteriza-

tion [3], [4] and recognition [5]-[9], lip-reading [10], [11],

object recognition [12]-[15], pose detection [16], [17],

visual tracking [18], [19], and inspection [20]-[23]. All of

these applications are based on taking advantage of the fact

that a set of highly correlated images can be approximately

represented by a small set of eigenimages [24]-[31]. Once

the set of principal eigenimages is determined, online

computation using these eigenimages can be performed

very efficiently. However, the offline calculation required

to determine both the appropriate number of eigenimages

as well as the eigenimages themselves can be prohibitively

expensive.

The resolution of the given correlated images, in terms

of the number of pixels, is one of the factors that greatly

1This work was supported by the National Imagery and Mapping
Agency under contract no. NMA201-00-1-1003 and through collaborative
participation in the Robotics Consortium sponsored by the U. S. Army Re-
search Laboratory under the Collaborative Technology Alliance Program,
Cooperative Agreement DAAD19-01-2-0012. The U. S. Government is
authorized to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation thereon.

affects the amount of calculation required to compute

an eigendecomposition. In particular, many common al-

gorithms that compute the complete SVD of a general

matrix require on the order of mn2
flops, where m is

the total number of pixels in a single image and n is

the number of images. Many users of eigendecomposition

techniques would like to use as high a resolution as is

available for the original images in order to maintain as

much information as possible; however, this frequently

results in an impractical computational burden. Thus users

are typically forced to downsample their images to a lower

resolution using a “rule of thumb” or some ad hoc criterion

to obtain a manageable level of computation. The purpose

of the work described here is to provide an analysis of

how different resolution reduction techniques affect the

resulting eigendecomposition. This analysis is then used

to modify the fastest known eigendecomposition algorithm,

proposed by Chang et al. [31], to improve its computational

efficiency without sacrificing the quality of the resulting

eigenimages.

The remainder of this paper is organized as follows.

Section II provides a review of the fundamentals of ap-

plying eigendecomposition to related images. An overview

of Chang’s algorithm is given in Section III, while the

limitation of its computational efficiency, due to working

with the highest resolution, is pointed out in Section IV.

An analysis of a simple example is also provided in

Section IV that explains why downsampling by selecting

random pixels can be more effective than using simple

filtering techniques. This analysis motivated a fast SVD

algorithm, outlined in Section V, to quickly compute the

desired portion of the eigendecomposition based on a user-

specified measure of accuracy. In Section VI, we evaluate

the performance of our algorithm on a set of arbitrary video

sequences. Finally, some concluding remarks are given in

Section VII.

II. PRELIMINARIES

A grey-scale image is an h × v array of square pixels

with intensity values normalized between 0 and 1. Thus,

an image will be represented by a matrix X ∈ [0, 1]h×v .

Because we will be considering sets of related images, the

image vector x of length m = h × v can be obtained

by “row-scanning” an image into a column vector, i.e.,
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x = vec(X T ). The image data matrix of a set of images

X 1, · · · , Xn is an m × n matrix, denoted X , and defined

as X = [x1 · · ·xn], where typically m ≫ n. We consider

only the case where n is fixed, as opposed to cases where

X is constantly updated with new images.

The SVD of X is given by

X = UΣV T , (1)

where U ∈ ℜm×m and V ∈ ℜn×n are orthogonal, and

Σ = [Σd 0]T ∈ ℜm×n where Σd = diag(σ1, · · · , σn) with

σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0 and 0 is an n by m − n
zero matrix. The SVD of X plays a central role in several

important imaging applications such as image compression

and pattern recognition. The columns of U , denoted ûi,

i = 1, · · · ,m, are referred to as the left singular vectors or

eigenimages of X , while the columns of V , denoted v̂i, i =
1, · · · , n, are referred to as the right singular vectors of X .

The corresponding singular values measure how “aligned”

the columns of X are with the associated eigenimage.

