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ABSTRACT
Keyword search is integrated in many applications on ac-
count of the convenience to convey users’ query intention.
Recently, answering keyword queries on XML data has drawn
the attention of web and database communities, because the
success of this research will relieve users from learning com-
plex XML query languages, such as XPath/XQuery, and/or
knowing the underlying schema of the queried XML data.
As a result, information in XML data can be discovered
much easier.

To model the result of answering keyword queries on XML
data, many LCA (lowest common ancestor) based notions
have been proposed. In this paper, we focus on ELCA (Ex-
clusive LCA) semantics, which is first proposed by Guo et
al. and afterwards named by Xu and Papakonstantinou. We
propose an algorithm named Hash Count to find ELCAs ef-
ficiently. Our analysis shows the complexity of Hash Count
algorithm is O(kd|S1|), where k is the number of keywords,
d is the depth of the queried XML document and |S1| is
the frequency of the rarest keyword. This complexity is the
best result known so far. We also evaluate the algorithm on
a real DBLP dataset, and compare it with the state-of-the-
art algorithms. The experimental results demonstrate the
advantage of Hash Count algorithm in practice.

1. INTRODUCTION
Answering keyword queries on XML data has been exten-

sively studied recently [8, 25, 15, 24, 22, 23, 17, 18, 13, 14, 5].
The driving force behind this investigation is the wide res-
idence of XML data and the popularity of keyword search.
Users are supported to query a large XML document us-
ing a set of keywords without knowing complex XML query
languages (such as XPath, XQuery) and/or being aware of
the underlying document structure. As a result, keyword
queries provide significant convenience for general users to
find information they are interested in.

To model the result of keyword queries on XML docu-
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Figure 1: Examples of ELCA and SLCA

ments, a family of LCA (Lowest Common Ancestor) based
notions have been proposed, such as, ELCA (Exclusive LCA)
[8], SLCA (Smallest LCA) [24], MLCA (Meaningful LCA)
[15] and Interconnection Relationship [5]. Other LCA-based
query result semantics rely more or less on SLCA or ELCA
by either imposing further conditions on the LCA nodes [14]
or refining the subtrees rooted at the LCA nodes [17, 18, 13].
Among these LCA semantics, ELCA is believed to be one
of the most influential semantics, because it can capture the
highest number of possible results for a query. It is true
that the more does not mean the better. However, due to
the flexibility of keyword query, it is often the case that
user’s intention is difficult to infer, and besides data may be
structured differently, it is unlikely to find out an ideal se-
mantics as the most reasonable one, and hence a semantics
capturing more results could be a better choice. Therefore,
in this paper, we mainly focus on ELCA semantics.

For ease of understanding, we illustrate the concept of
ELCA and its counterpart, SLCA, using an example in Fig. 1.
Formal definitions will be given in Section 2. Other LCA se-
mantics will be introduced later in Section 5 in a nutshell
for the sake of not distracting readers from the main issue
of this paper.

Example 1. Consider the XML tree shown in Fig. 1,

where keyword nodes are annotated with subscripts. Con-

sider a keyword query using keywords {a, b}, based on the

conventional LCA semantics, {x1, x2, x3, x4, r} is produced

as the result, for x1 is the LCA of {a2, b1}, x2 is the LCA

of {a1, b2}
1, x3 is the LCA of {a3, b4}, x4 is the LCA of

{a3, b3} and r is the LCA of {a1, b4}. While using SLCA

1Here x2 is also the LCA of {a1, b1} or {a2, b2}.
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semantics, only {x1, x4} is given as the result, because x2,

x3 and r are ancestors of x1 or ancestors of x4 or both.

(SLCA semantics requires the result LCAs to be lowest so

that the query result is a set of tightest XML fragments con-

taining all the keywords.) Using ELCA semantics, the result

set is {x1, x2, x4}. Here, each ELCA node has its own “wit-

ness” nodes, e.g. x1 is witnessed by {a2, b1}, x2 is witnessed

by {a1, b2}, and x4 by {a3, b3}. Compared with SLCA se-

mantics, x2 is additionally identified as a result. This point

of view is reasonable, because, other than “witness” nodes

{a2, b1} which have already been covered by x2’s child x1, x2

has its own contributors {a1, b2}.

ELCA semantics helps users find more reasonable results,
but also brings the challenge of computing them. Unlike
well-studied SLCA computation in [24, 22, 23], the perfor-
mance of ELCA computation algorithms is less satisfactory.
Dewey Inverted List (DIL) algorithm, proposed in [8], is the
pioneer work of computing ELCAs. It is not complex, but
suffers from scanning all the inverted lists of query keywords.
Here, an inverted list of a keyword is a list of elements in
the XML document that directly contain the keyword, eg.
the inverted lists for keyword a and b on the tree in Fig. 1 is
{a1, a2, a3}

2 and {b1, b2, b3, b4} respectively. The complexity
of DIL algorithm is O(kd|S|), where k is the number of key-
word, d is the depth of document tree, |S| is the total length
of all keyword inverted lists. If the query keywords con-
tain some “stop words” (whose inverted lists are very long),
the performance of DIL algorithm will degrade dramatically.
Another method, Indexed Stack (IS) algorithm [25], uses
the shortest keyword inverted list as the working list, and
first generates a set of ELCA candidates, and then verifies
them. It avoids scanning all the inverted lists, but still needs
to access non-working lists by logarithmic indexed lookups.
The complexity is O(kd|S1|log|Smax|), where |S1| (|Smax|)
is the length of the shortest (longest) keyword inverted list.
(During implementation, if all the inverted lists are stored
together as a single list, then |Smax| = |S|.) The log|Smax|
factor is for discovering connections between matched key-
words. The merit of IS algorithm is that, in real applica-
tions, |S1|log|Smax| could be smaller than |S|, since keyword
frequencies are often biased. While, in this paper, we will
show the log|Smax| factor can be further saved, resulting in
an O(kd|S1|) algorithm.

The aim of this paper is, to introduce a (both theore
-tically and experimentally) efficient algorithm that
computes the ELCA nodes for a set of keywords over
an XML document.

