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Abstract 

We study a coordination game wjth randomly changing payoffs and small fric

tions in changing actions. Using only backwards induction, we find that players 

must coordinate on the risk dominant equilibrium. More precisely, a continuum 

of fully rational players are randomly matched to play a symmetric 2 x 2 game. 

Thf' payoff matrix changes over time according to some Brownian motion. Players 

observe these payoffs and the population distribution of actions as they evolve. 

The game has frictions: opportunities to change strategies arrivf' from indepen

dent random processes, so that the players are locked into their actions for some 

time. As the frictions disappear, each player ignores what the others are doing 

and switches at her first opportunity to the risk dominant equilibrium. History 

dependence emerges in some cases when frictions remain positive. 

J.E.L. No.: Cn. Field: Game Theory. 



1 Introduction 

Games with multiple strict Nash equilibria present a major difficulty for game theory. 

Most equilibrium refinements do not select a unique equilibrium in such games, and 

those that do are not unanimous in their predictions. Nonuniqueness not only limits 

the predictive power of the theory; it casts doubt on its entire validity. Without an 

explanation of how players reach coordination, it is hard to justify why equilibrium play 

is, at all, a reasonable prediction. 

The difficulty of generating predictions from the normal form game need not be 

considered a failure of game theory. It may simply indicate that the game sometimes 

needs to be specified in greater detail. One important goal of game theory is to find 

out which details are most relevant in determining whether equilibrium behavior is 

reasonable and, if so, which equilibrium is the better prediction. A way to approach this 

goal is to study the models that result from filling in the missing details of the normal 

form game in various ways. 

In population models, a large population is randomly matched, from time to time, 

to play a given normal-form game. Rather than simply postulating that players guess 

correctly what others will do, these models provide a dynamic framework in which 

players can observe the actions of others in the process of picking their own. This gives 

rise to an interactive process that can potentially lead to equilibrium play. The study 

of population models also enlarges the predictive scope of game theory to the process of 

convergence to equilibrium play itself, rather than limiting it to the ultimate result. A 

number of important issues can be studied, including rates of convergence and the role 

of initial conditions. 

Most of the population literature has focused on the evolution of play in a fixed world. 

In this paper we study the evolution of play when the world changes over time. In many 

of the natural applications of population models, such as the choice between technological 

standards or the economy's coordination on high or low activity, the assumption that 

the world is changing is more realistic. The state of technological knowledge, oil prices 
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and weather conditions are only a few of many factors that change over time and affect 

the relative payoffs from different choices. 

We model the changing world using an exogenous stochastic process that affects the 

payoff matrix of the static game. We assume that, in the (perhaps very distant) future, 

these changes in payoffs have the potential to make any action strictly dominant. This 

leads to an unraveling effect that yields sharp predictions about what players will do 

in the present. With small frictions in changing actions, the equilibrium that is risk

dominant at any given time must be played. Moreover, convergence to that equilibrium 

occurs as fast as the frictions allow. This contrasts with most population models, in 

which the selection either depends on initial conditions or is only a long run prediction, 

taking the form of an ergodic distribution with most of its weight put on one equilibrium. 

Players in our model are fully rational. Models with rational players have typically 

been solved using the assumption of rational expectations equilibrium2
. In contrast, 

our result is established using only iterated conditional dominance, an extension of 

backwards induction to infinite horizon games. 

One should not consider our use of iterated conditional dominance as a refinement of 

Nash equilibrium; in our model, every Nash equilibrium outcome survives the iterative 

procedure. Rather, we use iterated dominance so as to avoid the assumption of equi

librium play: i.e., that players' strategies happen to be best responses to each other. A 

primary motivation for looking at population models is to explain why players playing 

a normal form game coordinate on an equilibrium. Assuming equilibrium play in the 

dynamic game would only shift the problem of justifying coordination from one model 

to another. In contrast, iterated dominance traces a plausible process by which players 

reason about what others will do. In our model, this process alone leads players to co

ordinate their beliefs. Ac~ordingly, our use of weaker assumptions in the dynamic game 

2This is an assignment of strategies and beliefs to each player, such that each player's belief over 

the expected evolution of the environment is correct given everybody's strategies, and such that each 

player's strategy is optimal given that belief. 
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helps justify the prediction of equilibrium play in the normal form game. 