In practice, the singular vectors ûi are not known or

computed exactly, and instead estimates ê1, · · · , êk which

form a k-dimensional basis are used. For quantifying the

accuracy of these estimates, one of the measures we will

use is the “energy recovery ratio” [31], denoted ρ, and

defined as

ρ(X, ê1, · · · , êk) =

∑k

i=1 ‖êT
i X‖2

2

‖X‖2
F

, (2)

where ‖·‖F denotes the Frobenius norm. Another measure

we will use is the degree to which these estimates span the

subspace of the first k∗ true eigenimages, which will be

referred to as the subspace criterion, γ, given by

γ =

√

√

√

√

1

k∗

k
∑

i=1

k∗
∑

j=1

(êi · ûj)
2, (3)

which is 1 if the entire subspace is spanned.

III. CHANG’S EIGENDECOMPOSITION ALGORITHM

As described earlier, calculation of the estimates of the

singular vectors û1, · · · , ûk∗ of X is a very computation-

ally expensive operation when m and n are very large.

Reducing this computational expense by exploiting any

correlation between image vectors has been the subject of

much previous work [24]-[31]. The algorithm proposed by

Chang et al. [31] is currently the fastest known algorithm

for this purpose. This section provides an overview of

Chang’s algorithm with the following sections discussing

how low-resolution estimates can be used to improve its

computational efficiency without sacrificing the quality of

the resulting eigenimages.

The technique in [31] is motivated by the observation

that the SVD of X can be determined in a closed form

when the images are derived by a planar rotation of a single

image, thus resulting in XT X being circulant. The real

eigendecomposition of such an XT X is given by

XT X = HDHT , (4)

where D is an n × n diagonal matrix containing the

eigenvalues of XT X as its diagonal elements, while H
consists of n eigenvectors of XT X as its columns and it

is given by

H =
[

ĥ1 ĥ2 ĥ3 ĥ4 ĥ5 · · ·
]

=
√

2
[

1√
2
f̂0 ℜf̂1 ℑf̂1 ℜf̂2 ℑf̂2 · · ·

]

=

√

2

n













1√
2

c0 −s0 · · ·
1√
2

c1 −s1 · · ·
...

...
... · · ·

1√
2

cn−1 −sn−1 · · ·













, (5)

where f̂i gives the ith column of the Fourier matrix F(n×n),

ck = cos(kθ), and sk = sin(kθ). Thus Σ and V corre-

sponding to an unordered SVD of X can be computed in a

closed form. In particular, the square roots of the diagonal

entries of D are the singular values of X , and V = H .

Finally, U can be calculated using UΣ = XH . This

analysis indicates that for planar transformations, the right

singular vectors of X are pure sinusoids of frequencies that

are multiples of 2π/n radians and the frequencies of the

(ordered) right singular vectors increase linearly with their

index.

Although the above analysis does not hold true for gen-

eral 3-D transformations, the empirical results in [31] show

that for correlated images, their right singular vectors are

approximately spanned by a handful of harmonics that are

dominated by low frequencies. Consequently, by projecting

the row space of X to a smaller subspace spanned by a

few of the harmonics, the computational expense associated

with calculating the SVD can be significantly reduced. This

forms the basis for Chang’s eigendecomposition algorithm.

Specifically, if p is such that the power spectra of the

first k singular vectors are essentially restricted to the band

[0, 2πp/n], then it is shown in [31] that the first k singular

values σ̃1, · · · , σ̃k and the corresponding singular vectors
ˆ̃u1, · · · , ˆ̃uk of XHp serve as excellent estimates to those

of X , where Hp denotes the matrix comprising the first p
(p ≪ n) columns of H . It is also shown that when p is

the smallest number such that ρ(XT , ĥ1, · · · , ĥp) ≥ µ, the

quantity ρ(X, ˆ̃u1, · · · , ˆ̃uk) will exceed µ for some k ≤ p,

thus achieving the user-specified reconstruction ratio, µ.

In summary, Chang’s algorithm makes use of the fact

that the analytical expressions for the eigendecomposition,

based on the theory of circulant matrices, can serve as a

good approximation to the eigendecomposition of arbitrary

video sequences. The algorithm shows better computational

efficiency, because the SVD is computed on a much smaller

matrix XHp, which is formed by reducing X in the

temporal dimension. However, one can still improve this

computational efficiency by operating on lower resolu-

tion images. The appropriate manner of downsampling to

achieve these low-resolution images is the topic of the next

section.
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IV. EFFECT OF SPATIAL REDUCTION TECHNIQUES

In our recent work [32], a mathematical framework

was provided for quantifying the effect of varying the

resolution of the images on the eigendecomposition that

is computed from those images. Image data matrices at

different resolutions were formed and the corresponding

SVDs were calculated. The analysis showed that the right

singular vectors of correlated images are not appreciably

affected by image resolution. Therefore the SVD of high-

resolution images can be accurately estimated from the

right singular vectors obtained from low-resolution im-

ages. These observations motivated several modifications

to Chang’s algorithm that can improve its computational

efficiency.