The key idea of our algorithm is to record the number
of keyword instances appearing under a node, and use such
information to judge whether an ELCA candidate is a real
ELCA node. To be specific, we compare the number of key-
word instances that a candidate node has covered with the
total number of instances that the candidate node’s chil-
dren who contain all the keywords have covered. If, for each
keyword, there exists an instance solely contributing to the
candidate, then the candidate is a real ELCA node. For ex-
ample, in Fig. 1, node x2 contains two keyword a instances

2The inverted list often stores a set of encoded numbers, be-
cause nodes in the XML are often encoded by some encoding
scheme, such as Dewey Encoding.

{a1, a2} and two keyword b instances {b1, b2}. We denote
the count of keyword a, b under x2 as Cx2

(a, b) = (2, 2).
The only child of x2 containing all the keyword is x1, and
Cx1

(a, b) = (1, 1), for x1 only covers a2 and b1, one instance
for each keyword. Cx2

(a, b) is larger than Cx1
(a, b) on every

dimension, and therefore x2 is identified as an ELCA node,
since it has a proprietary contributor for each keyword. Note
that, if x2 has more children containing all the keywords,
the keyword counts of these children should be added to-
gether before compared with Cx2

(a, b). Similarly, we have
Cx3

(a, b) = (1, 2), Cx4
(a, b) = (1, 1) and x4 is the only child

of x3 containing all the keywords. Comparing Cx3
(a, b) with

Cx4
(a, b), x3 does not have any proprietary keyword a in-

stance, and hence is not an ELCA node. Keyword count
information can be stored in a hash index, giving an O(1)
look-up time. The details of our algorithm, including index
build-up, ELCA candidate generation, ELCA candidate ver-
ification, and optimized techniques, will be introduced in the
main section of this paper.

We summarize our contributions as follows:

• We propose an efficient algorithm, named Hash Count,
to find ELCAs to answer keyword queries on XML
data. We show the complexity of the algorithm is
O(kd|S1|), which is the best complexity result among
existing works.

• We conduct a series of experiments to compare the
performance of Hash Count algorithm with existing al-
gorithms (Dewey inverted list algorithm and Indexed
Stack algorithm) on real XML dataset. The experi-
mental study shows our Hash Count algorithm out-
performs the existing ones in almost every case.

Here is a roadmap of this paper. In Section 2, we introduce
a formal definition of ELCA, along with some notations used
in this paper. We also introduce two existing algorithms for
computing ELCA nodes. In Section 3, we give out the Hash
Count algorithm. Two versions of the algorithm will be
proposed, a naive one and an optimized one. Experimental
results are shown in Section 4. Related works and conclusion
are given in Section 5 and Section 6 respectively.

2. PRELIMINARIES
In this section, we first introduce ELCA query semantics,

and then review the state-of-the-art works on how to locate
ELCA nodes. We also point out the disadvantages of the
current works.

2.1 ELCA semantics
We model XML documents as trees using the conventional

labeled ordered tree model, and cross references are not con-
sidered in this paper. Each node of an XML tree corresponds
to an XML element, an attribute or a text string. The leaf
nodes are all text strings. A keyword may appear in element
names, attribute names or text strings. If a keyword w ap-
pears in the subtree rooted at a node n, we say the node
n contains keyword w. If w appears in the element name
or attribute name of n, or w appears in the text value of
n when n is a text string, we say node n directly contains
keyword w.

A keyword query on an XML document often asks for
an XML node that contains all the keywords, therefore, for
large XML documents, indexes are often built to record
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which nodes directly contain which keywords in order to
speed up keyword query processing. For example, for a key-
word wi, all nodes directly contain wi are stored in a list Si

(called inverted list) and can be retrieved altogether at once.
Each item in Si is an encoded number (eg. using preorder

encoding scheme) or an encoded object (eg. using Dewey
encoding scheme). We always use S1 to denote the shortest
inverted list throughout this paper3.

We follow the definitions in [25] on formalizing the seman-
tics of LCA and ELCA. We introduce some notions first. Let
v ≺a u denote v is an ancestor node of u, and v �a u denote
v ≺a u or v = u. The function lca(v1, . . . , vk) computes the
Lowest Common Ancestor (LCA) of nodes v1, . . . , vk. The
LCA of sets S1, . . . , Sk is the set of LCAs for each combina-
tion of nodes in S1 through Sk.

lca(w1, . . . , wk) = lca(S1, . . . , Sk) =

{lca(n1, . . . , nk)|n1 ∈ S1, . . . , nk ∈ Sk}

Given k keywords {w1, . . . , wk} and their corresponding in-
verted lists S1, . . . , Sk of an XML tree T , the Exclusive LCA
of these keywords on T is defined as:

elca(w1, . . . , wk) = elca(S1, . . . , Sk) =

{v|∃n1 ∈ S1, . . . , nk ∈ Sk(v = lca(n1, . . . , nk) ∧

∀i ∈ [1, k] 6 ∃x(x ∈ lca(S1, . . . , Sk) ∧ child(v, ni) �a x))}

where child(v, ni) denotes the child node of v on the path
from v to ni. The meaning of a node v to be an ELCA is:
v should contain all the keywords in the subtree rooted at
v, and after excluding v’s children which also contain all the
keywords from the subtree, the subtree still contains all the
keywords. In other words, for each keyword, node v should
have its own contributor. With the above definition, readers
are now clear on why the ELCAs in Fig. 1 are {x1, x2, x4}.
We now give another example to further illustrate the con-
cept of ELCA, to avoid readers being misled.

Example 2. To answer keyword query {a, b} on the XML

tree in Fig. 2, obviously, {x3, x5} are ELCA nodes. After

excluding the subtrees rooted at x3 and x5, x1 still has its

own contributors a1, b3, but here x1 is not an ELCA node,

because a1 and b3 are screened by x2 and x4 respectively,

for x2 and x4 both contain all the keywords. Therefore, the

ELCAs for keyword {a, b} on the tree are {x3, x5}.