This paper is closely related to papers by Carlsson and van Damme [10] and Matsui 

and Matsuyama [24]. In the former, two players play a one shot game of incomplete 

information. Each receives a slightly noisy signal of the game's payoffs. Iterated strict 

dominance leads to the selection of the risk-dominant equilibrium through a contagion 

argument. In Matsui and Matsuyama, a large population of rational players is randomly 

matched to play a fixed game. There are multiple rational expectations equilibria; 

however, only the stationary state in which the risk-dominant equilibrium is played 

possesses certain stability properties. Our model is like that of Matsui and Matsuyama, 

but the payoffs in the static game change randomly over time. This leads to equilibrium 

selection through a contagion argument that is akin to that of Carlsson and van Damme. 

The relations among these three papers are discussed in detail in section 5. 

The rest of this paper is organized as follows. The model and results are presented 

in sections 2 and 3. We explain the intuition for the results in section 4. Se~tion 5 is 

a literature review. Section 6 concludes with a discussion of how the results depend on 

the various features of the model. The formal proofs are collected in an appendix, with 

references to mathematical results that appear in Burdzy, Frankel, and Pauzner [9]. 

2 The Model 

The static game we study is a 2 x 2, symmetric coordination game, with two strict Nash 

equilibria. The populatiOH literature has typically focussed on these games since, while 

being extremely simple, they exhibit the problems associated with multiple equilibria to 

their full extent. In addition, many economic interactions can be analyzed using models 

of large populations that are randomly matched to play such games. 

To understand our model, it may be helpful to keep in mind the following story. The 

professors in a certain university work on two types of computers: IBM and Macintosh. 

From time to time, two professors need to share files. Their payoffs from this interaction 
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depend on the type of computer that each has; in particular, imperfect compatibility 

creates a benefit to coordination. The following table gives an example. 

113M Macintosh 

IBM 3,3 2,0 

Macintosh 0,2 4,4 

Occasionally, a professor's computer breaks down and she must choose a new one. To 

decide which to buy, she needs to consider several issues. At the current state of tech

nology, how do the two computers compare? How many other professors currently use 

each standard? Which are they likely to choose when their own computers break down'? 

How will their choices be affected by possible technological developments and by their 

own predictions of how people will choose after them? 

One may wonder whether the professors eventually coordinate on a given computer 

standard and, if so, on which and how soon. These are the types of questions we seek 

to answer in our more general model. We first describe the static game, which specifies 

the players' payoffs from a single match. We then present the dynamic context in which 

players are matched and choose their actions. 

2.1 The Static Game 

We consider a symmetric static game with two actions, R and L. Payoffs depend on a 

random parameter· B1 that-changes over time, t: if a player playing a meets a player 

playing a' at timet, her payoff in the static game is u( a, a', B1 ). Higher values of 8 1 raise 

the relative payoff to playing R while lower values make L more desirable. More precisely, 

the relative payoff to playing R against the action a, 6:.( a, Bt) = u( R, a, Bt)- u( L, a, Bt), 

is continuous and strictly increasing in 8 1 at a bounded rate: there exists a positive 

constant w such that for all b > b, 

0 < 6:-(a, b)- 6-(a, b)< w[b- b] (1) 
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The game has strategic complementarities. That is, the relative payoff to playing R 

is higher when one's opponent is playing R: !::l.(R, Bt) > !::l.(L, Bt).3 The following table 

gives an example of the time-t payoff matrix. 

R L 

R 3 + 8~,3 + Bt 2+ Bt.O 

L 0,2+ Bt 4,4 

We assume that Bt follows a Brownian motion. This is essentially the continuous 

time version of a random walk and may also have a deterministic trend. The Brownian 

motion has two parameters. The variance u 2 tells us how fast the Brownian motion 

spreads out. The trend J.l gives the rate at which its mean changes over time. More 

precisely, a Brownian motion has the following properties (Billingsley (3, p. 522]): 

1. It is continuous with probability one. 

2. For any t > i > 0, the random variable Bt - Bi (which takes values in ~) IS 

normally distributed with mean J.L(t- i) and variance u 2(t- i). 

3. Its increments are independent. For any t > i :;::: v > v, the random variable 

Bt - Bi is independent of Bv - Bv. 

In our game, an action is p-dorninant (Morris, Rob and Shin [25]) if it is a best 

response whenever the opponent is expected to play that action with probability at 

least p. We say that an action is exactly p-dominant if a player is indifferent when her 

opponent puts a weightof exactly p on that action. 4 (Equivalently, p is the smallest 

number for which the action is p-dominant.) For example, in the above game, when 

8 1 = 0, R is exactly 0.4-dominant. Clearly, R is exactly p-dominant if and only if L is 

exactly (I - p )-dominant. 