One can observe that the first two steps in Chang’s

algorithm, i.e., the calculation of the value p and the

computation of the SVD of XHp, still requires a significant

amount of time, because the algorithm always works with

the full spatial resolution of the images. Hence it is

desirable to reduce the images in the spatial dimension first.

In this section, two different image reduction techniques

are considered: box filtering and random pixel selection.

The effect that these techniques have on the spatial and

the temporal properties of X will be illustrated using a

simple example.2

Consider an m by 2 image data matrix X . Because

the box filtering technique acts like a low pass filter, it

is convenient to represent X as

X =
[

Hα | Hβ
]

=

[

m
∑

i=1

αiĥi |
m

∑

i=1

βiĥi

]

, (6)

where the m×m orthogonal matrix H has the form (5) and

α,β are m× 1 coefficient vectors. The correlation matrix

for X is given by

XT X =

[

(Hα)T Hα (Hα)T Hβ

(Hβ)T Hα (Hβ)T Hβ

]

=

[
∑m

i=1 α2
i

∑m

i=1 αiβi
∑m

i=1 αiβi

∑m

i=1 β2
i

]

. (7)

Now consider reducing the image vectors in X using

simple box filtering with the integer reduction factor r.
If the pixels in both the image vectors in X are ordered

so that a pixel in the low-resolution image vectors can

be obtained by box-filtering the consecutive pixels in

the corresponding high-resolution image vectors, then the

resulting low-resolution image data matrix is given by

Xb =
1

r







x11 + · · · + xr1 x12 + · · · + xr2

...
...

xd1 + · · · + xm1 xd2 + · · · + xm2






, (8)

where d = m − r + 1. For simplicity of presentation,

consider the case where m = 4 that gives the following

2Other image reduction techniques such as nearest neighbor and bicubic
interpolation were also implemented. The performance of these techniques
was comparable to that of box filtering.

high-resolution image data matrix:

X42 =
1

2









α1 +
√

2α2 + α4 β1 +
√

2β2 + β4

α1 −
√

2α3 − α4 β1 −
√

2β3 − β4

α1 −
√

2α2 + α4 β1 −
√

2β2 + β4

α1 +
√

2α3 − α4 β1 +
√

2β3 − β4









. (9)

The box filtered image data matrix is then given by

Xb =
1

4

[

2α1 +
√

2α2 −
√

2α3 2β1 +
√

2β2 −
√

2β3

2α1 −
√

2α2 +
√

2α3 2β1 −
√

2β2 +
√

2β3

]

(10)

and the corresponding correlation matrix is

XT
b Xb =

1

4

[

a b
b c

]

, (11)

where

a = 2α2
1 + α2

2 + α2
3 − 2α2α3,

b = 2α1β1 + α2β2 − α2β3 − α3β2 + α3β3,

c = 2β2
1 + β2

2 + β2
3 − 2β2β3. (12)

If we compare (11) with (7), we can observe that the

box filtering eliminates the highest frequency component

altogether and amplifies the DC component by 2. Thus, it

makes the low-frequency components more dominant and

reduces the importance of the high-frequency components.

This changes the spatial and the temporal properties of the

original images resulting in different singular values and

singular vectors for X and Xb.

An alternative method for determining a reduced res-

olution version of an image is to randomly select pixels

from X . Thus, with the reduction factor r, any m
r

rows

from X can be selected to form the low-resolution image

data matrix Xr. If we try to reduce X42 in (9) using

this technique with r = 2, then we obtain any of the
(

4
2

)

= 6 different possible Xr’s with equal probability,

i.e., P (Xri
) = 1

6 , for i = 1, 2, · · · , 6. If we denote each

XT
ri

Xri
by RXi, then the expectation of these correlation

matrices gives

E [RX] =
6

∑

i=1

(RXi) P (RX = RXi)

=

6
∑

i=1

1

6
RXi

=
1

2

[
∑4

i=1 α2
i

∑4
i=1 αiβi

∑4
i=1 αiβi

∑4
i=1 β2

i

]

=
1

2
XT

42X42. (13)

Note that the right singular vectors and their relative

importance are the same at both the resolutions (although

the corresponding singular values are halved for Xr),

indicating that Xr reflects the same properties as X .