Considering the above example, some readers may prefer
x1 as a query result. This will bring in a new semantics
similar to the current ELCA semantics. We stress that our
focus of this paper is not to reason which semantics is more
reasonable, but simply to concentrate on efficiently finding
the ELCAs according to the original semantics. We point
out that our algorithm and existing algorithms (DIL and IS)
can be altered to cater to other similar semantics (like the
above one).

Note that the definition of ELCA first appeared in [8].
We use the one in [25] for the convenience of presentation.
Of course, these two definitions are equivalent. We also bor-
rowed some other notions from [25], which will be introduced
later in this paper when necessary.
3In this paper and also in the previous work [25], “frequency”
is used to denote the length of a inverted list. The referred
frequency means the number of distinct nodes that directly
contain a certain keyword. It is not the real frequency of
the keyword, eg. a keyword may appear several times in a
leaf text string, but will be counted only once.
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Figure 2: x1 is not an ELCA

2.2 Current works on ELCA computation
XRank [8] is the first work presenting ELCA semantics.

It is also one of the first several works to model keyword
query result over XML documents. The Dewey Inverted
List (DIL) algorithm proposed in [8] is the first algorithm to
evaluate ELCA nodes. In DIL, k keyword inverted lists are
accessed in sorted-merge order, and a stack is used to record
the current LCA node. Once a new node is read from some
list, the stack is updated with or without producing ELCA
nodes progressively. To comment on this algorithm, DIL
takes pride in its simplicity, but suffers from low efficiency,
especially when some keyword lists are found to be very long
(Such keywords are referred as“stop words”.), because it has
to scan to the end of all the inverted lists. The complexity
of DIL algorithm is O(kd|S|), where |S| is total size of all
the inverted lists.

Indexed Stack (IS) Algorithm [25] outperforms XRank by
avoiding scanning all the lists. It takes the shortest list as the
working list (corresponding to the rarest keyword), and com-
putes the SLCA for each node in the working list with nodes
in other lists to compromise an ELCA candidate set, denoted
as

⋃
v1∈S1

slca({v1}, S2, . . . , Sk). Here, slca({v1}, S2, . . . , Sk)

is defined as follows:

slca({v1}, S2, . . . , Sk) =

{v|v ∈ lca({v1}, S2, . . . , Sk) ∧

∀v′ ∈ lca({v1}, S2, . . . , Sk)(v 6≺a v′)}

For example, for the given keywords {a, b}, the ELCA candi-
date set

⋃
v1∈Sa

slca({v1}, Sb) on the tree in Fig. 1 is {x1, x2, x4},

for {x2} = slca({a1}, Sb), {x1} = slca({a2}, Sb) and {x4} =
slca({a3}, Sb). Similarly, the candidate set on the tree in
Fig. 2 is {x2, x3, x5}. And then, those ELCA candidates are
verified to pick out the real answers. In Fig. 1, {x1, x2, x4}
are all real ELCAs, while in Fig. 2, only {x3, x5} are real
ELCAs. In the IS algorithm, the working list is accessed se-
quentially, and other lists are accessed randomly by index.
The number of ELCA candidates is not larger than the num-
ber of nodes in the shortest keyword list. The complexity of
IS algorithm is O(kd|S1|log|Smax|). The unperfect aspect of
IS algorithm is that, given an ELCA candidate v, for each
keyword wi, it always attempts to find an exact node in Si to
“witness” v. In fact, we can judge whether v is a real ELCA
without knowing the exact witness node, as long as we know
there exists such a witness node. This point motivates our
Hash Count algorithm.
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3. ELCA EVALUATION
In this section, we introduce the Hash Count algorithm to

find the ELCA nodes. We will firstly give a brief idea of the
algorithm in Section 3.1, followed by the hash indexes we
need to build to serve our algorithm in Section 3.2. Then
we give a naive version of the algorithm, which is a straight-
forward implementation of our idea in Section 3.3 and 3.4.
Finally, we present an advanced version of Hash Count al-
gorithm armed with some optimization techniques.

3.1 Outline of the Hash Count algorithm
Our Hash Count algorithm can be divided into two sub-

tasks: (I) firstly, find out ELCA candidates (nodes that are
possible to be ELCA nodes); (II) verify these candidates,
discard the false positives and obtain the real results. Note
that this framework is the same as the Indexed Stack algo-
rithm [25], but techniques used are different. To be specific,
our ELCA candidate definition is different, and even more
simple, resulting in an easy step of candidate generation.
On the other hand, our verification step takes advantage of
an important observation and is more efficient.

As to subtask (I), the ELCA candidate set is defined as
{v|v ∈ T ∧ ∃v1(v1 ∈ S1 ∧ v �a v1)}, where T denotes all
the nodes in the XML tree. The above expression means a
node is possible to be an ELCA only if it contains the least
frequent keyword directly or indirectly. According to our
definition, the number of ELCA candidates is bounded by
d|S1|, where d is the depth of the tree, |S1| is the frequency
of the rarest keyword. Readers may notice that the require-
ment for a node to be an ELCA candidate is not strict,
leading to a possible large candidate size. In fact, the upper
bound of the candidate size, d|S1|, is usually not very large,
because there often exists a “selective” keyword, i.e. |S1|
is relatively small, and XML documents are not extremely
deep. In this candidate generation step, we aim to inspect
each ELCA candidate (verified whether it is a real ELCA)
at most once. This is done by maintaining a stack. Details
will be explained in Section 3.3.

As to subtask (II), we verify an ELCA candidate v by
comparing how many keyword instances v has covered with
how many keyword instances have already been covered by
some node u, where u is a child of v and u itself has contained
all the keywords. The observation is that, if, for each key-
word, the candidate v has some instance solely contributing
to v itself, but not contributing to any child u (which con-
tains all the keywords) under v, we can draw the conclusion
that v is a real ELCA node. This part will be elaborated in
Section 3.4.