3 This assumption also ensures that only (R, R) and (L, L) can ever be pure Nash equilibria. 

1 For the purpose of the definition, we allow p to take values also outside the interval (0, I]. For 

example, if R is exactly -0.2-dorninant, it is strictly dominant. 
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This terminology permits a convenient rescaling. We denote by BP the value of Bt 

at which_R is exactly p-dominant in the static game: 

pu(R, R, BP) + (1- p)u(R, L, B"") == pu(L, R, BP) + (1- p)u(L, L, BP) (2) 

In the above game, for instance, 0 = B0
·
4

• Note that BP is decreasing in p: if a player's 

opponent plays R with higher probability, the player will be willing to play R at lower 

values of Bt. An action is risk-dominant (Harsanyi and Selten [16]) if it is a best response 

when one's opponent is expected to play both actions with equal probabilities. In our 

terminology, R is risk-dominant whenever Bt 2: B 112 and L is whenever Bt :::; B 112
• 

2.2 The Dynamic Context 

A continuum of players are randomly matched from time to time to play the static 

game. A player's matches arrive according to a Poisson process with common arrival 

rate m > 0. vVhen a player is matched, she cannot instantaneously change actions. 

Rather, she is locked into an action she chose before. Her opportunities to revise actions 

arrive according to a Poisson process with common arrival rate k. When k is high we 

say that frictions are small, since players are locked into their actions for less time. We 

assume that all of the Poisson processes are independent and that there is no aggregate 

uncertainty. 5 

The players observe the evolution of both Bt, which we call the "state of the world", 

and Xt. the proportion _?f players currently committed to playing R (rather than 1), 

which we call the "state of play". We refer to the pair ( Bt, Xt) as the "state of the 

environment". The public history at time t is the evolution of the environment until 

that time, (Bv, Xv)ve[o,t]· A player's private history at timet consists of her actions and 

the details of her matches up to timet. A player's information set at timet is given by 

the public history, together with her private history. Strategies are functions from the 

5 Judd [17] discusses some technical problems that arise with a continuum of i.i.d. variables. Boylan 

[7], and Gilboa and Matsui [15] offer possible solutions in the context of random matching. 
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set of all information sets to the action set { R, L} that indicate the action a player will 

choose at any information set, should she have an action revision opportunity.6 

Note that the actions of any player- will be observed by only a countable number 

of other players. Since there is a continuum of players, the probability is zero that a 

player's past actions or those of her opponents will have any effect on the actions taken 

by any future opponent. This means that a player's payoffs from different actions can in 

no way depend on her private history. For this reason we may assume, without loss of 

generality, that a strategy is simply a map from the set H of all possible public histories7 

to the action set { R, L}. 

Suppose an agent receives an opportunity to revise her action at time t, after the 

history h1• Denote the (realized) times of her subsequent matches by t 1 , t 2 , •••• Suppose 

that at the time of the agent's nth subsequent match the state of the world is Btn, the 

agent is playing the action an E { R, L}, and the agent's partner in that match is playing 

bn E {R, L}. Then the agent's timet continuation payoff is 

(3) 
n=O 

where r· ~ 0 is the constant discount rate.8 When a player has a revision opportunity, 

she maximizes the expectation of (3) with respect to the probability distribution over 

paths (Bv)v>t and her beliefs about the path of play (Xv)v>t that will result from any 

given realization of (Bv)v>t· 

Because a single player has no influence over which path (Xv)v>t will occur, the best 

she can do is to pick the action that maximizes her discounted payoff for the (random) 

6The restriction to pure strategies is without loss of generality. Our iterated dominance argument 

applies almost unchanged if a player can choose a mixed strategy. 

7This is the set of all paths (B.,,X.,).,e[o,t)• for any t and (Bo,Xo). 

8 Alternatively, the player's payoff may depend on the state of the world at the ti111e that she picked 

her action, 8 1 , rather than on the states at the times of the matches, Btn. Such a specification may be 

more appropriate in our motivating example, since the properties of a computer depend largely on the 

state of technology at the time of purchase. All of our results hold for this specification as well. 
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period in which she will be committed to that action. In any period [v, v + dv], a player 

is matched with probability mdv to an opponent who plays R with probability Xv and 

L with probability 1 - Xv. With probability e-k(v-t), tl;e player is still locked into the 

action she chose at timet. Since her pure discount factor is e-r(v-t), her effective discount 

factor is e-(k+r)(v-t). Therefore, the relative payoff to playing R is: 

A player chooses R if this is positive and L if it is negative. 

Finally, to give our iterated dominance argument a place to start, we assume that for 

Bt large enough, R is strictly dominant: that E Uv::t e-(r+k)(v-t) D.( L, Bv )dv I Bt) > 0. 

For sufficiently low values of Bt. an analogous condition makes L strictly dominant. 