The empirical results (refer to Fig. 1) for arbitrary video

sequences also depict a similar behavior for both the reso-

lution reduction techniques. For all the video sequences, the

pb values decrease rapidly even for small reduction factors,
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Fig. 1. This figure shows the plots for the first four video sequences used
in this paper. The image data matrices at different resolutions are formed
after reducing the original images from m = 240 × 352 to the lower
resolutions of 120×176, 60×88, 30×44, 15×22, 10×15, 8×12, 4×6,
and 2×3. Each subplot title gives the video number and its corresponding
p value (plotted with a horizontal dashed line) at the highest resolution,
where p is the smallest number of frequency harmonics required to get
ρ > 0.95 in (2). The horizontal axis gives the resolution of low-resolution
images in one dimension, while the plots pr and pb give the p values at
the lower resolutions when the images are reduced using random pixel
selection and box filtering, respectively. For the random pixel selection
approach, the images are reduced for four different times to calculate four
different p values and the maximum p value is assigned to pr .

indicating that box filtering makes the first few frequency

components in the low-resolution images more dominant

than they actually are in the high-resolution images. On

the other hand, the pr values are (almost) always above

the “true” p values for all the video sequences, indicating

that random pixel selection does not significantly alter the

temporal properties of high-resolution image sequences.

(This behavior is quite intuitive as we are working with

the pixels themselves rather than their averages.) The

above analysis motivates a modified version of Chang’s

algorithm, which is the topic of the next section.

V. FAST EIGENDECOMPOSITION ALGORITHM

Our objective is to determine the first k left singular

vectors of X . Using the analysis of the resolution reduction

techniques in the previous section, we now make the

appropriate modifications to Chang’s algorithm to improve

its computational efficiency. Random pixel selection is used

to reduce X in the spatial dimension and then Chang’s

method is used to reduce it further in the temporal dimen-

sion. We first present an overview of our algorithm and

then expand on the details.

1) Generate the Fourier matrix, F(n×n), and its real

counterpart, H(n×n) for X(m×n).

2) Randomly select n pixels from each image in X to

obtain the n × n reduced image data matrix Xn.3

3The same permutation of n pixels is used over all m images, however,
the order of these randomly selected pixels in the reduced images does
not matter.

3) Determine the smallest number p such that

ρ(XT
n , ĥ1, · · · , ĥp) =

∑p

i=1 ‖Xnĥi‖2
2

‖Xn‖2
F

> µ, (14)

where µ is the user-specified reconstruction ratio.

4) Compute the reduced SVD of (XnHp)(n×p) =
(Un)(n×p)(Sn)(p×p)(Vn)T

(p×p).
4

5) Repeat Steps 2 through 4 for three more times and

concatenate all SnV T
n matrices to form

AT
(P×s) =





















Sn1
V T

n1

Sn2
V T

n2

Sn3
V T

n3

Sn4
V T

n4





















,

where s is the maximum of the four values of p and

P is the sum of all values of p.5

6) Compute the reduced SVD of A(s×P ) =
(Us)(s×s)(Ss)(s×P )(Vs)

T
(P×P ).

7) Compute Z(n×s) = (Hs)(n×s)(Us)(s×s) to get an

initial estimate of right singular vectors of X .6

8) Perform Steps 2 and 3. If p > s, perform Step 4
and compute Znew = (Hp)(Vn). Then compute the

component of Znew that is orthogonal to Z using

w = [I − ZZT ]ẑnew
i , for i = 1, · · · , p, (15)

where I is an n × n identity matrix. If ‖w‖ > ǫ for

any ẑ
new
i , update Z = [Z, ŵ] and s = s + 1, where

ǫ is some user-specified threshold.

9) Repeat Step 8 until p ≤ s for four consecutive times.