3.2 Index Build-up
To better illustrate our algorithms, we introduce some

indexes first. In these indexes, we identify each node of
the XML tree with its preorder id (obtained by a preorder
traversal of the tree). We stress that our algorithm also
works with other numbering methods, such as postorder
numbering or Dewey encoding, as long as each node in the
tree can be uniquely identified. The indexes have three
parts:

• A hash table called Frequency Table stores for each
keyword the frequency of this keyword in the XML
tree. It is used to find the least frequent keyword, i.e.
to choose the working inverted list.
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Figure 3: Examples of Indexes

• A disk-based B+ tree stores all the nodes in the XML
tree that directly contain a keyword. These nodes are
first grouped by the contained keyword, and then or-
dered by their preorder ids, i.e. the key of the B+ tree
is a combined object (keyword, preorder id), and the
comparison operator is overloaded by comparing the
keyword field and preorder id field in turn. The B+
tree is often referred as Inverted Lists in the previous
works. For each keyword, the size of its inverted list is
the number of nodes directly containing that keyword.
While in our B+ tree index, we also have a value field
for each leaf node in the B+ tree. The value field also
stores nodes that indirectly contain a keyword. Exam-
ple 3 will make this point clear.

• For each keyword, we have a hash table (named Hash

Count Index ) to store the nodes in the XML tree that
directly or indirectly contain that keyword, and how
many keyword instances those nodes contain. For in-
stance, given a keyword wi, the Hash Count Index
of wi stores a set of pairs of the form (preorder id,
count), where preorder id is the node which directly
or indirectly contains keyword wi, and count is the
number of wi’s occurrences under that node. Here,
preorder id is the key of the Hash Count Index. We
also give an example below.

Example 3. In Fig. 3, a preorder encoding of the XML

tree in Fig. 1 is shown on the left side. Three types of index

are shown on the right side. Frequency table stores frequen-

cies 3, 4 for keyword a and b. Below it shows a portion of

the inverted list with nodes directly containing keyword a.

In the figure, such nodes are {a1, a2, a3}, and are numbered

with {3, 5, 10}. Each leaf node has a value field storing the

node ids on the path from the leaf node to the document root,

eg. (a, 3) has the value 1.2.3, in which 2 is the parent of 3,
1 is the parent of 2. Nodes 1, 2 contain the keyword a in-

directly. The usage of the value field will be explained in

our algorithms in the next section. The Hash Count index

of keyword b is then given, eg. node 4, 6, 7 each contains

one keyword instance ( 4 and 6 contain b1, 7 contains b2),

denoted as (4, 1), (6, 1), (7, 1); node 2 contains two keyword
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Algorithm 1 Naive Hash Count

Input: the shortest keyword inverted list, S1

Output: all the ELCA nodes, R

1: R = φ;
2: stack = empty;
3: while not end of S1 do

4: Read a node value v from S1;
5: p = lcp(stack, v); {find the longest common prefix p

such that stack[i].node = v[i], 1 ≤ i ≤ p}
6: while stack.size > p do

7: popEntry = stack.pop();
8: if isELCA(popEntry) then

9: R := R ∪ {popEntry.node};
10: add popEntry.node to stack.top().childList;
11: else

12: if popEntry.childList 6= φ then

13: add popEntry.node to stack.top().childList;
14: end if

15: end if

16: end while

17: for p < j ≤ v.length do

18: newEntry = [node := v[j]; childList := φ];
19: stack.push(newEntry);
20: end for

21: end while

22: while stack is not empty do

23: Repeat line 7 to line 15;
24: end while

instance {b1, b2}, recorded as (2, 2); node 1 contains four

keyword instance {b1, b2, b3, b4}, represented as (1, 4). These

pairs are stored in the Hash Count index of keyword b. Note

that (8, 2), (9, 1), (11, 1) and (12, 1) are also in the index,

but not displayed in the figure.

The indexes can be built in advance by one parse of an
XML document. When a set of keywords is given, we use
the frequency table to pick a least frequent keyword, and
read node values from the inverted list of the least frequent
keyword to generate a set of ELCA candidates. We also load
into memory the Hash Count indexes of other keywords to
verify whether an ELCA candidate is a real ELCA node.
The case when the Hash Count indexes cannot fit into mem-
ory will be discussed in Section 3.5.5.

3.3 ELCA Candidate Generation
In this section, we introduce how to inspect each ELCA

candidate only once. The key idea is, when we decide to
verify a node v, we have done the verifications of all the
ELCA candidates that are descendants of node v.

A naive Hash Count algorithm is given in Algorithm 1 (We
will give a sophisticated optimized version in Section 3.5.).
We will first go through the algorithm, and then give a run-
ning example to illustrate the algorithm.

Line 1 initializes the final ELCA set R to be an empty
set. Line 2 creates an empty stack. Each stack entry encap-
sulates an ELCA candidate, and has two fields (See Fig. 4).
One field entry.node stores the node id of the ELCA can-
didate, the other field entry.childList stores the ids of the
candidate’s children who also contain all the keywords. The
field entry.childList is used to verify whether entry.node is
a real ELCA candidate (This step line 8 will be introduced

in Algorithm 2 in the next section). For each item in S1

(line 3-21), the algorithm will first pop up and verify the
nodes that the algorithm will not see descendants of those
nodes in future (line 6-16), and then push some new nodes
into the stack (line 17-20). Line 5 is to find how many nodes
need to remain in the stack, i.e. how many nodes need to be
popped. A node is added into stack.top()’s childList either
when the node is a real ELCA, or when the node’s childList

is not empty. Both cases imply that the node contains all
the keywords. Line 22-24 is to verify the remaining nodes in
the stack.

Fig 4 shows the snapshots of running the algorithm on the
tree in Fig 1. We divide the process into four steps. In each
step, a new value is read from the inverted list of keyword
a. At the beginning, the stack is empty, and every ELCA
candidate is encapsulated into a stack entry, and pushed
into the stack. The childList field of the stack entry is
initially set to empty (represented as {} in the figure), eg.
(1,{}), (2,{}), (3,{}) are pushed into the stack in turn. When
a2 = 1.2.4.5 arrives, we first obtain the longest common
prefix of a2 and the stack to be 1.2, and then pop up and
verify the nodes do not belong to the common prefix. Node 3
is popped and verified, followed by nodes 4 and 5 pushed into
the stack in turn. Step 3 is similar to step 2. The difference
is that in step 3, a real ELCA node 4 has been discovered,
therefore when node 4 is popped from the stack, it is added
into stack.top()’s childList. The current stack top entry
becomes (2,{4}). Node 4 will be used to verify whether
node 2 a real ELCA. Of the same spirit, when node 2 is
popped from the stack, it is added into node 1’s childList.
Finally, the remaining nodes in the stack are all popped up
and verified.

3.4 ELCA Candidate Verification
In this section, we present how to determine whether an

ELCA candidate is a real ELCA node. We will first review
the current solution in Indexed Stack algorithm to extract
the hidden idea implied by that implementation, and after-
wards we propose our solution, which is easier to implement,
superior in theoretical complexity, and faster in practice (We
only provide theoretical analysis in this section, and perfor-
mance on real DBLP dataset will be shown later in Sec-
tion 4).

Let us recall a concept first. Let child elcaCan(v) denote
the set of children of v that contain all keyword instances,
i.e. for any u ∈ child elcaCan(v), u is a child of v and either
u or u’s descendant is an ELCA candidate node.

child elcaCan(v) = {u|u ∈ child(v)∧

∀i ∈ [1, k](∃xi ∈ Si(u �a xi))}

where child(v) is the set of child nodes of v. Now as-
sume the set child elcaCan(v) is {u1, . . . , uc}, where c =
|child elcaCan(v)|. See Fig. 5, to verify whether v is an
ELCA node, the previous solution is to probe every Si to
see if there exists a node xi ∈ Si such that either xi is in the
forest under v to the left of the path vu1, or in the forest
under v to the right of the path vuc, or in any forest under
v between the paths vuj and vuj+1 (j ∈ [1, c − 1]) [25].

The idea behind this strategy is, for each keyword wi, we
need to find at least one witness xi, which solely contributes
to v (does not contribute to any u ∈ child elcaCan(v)). As
aforementioned, there are c + 1 different portions under v
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Figure 4: The snapshots of Naive Hash Count algorithm
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Figure 5: v and child elcaCan(v)

where xi may come from, however, if v is a real ELCA node,
it does not matter which portion xi comes from, as long as
it resides in one of them. Based on the above observation,
we have the following lemma.

Lemma 4. Given an XML tree and a keyword query

{w1, . . . , wk}, a node v is a real ELCA node, if and only if,

for any i ∈ [1, k],

Ci(v) >
∑

u∈child elcaCan(v)

Ci(u) (1)

where, for a node n in the XML tree, Ci(n) denote, in the

subtree rooted at node n, the number of nodes which directly

contain keyword wi.

Example 5. See Fig. 3, child elcaCan(x2) = {x1}. For

keyword a, Ca(x2) = 2, for x2 covers two keyword a in-

stances {a1, a2}. And
∑

u∈child elcaCan(x2) Ca(u) = Ca(x1) =

1, we have Ca(x2) >
∑

u∈child elcaCan(x2) Ca(u). Similarly,

for keyword b, we also have Cb(x2) >
∑

u∈child elcaCan(x2) Cb(u).

Therefore, x2 is a real ELCA. While x3 is not a real ELCA,

because Ca(x3) =
∑

u∈child elcaCan(x3) Ca(u) = 1.

The proof of Lemma 4 is not difficult, and hence is omit-
ted. Lemma 4 implies an efficient implementation to check
whether an ELCA candidate is a real ELCA node. A straight-
forward implementation of the function isELCA() is shown
in Algorithm 2. By utilizing hash index, fetching Ci(u)
(line 4) can be done in O(1) time, and the complexity of
one verification step (calling the function isELCA() once) is
O(k|entry.childList|). The total time complexity of Algo-
rithm 1 is O(kΣentry∈stack|entry.childList|). Here,
Σentry∈stack|entry.childList| is bounded by d|S1|, because
Σentry∈stack|entry.childList| is bounded by the number of
nodes ever pushed into the stack (refer to line 10 and line
12-14), and the total number of nodes pushed into the stack
is further bounded by d|S1|. To sum up, the time complexity
of Naive Hash Count algorithm is O(kd|S1|). Comparing to
Indexed Stack algorithm of complexity O(kd|S1|log|Smax|),
our solution manages to save a log|Smax| factor, which could
be of substantial importance when one or some of the key-
words have very long inverted lists.

3.5 Optimized Hash Count Algorithm
The Naive Hash Count algorithm presents the key idea

of finding ELCA nodes using the number of keyword occur-
rences rather than physically searching for a keyword wit-
ness. There are also several important optimizations that
can dramatically affect the performance of the algorithm.
We now introduce the optimizations, and give out an opti-
mized Hash Count algorithm in Algorithm 3. The modified
parts in Algorithm 3 (compared to Algorithm 1) will be ex-
plained when we introduce the corresponding optimization
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Algorithm 2 isELCA(entry) in Naive Hash Count

Description: To verify whether an ELCA candidate is a
real ELCA node, if yes, return true; otherwise return false.
Input: entry, a stack entry encapsulating an ELCA candi-
date node;
Output: a boolean value;

1: for i = 1 to k do

2: Csum := 0;
3: for each u in entry.childList do

4: Look up Ci(u) in Hash Count Index of keyword wi;
5: Csum+ = Ci(u);
6: end for

7: Look up Ci(entry.node) in Hash Count Index of key-
word wi;

8: if Ci(entry.node) = Csum then

9: return false;
10: end if

11: end for

12: return true;

techniques.