10) Compute E(m×s) = X(m×n)Z(n×s) that gives an

approximate basis for the left singular vectors of X .

11) Find the orthonormal basis for E using the reduced

QR decomposition, i.e., E(m×s) = Ê(m×s)R(s×s).

12) Return Ê(m×s).

13) Optionally, check if k < s by finding ê1, · · · , êk

such that ρ(X, ê1, · · · , êk) > µ.

We will now explain the above steps in more detail. Steps

2 through 4 compute the p value for Xn and the SVD of

the XnHp matrix. Here we will describe why n pixels are

selected as the resolution of the downsampled version of an

image. Recall that it is always true that p ≤ n (typically

with p ≪ n) for any image data matrix [31], therefore

more than n pixels in each column in the reduced image

data matrix are never needed to preserve the rank of Xn

at p. However, if the resolution is selected at a value less

than n, one always runs the risk of artificially reducing the

rank below p.

Once the SVD of XnHp is calculated, (Hp)(Vn) gives

the right singular vectors of Xn. These right singular

vectors can be considered as a “good” approximation of

4XnHp is readily available after Step 3.
5All SnV T

n matrices should be padded with the appropriate number
of columns of zeros if necessary, so that each of them has s columns.

6Hs consists of the first s columns of H in (5).
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their high-resolution counterparts [32]. However, different

Xn’s require different numbers of harmonics to satisfy

the user-specified reconstruction ratio, because the random

pixels used to create a specific Xn may not accurately

represent the temporal properties of the entire X . Hence

Steps 2 through 4 are performed four times to improve the

probability of accurately representing the high-resolution

image data matrix. The number of times to repeat Steps

2−4 was empirically determined (on average) to optimize

computational efficiency.7

Step 5 concatenates all SnV T
n matrices to form the

matrix A whose range will approximately span the dom-

inant right singular vectors of X [32]. The SVD of A
is computed in Step 6 to find its range, given by Us.

Thus, (Hs)(Us) computed in Step 7 can be considered

as a good initial estimate of the right singular vectors of

X . Note that if Vn’s are used instead of SnVn’s to form

A, then Step 7 will result in an unordered estimate of the

right singular vectors of X . To obtain an ordered estimate,

the right singular vectors in each Vn are scaled by their

corresponding singular values before being concatenated

in Step 5.

Fig. 1 shows that even after performing Steps 2 and 3
four different times, the maximum p values for Videos 3
and 4 were below the “true” p values. Hence Steps 8 and 9
are performed to check if there is any new information

available in additional samplings of X . If the new infor-

mation in any ẑ
new
i is above a threshold, the Z matrix

is updated. When no columns are added to the Z matrix

for four consecutive times, the algorithm assumes that the

final Z matrix provides a “good” basis for the right singular

vectors of X .8 In short, Steps 2 through 9 are performed

to find the approximate right singular vectors of X .

Step 10 computes the approximate basis for the left

singular vectors of X , while Step 11 computes the corre-

sponding orthonormal basis using the QR decomposition.

Step 13 optionally computes the minimum subspace that

will satisfy the user-specified reconstruction ratio.

We now briefly analyze the computational expense of

our algorithm. The cost incurred in Step 2, i.e., constructing

Xn from X requires O(n2) flops, while the estimation of

the smallest number p in Step 3 requires O(n2p) flops.

In Step 4, the cost of computing the SVD of the n × p
matrix XnHp requires O(np2) flops. Step 5 performs Steps

2 through 4 four times requiring O(n2)+O(n2p)+O(np2)
flops. In Step 6, the cost of computing the SVD of the

s × P matrix A requires O(sP 2) flops, while finding

the initial estimate of the right singular vectors of X in

Step 7 requires O(ns2) flops. Steps 8 and 9 that check

if any new information should be added to Z requires

O(n2) + O(n2p) + O(np2) flops and is repeated an un-

known, but typically small, number of times. In Step 10,

multiplication of X with Z requires O(ms2) flops and the

7Using more than four iterations may be unnecessary and using fewer
than four may require more iterations of the more computationally
expensive Step 8.

8The value four was empirically determined to make it highly unlikely
that the number of columns in Z is far from the true value of p.