3.5.1 Reducing isELCA() Calls
In the Naive Hash Count algorithm, for every node in

S1, all its ancestor nodes will be checked by the function
isELCA(). In fact, many of these nodes do not need to go
into isELCA(). The reason is every keyword witness node
could contribute to only one ELCA node. For example, in
Fig. 3, a1 contributes to x2, a2 contributes to x1 and a3

contributes to x4. After x1 and x4 are found to be ELCAs,
x1 and x4 will prevent keyword instances below them from
contributing to their parents according to the ELCA defi-
nition. As a result, we use the notion potential ELCA to
capture those nodes in the stack that need to be checked in
isELCA(). Potential ELCA is defined as follows:

Definition 1. If node v is an ELCA candidate and con-
tains at least one witness node x1 from S1 (the working
list), satisfying x1 does not contribute to any ELCA nodes
under v, we call node v a potential ELCA.

Example 6. In Fig 3, when x2 is pushed into the stack,

it is not a potential ELCA. After a1 is verified not to be an

ELCA, x2 is set to be a potential ELCA, for there exists

a keyword instance a1 not covered below x2. A potential

ELCA may or may not be a real ELCA. In the example, the

potential ELCA x2 is a real ELCA. But if we remove b2 node

from the tree, x2 becomes a false one, despite that it is still

set to be a potential ELCA after a1 is popped from the stack.

For each stack entry, we add a boolean value to identify
whether the entry is a potential ELCA. For a popped entry
from the stack, if entry.isPotenialELCA = false, we dis-
card the entry immediately without calling isELCA(entry)
(line 8 in Algorithm 3). Line 13 sets the stack top to be a
potential ELCA, if the current node is a potential ELCA,
but not a real ELCA, because it means the current node has
an uncovered keyword instance that may contribute to its
parent. Line 25 initializes the isPotentialELCA field for
every new stack entry to be false, except for the last pushed
one (line 28). The last pushed entry encapsulates a node di-
rectly containing the keyword, and if the node is found not

Algorithm 3 ELCA Evaluation with Optimization

Input: the shortest keyword inverted list, S1

Output: all the ELCA nodes, R

1: stack = empty;
2: R = φ;
3: while not end of S1 do

4: Read a node value v from S1;
5: p = lcp(stack, v); {find the longest common prefix p

such that stack[i].node = v[i], 1 ≤ i ≤ p}
6: while stack.size > p do

7: popEntry = stack.pop();
8: if popEntry.isPotentialELCA = true then

9: if isELCA(popEntry) then

10: R := R ∪ {popEntry.node};
11: add popEntry.selfCount[] to

stack.top().descCount[];
12: else

13: stack.top().isPotentialELCA = true;

14: if popEntry.descCount[] 6= ~0 then

15: add popEntry.selfCount[] to
stack.top().descCount[];

16: end if

17: end if

18: else

19: if popEntry.descCount[] 6= ~0 then

20: fetch popEntry.selfCount[] and
add popEntry.selfCount[] to
stack.top().descCount[];

21: end if

22: end if

23: end while

24: for p < j ≤ v.length do

25: newEntry = [node := v[j]; isPotenialELCA :=

false; selfCount[] := ~0; descCount[] := ~0];
26: stack.push(newEntry);
27: end for

28: stack.top().isPotentialELCA = true;
29: end while

30: while stack is not empty do

31: Repeat line 7 to line 22;
32: end while

containing other keywords, the isPotentialELCA property
will be propagated upward (recall line 13). Comparing with
Algorithm 1, we avoid calling isELCA() function for nodes
{x3, r}.

3.5.2 Reducing Index Look-ups
Algorithm 2 in the Naive Hash Count algorithm is a straight-

forward implementation of Lemma 4. For some node u and
some keyword wi, Ci(u) may be looked up twice in line
4 (when checking whether u is a real ELCA) and line 7
(when checking whether u’s parent is a real ELCA). There-
fore, to avoid repeated look-ups, for each stack entry entry,
we use a k-dimension vector to record the occurrences of
each keyword under entry.node (There are in total k key-
words.). In this way, each node is looked up only once. We
use selfCount to denote the k-dimension vector. This pro-
gramming trick is indeed simple, but will facilitate space
cost reduction for Algorithm 1, which will be illustrated in
the next section.
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Algorithm 4 isELCA(entry) in Optimized Hash Count

Description: To verify whether an ELCA candidate is a
real ELCA node, if yes, return true; otherwise return false.
Input: entry, a stack entry encapsulating an ELCA candi-
date node;
Output: a boolean value;

1: for i = 2 to k do

2: Look up Ci(entry.node) in Hash Count Index of key-
word wi;

3: entry.selfCount[i] := Ci(entry.node);
4: if entry.descCount[i] = Ci(entry.node) then

5: return false;
6: end if

7: end for

8: return true;

3.5.3 Reducing Space Cost
We now introduce how to reduce space cost for Algo-

rithm 1. The idea is to replace the child lists with another
k-dimension vector, descCount.

We first analyze the space complexity of the Naive Hash
Count algorithm. The space cost comes from two parts,
the stack size and the size of child lists. The stack size is
bounded by d, where d is the depth of the XML tree. The
size of child lists, Σentry∈stack|entry.childList|, is bounded
by |S1|. The total complexity is O(d + |S1|). With index
look-ups reduction, the space complexity of the algorithm
increases to O(kd+k|S1|), because, for each entry.node and
each node in entry.childList, we need to record a selfCount

vector of size k.
However, we are able to reduce space complexity to O(kd)

without sacrificing efficiency. The idea is, for each node v

in the stack, using another k-dimention vector, denoted as
descCount, to accumulate the keyword occurrences of nodes
in child elcaCan(v). Let node u ∈ child elcaCan(v), u’s
selfCount can be added into v’s descCount after checking
isELCA(u) without storing u into v’s child list.

Algorithm 4 gives the isELCA() function in the optimized
Hash Count algorithm. It has the same spirit as Algo-
rithm 2, but is more efficient. There are k−1 loops except for
the least frequent keyword (line 1). In each loop, the num-
ber of keyword instances entry.node has covered is looked
up from the Hash Count index of wi, and recorded into
selfCount vector in line 3. Line 4 equals to line 8 of Algo-
rithm 2, but here descCount[] is accumulated on the fly. The
accumulation may take place at three places in Algorithm 3,
line 11, 15 or 20. In any case, it means the entry.node

has contained all the keywords, and all the instances cov-
ered by entry.node cannot contribute to entry.node’s par-
ent. Specifically speaking, (I) line 11 deals with the case
when the node is a real ELCA, like node x1 in Fig. 3; (II)
line 15 deals with the case when the node is a potential
ELCA, but not a real one. We do not have a corresponding
example in Fig. 3. If we remove b2 from the XML tree, then
x2 is a such node. (III) line 20 deals with the case when the
node is not a potential ELCA but still contains all the key-
words, i.e. it has a descendant node to be an ELCA. {x3, r}
are such examples.

Back to the space cost analysis, in the optimized Hash
Count algorithm, each stack entry has four fields, an en-
capsulated node id, a boolean value representing whether

the node is a potential ELCA, a selfCount vector storing
the number of keyword instances covered by the node, and
a descCount vector recording the number of keyword in-
stances have already been covered. Without storing a child
list for a stack entry, the space cost is reduced to O(kd).
Here, k is the size of vectors selfCount and descCount, the
tree depth d bounds the size of the stack.

3.5.4 A running example
We give a set of snapshots for running Algorithm 3 on

the XML tree in Fig. 3. At the beginning (step 1), each
node is encapsulated into a stack entry, and pushed into the
stack, with selfCount vector and descCount vector set to
~0 and the isPotentialELCA field of the last pushed stack
entry set to true. In step 2, when (3, true, (0, 0), (0, 0)) is
popped from the stack, its isPotentialELCA field is exam-
ined. After node 3 is found not to be a real ELCA, the
isPotentialELCA field of the current top stack entry is set
to true, because keyword instances under node 3 may con-
tribute to node 2 since node 3 is not an ELCA. And then
node 4 and 5 are pushed into the stack. In step 3, node 5
is first popped up from the stack and then node 4 is dis-
covered as an ELCA, for the selfCount vector of node 4
is found to be (1,1) larger than its descCount vector (0,0)
on every dimension. After node 4 is added into the result
set, the selfCount vector of node 4 is accumulated into the
current stack top node 2’s descCount. In a similar manner,
when node 2 is popped from the stack, its selfCount vector
(2, 2) is compared with its descCount vector (1,1). Obvi-
ously, node 2 is also an ELCA. Node 2’s selfCount is also
added into node 1’s descCount. Then nodes 8, 9, 10 are
pushed into the stack in turn. Step 4 operates similarly to
step 3. One different point we want to mention is that when
node 8 and 1 are popped from the stack. They will not go
into isELCA() function to be verified, because after node 9
is found to be an ELCA. The isPotentialELCA fields of
node 8 and 1 will not be set to true, and thus node 8 and 1
can be discarded directly.

3.5.5 A potential drawback and the solution
We have shown the advantage of Hash Count algorithm

in terms of both time and space complexity. The benefit
is brought by introducing the Hash Count indexes. Com-
paring with the existing algorithms, the potential drawback
of Hash Count algorithm is when some Hash Count index
cannot fit into memory. In this case, to fetch keyword count
information requires disk access to Hash Count index. The
performance of Hash Count algorithm will degrade signif-
icantly, since disk access is much slower than in-memory
operations.

To find a solution to the above problem is not difficult. For
a keyword whose hash count index cannot fit into memory,
we try to find a witness node for a candidate in the same
way as the IS algorithm using the keyword’s inverted list.
The disk complexity is O(B), where B is the number of disk
blocks storing the inverted list. This complexity is much
less than O(d|S1|), the disk complexity if we still use Hash
Count index for the stop word.

4. EXPERIMENTS
In this section, we report the performance of Hash Count

algorithm and compare it with the state-of-the-art algo-
rithms, DIL algorithm [8] and IS algorithm [25]. The version
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Figure 6: The snapshots of Optimized Hash Count algorithm

of our algorithm we use is the optimized Hash Count algo-
rithm with the modification discussed in Section 3.5.5 (to
deal with the case when hash count index is large). All the
experiments are done on a laptop with 1.6GHz Turion CPU
and 512M memory.

Dataset We test the algorithms on the DBLP dataset [1].
We first parse the data once to build keyword frequency
table, keyword inverted lists and hash count indexes. These
indexes are stored with Berkeley DB [2], precisely speaking,
the inverted list is stored in Berkeley DB’s B-tree, and the
frequency table and hash count indexes for the keywords
are stored in hash tables. The size of the XML document is
180M.

Keyword Query Selection We consider two issues, when
we select keyword queries to test the algorithms. (I) Se-
lecting a keyword with a specified frequency (the length of
inverted list): we use keyword frequency table to choose
keywords having frequencies close to specified values. For
instance, we put keywords with frequency close to 100 into
a set K100. When we want to choose a keyword with fre-
quency 100, we randomly select a keyword from K100. In
our experiments, the most used keyword frequencies are 10,
100, 1,000, 10,000, 100,000. (II) We manually refine the
keyword queries. For instance, to form a keyword query,
we randomly select two keywords, one from K10 and one
from K1000. However, it is possible that the combination of
these two keywords may not make sense, just because they
simply happen to have the specified frequencies. Therefore,
for each type of query, we manually choose three reasonable
ones from randomly generated ones. The elapse time is the
average time of answering three queries. Each query is run
five times after memory warm-up.

4.1 Varing the highest frequency
In Fig. 7, we fix the occurrence of the least frequent key-

word at 10, and vary the highest frequency from 100 to
100,000 at 10 times each step. We use L/H to denote the
lowest/highest frequency. When L=10, H=100, three algo-
rithms have almost the same performance, and the advan-
tage of Hash Count algorithm is not obvious, because if H

is not very large, DIL algorithm is acceptable, for |S| is not
very large. As to the IS algorithm, the number of logarithmic
look-ups is also small. As H increases, DIL algorithm de-
grades dramatically, and IS algorithm degrades mildly. The
advantage of Hash Count algorithm become more and more
obvious. Hash Count is better that DIL in orders of mag-
nitude, and better than IS by up to 30%. We also vary the
number of keywords from 2 to 5. As the number of keywords
goes up, the elapse time of all three algorithms goes up as
well, but the impact of the number of keywords is not as
significant as the length of the longest keyword inverted list.
Hash Count algorithm is always the best choice among the
three.