QR decomposition of E in Step 11 requires O(2ms2− 2
3s3)

flops. Finally, determination of the minimum dimension k
in Step 13 requires O(mnk) flops. If s ≪ n ≪ m, then

the total computation required is O(2ms2 − 2
3s3), which

is the cost of the QR decomposition.

VI. EXPERIMENTAL RESULTS

We consider the problem of computing the eigende-

composition of images representing successive frames of

arbitrary video sequences. Specifically, we consider eight

video sequences that are used in [31], i.e., 5, 6, 7, 17,

9, 8, 15, and 20 (referred to here as videos 1 through 8,

respectively). Images in the first four sequences and the last

four sequences have resolution of 240×352 and 240×320,

respectively.

Our algorithm was used to calculate the partial SVD of

X for each set, with µ = 0.95 and ǫ = 10−6. Table I

shows a breakdown of the average time required for the

different steps in the proposed algorithm. It shows that the

first ten steps do not take much time as compared to Step

11 that computes the orthonormal basis for E using QR

decomposition. The table also shows that the calculation

of the first k eigenimages in Step 13 requires a significant

amount of time. Thus a user may prefer to stop after Step

12 and simply use all s eigenimages. The total time for

Steps 1 − 12 is given in the column labelled “part”. If

one indeed needs to know the minimum subspace, then

the total time required for our algorithm is given in the

“Total” column.

The proposed algorithm was run ten different times for

each video sequence and the mean values for k, “Time”,

s, and γ were calculated. (Mean values for s and k values

were rounded to the nearest integer.) Table II summarizes

the performance of the algorithm, showing k∗, k, p, s, γ,

and the computation times.9 Compared to the direct SVD,

the speedup factors with our algorithm are in the range of

2.99−148.14, depending on the value of s. The difference

between ρ(X, û1, · · · , ûk∗) and ρ(X, ê1, · · · , êk) for each

set was less than 0.13%, with an average of 0.07%, which

reveals that {ê1, · · · , êk} provides a very good approxi-

mate basis for the first k∗ eigenimages {û1, · · · , ûk∗}.

VII. CONCLUSION

We have explained how different image resolution reduc-

tion techniques affect the eigendecomposition computed

using those images and have shown that downsampling

using randomly selected pixels is more effective than

simple filtering techniques. Using the low-resolution prop-

erties of correlated images, we have been able to improve

the fastest known eigenspace decomposition algorithm to

obtain a more computationally efficient algorithm. The

proposed algorithm enjoys the advantage of making use of

the similarity within the images as well as the similarity

between the images. Examples show that the algorithm

performs very well even on arbitrary video sequences.

9Note that there is only one column for k in Table II as these values
remain the same for both the proposed algorithm and Chang’s algorithm.
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TABLE I

TIME REQUIRED FOR THE PROPOSED ALGORITHM

(ALL TIMES ARE IN SECONDS)

Time required for different steps

Video 2 − 5 6 − 10 11 Part 13 Total

1 0.07 0.75 1.34 2.16 4.18 6.35

2 0.05 0.46 0.21 0.72 1.48 2.20

3 0.32 2.53 18.40 21.25 16.96 38.21

4 0.32 2.42 17.36 20.10 15.94 36.04

5 0.05 0.45 0.32 0.82 1.39 2.21

6 0.04 0.32 0.04 0.40 0.68 1.08

7 0.06 0.56 0.66 1.28 2.87 4.15

8 0.05 0.40 0.20 0.65 1.63 2.28

TABLE II

COMPARISON OF DIFFERENT ALGORITHMS

(ALL TIMES ARE IN SECONDS)

Proposed Chang Direct

Video k Time s γ Time p γ Time k∗

1 15 2.1 17 0.99 15.7 15 0.98 67.3 15

2 4 0.8 7 1.00 12.8 6 1.00 67.3 4

3 66 21.8 70 0.96 74.3 68 0.95 67.3 63

4 63 22.5 71 0.94 65.7 65 0.92 67.3 60

5 4 0.8 7 0.95 12.6 6 0.90 62.2 4

6 1 0.4 2 1.00 11.9 2 1.00 62.2 1

7 10 1.3 12 0.99 13.7 11 0.99 62.2 9

8 5 0.8 8 0.98 12.6 7 0.98 62.2 5
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