4.2 Varing the lowest frequency
In Fig. 8, we fix the occurrence of the most frequent key-

word at 100,000, and vary the smallest keyword frequency
from 10 to 10,000. As L increases from 10 to 10,000, the
elapse time of DIL algorithm stays almost the same with
a mild increase. The reason is that |S| is almost around
100,000, although has a mild increase. The gap between
the DIL algorithm with the other two algorithms become
closer and closer, for the working list of IS and Hash Count
algorithms becomes larger and larger, but DIL is still the
last choice. Hash Count algorithm is better than IS algo-
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Figure 7: Varing the largest frequency

rithm by an obvious margin, because log|Smax| now is not
a neglectable factor.

4.3 The same frequencies
In Fig. 9, we test the cases for L = H from 10 to 10,000.

We did not choose queries with L = H = 100, 000, because
such queries are too general and do not make sense. When
L = H = 10, three algorithms are almost the same, DIL
wins slightly owing to its not sophisticated implementation.
With the length of inverted lists goes up, the advantage of
Hash Count becomes obvious. DIL again suffers from the
total length of all the input lists, and IS has an increas-
ing log|Smax| look-ups, and is even worse than DIL. As the
number of keywords increase, the benefit the Hash Count
algorithm has brought becomes strengthened.

4.4 Discussion
In the above experiments, we have tested several keyword

sets. An interesting observation is that although DIL algo-
rithm and IS algorithm may outperform one another in dif-
ferent situations, Hash count algorithm is often the best in
almost every case. We analyze the reason as follows: When
there exists a rare keyword, Hash Count can take advantage
of this information by using the shortest inverted list as the
input. It manages to share the same merit as IS algorithm to
achieve very good performance; when keyword frequencies
are not biased, it also has satisfactory performance because
it does not need to read all the inverted lists, consequently,
the more the number of keywords is, the faster Hash Count
is, comparing to the DIL algorithm. This conclusion only
holds when the hash indexes can fit into memory. If all other
inverted lists except for the shortest one are not able to fit
into memory, Hash Count algorithm will perform the same

as the IS algorithm.

5. RELATED WORKS
Keyword search on XML data has drawn the attention of

database community recently. Unlike traditional keyword
search to return a web page, the result of keyword search on
an XML document is modeled as an XML fragment. Two
issues to answer keyword queries have been intensively in-
vestigated: effectiveness and efficiency.

As to the first category, effectiveness, many notions have
been proposed to model keyword query semantics. For pure
keyword query, ELCA proposed in [8] is the first semantic
approach to model keyword query result, and [8] also pro-
posed a ranking strategy to rank the resulting ELCA nodes.
Another widely accepted notion is SLCA, first proposed
in [24]. In fact, the importance of keyword queries on XML
data was realized several years ago, when some keyword-like
languages were addressed and studied. In [21], meet oper-
ator was used for querying an XML document by finding
LCA nodes of keywords given in the query. Schema-free
XQuery [15] adopted the concept of MLCA to incorporate
keyword search into XQuery. MLCA is similar to SLCA,
but with more imposed conditions. These LCA-based no-
tions have the following relationship: mlca(S1, . . . , Sk) ⊆
slca(S1, . . . , Sk) ⊆ elca(S1, . . . , Sk) ⊆ lca(S1, . . . , Sk). Some
other works utilized semantics to refine the produced LCA
nodes, eg, XSEarch [5] and CVLCA [14] have improved the
quality of LCA and ELCA respectively. Another stream of
works (also focusing on the effectiveness issue) aim to iden-
tify what information should be returned to users. The ob-
servation is that an LCA node may not be a meaningful en-
tity [17], or the query result should follow some universally
accepted properties [18]. The works [17, 18] use subtrees
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Figure 8: Varing the lowest frequency

rooted at SLCA nodes as base to infer meaningful returned
fragments. Kong et al. [13] developed the idea in [18] using
subtrees rooted at ELCA nodes.

On the other hand, the efficiency of LCA evaluation have
been studied mainly on SLCA [24, 22, 23] and ELCA [8,
25]. The performance matters, because computing LCAs is
an important step of many XML keyword search systems,
such as [17, 18, 13]. Our work falls in this category.

Keyword query are also studied on graphs and in rela-
tional databases, such as [6, 3, 4, 10, 11, 12, 9, 19, 16, 20,
7]. (Just list a number of them.) The semantics of keyword
query result is no longer LCA-based entities, since the data
is not of a tree structure. The techniques of these works
can be definitely borrowed to process XML data, but it is
obvious that these techniques are not well-fitted, since they
are not specially designed for XML.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we have proposed an efficient algorithm

named Hash Count to find ELCAs for keyword queries on
XML data. Our idea is to use hash index to find ELCA
candidates and use keyword occurrences under a node to fa-
cilitate ELCA verification. We have shown that Hash Count
achieves time complexity O(kd|S1|), where k is the number
of keywords, d is the depth of the XML document, |S1| is
the occurrence of the least frequent keyword. Comparing to
DIL in [8] of complexity O(kd|S|) and Indexed Stack algo-
rithm in [25] of O(kd|S1|log|S|), where |S| is the occurrence
of all keyword instances, Hash Count has given out the best
complexity result so far. Furthermore, we have shown that
Hash Count indeed performs better than the state-of-the-art
works on real datasets.

One interesting direction for future work is to compress
the hash indexes without sacrificing the algorithm perfor-
mance. Currently, hash index records nodes both directly
and indirectly containing keywords, leading to a potentially
large number of nodes to store. A desirable improvement is
to reduce the number of nodes stored while keeping index
look-ups still in constant time.

An unavoidable drawback of Hash Count algorithm is that
it cannot determine“witness”nodes. Though, for the notion
of ELCA, it does not matter which nodes are the contribut-
ing nodes to an answer, the information about witness nodes
may be helpful to the users.
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