3 Solving the Model 

Rather than looking for equilibria, we analyze the game using a more primitive solution 

concept: the iterative elimination of conditionally dominated strategies {see Fudenberg 

& Tirole (13, pp. 128 ff.]). This is essentially the extension of backwards induction to 

infinite horizon games. 

It is important to note that, in our model, iterated conditional dominance is not a 

refinement of Nash equilibrium.9 This is because players are small, so that no unilateral 

deviation can alter the probability distribution of reached information sets. Therefore, 

given a Nash equilibrium, 01~ can alter the strategies in any way at unreached informa

tion sets and the resulting strategy profile will remain a Nash equilibrium. In particular, 

one can adjust the strategies at unreached information sets so that the overall equi

librium is subgame perfect. But every subgame perfect equilibrium survives iterated 

conditional dominance. 10 

9 We t.hank Philip Reny for suggesting the argument that follows. 

10To bf' more precise, lets be a Nash equilibrium strategy profile, and let s(b, x) denote the play pre-
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In our model, the iterative procedure works as follows (ignoring some technical points 

that are addressed in the proofs). Suppose a player receives an action revision oppor

tunity at time t. If Bt is large enough, R is strictly dominant, so the player will choose 

R regardless of her beliefs over which- strategies are used by the other players. Let J0 

be the boundary of the region where R is strictly dominant. This is depicted in Figure 

1. To the right of r, we know that the player must play R; to the left of f 0 we cannot 

yet say what the player does. In the first step we eliminate all the strategies in which a 

player plays L in states ( B~, Xt) that are to the right of f 0
• 

Figure 1: The iterative elimination procedure. 

In the second step we assume that a player believes that other players will always 

play R when they are to the right of f 0
• With this belief, there is a new boundary, J1

, 

such that a player must play R when she is to the right of P. / 1 must lie to the left of 

J0
, since knowing that other players will sometimes play R makes R a more appealing 

action. In the next step we find j2 and so on. Let F be the limit of the sequence J0
, 

p,.. .. Whenever (B17 Xt) is on the right side ofF, any player who is called to act 

must play R. In a similar way, starting an iterative process from the left side of the 

environment space where the action L is dominant, we construct a bound G, such that 

scribed by s for histories that begin with (Bo, Xo) = (b, x). We construct a subgame perfect equilibrium 

.~ that. has the same distribution of equilibrium paths as s as follows. If h1 is consistent with s, players 

continue to play according to s. Otherwise, let v ~ t be the earliest time such that h, is consistent 

with all players having 'reset their clocks to zero' at time v and having played according to s(Bv,Xv) 

t.hereafter. Under s, players continue to conform to s(Bv,Xv) after seeing the history h,. Clearly, s 

induces the same equilibrium play as s and is subgame perfect. 
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any strategy that survives the iterative elimination prescribes playing L' to the left of G. 

The iterative elimination procedure divides the environment space into three regions. 

In all the surviving strategies, R is played to the right of F and L is played to the 

left of G. We do not know what happens in the "?" region between the two lines; 

different strategies might partition this region into R and L in different ways, and their 

prescriptions might even depend on aspects of the history that are not reflected in the 

time-t environment space. 

3.1 Results 

Our main result states that as frictions disappear, the "?" region shrinks to the vertical 

line at B 112
• This is depicted in Figure 2. Apart from a vanishing range of values of B1 

around B 112
, a player's choice between L and R is uniquely determined by the state of 

the world 8 1• The player simply plays the action that would be a best response in the 

static game against an opponent who puts equal weight on Rand L. 

L R 

Xt = 0 
Bt/2 

Figure 2: Case of- vanishing frictions ( k ---+ oo ). 

Theorem 1 

Fi.r u, Jl, and r·. For any f >...D, there is a!!. such that if k > Js.., 

fl rnust be played whenever 8 1 > 8 112 + f and L whenever B 1 < B 112 
'- c 

Proof Sf( appendix. 

This r~sult has strong implications for the evolution of aggregate play in the pop

ulation. Consider the initial normal-form game, and assume that the actions L and R 

an~ not exactly l/2 dominant. If frictions are small enough, the population will immedi

att>ly converge to the action that is risk-dominant, regardless of the initial state of play 
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X0 . A dynamic interpretation is that the population follows the evolution of the world. 

Whenever B1 is above B 112, the whole population plays R, while when B1 is below B 112, 

all players coordinate on L. Switching between equilibria occurs very quickly. 

Theorem 2 considers the case in which lock-in remains positive and instead the world 

changes more and more slowly. Once again, the (B~, X1) space is divided uniquely into 

R and L regions. If the players are perfectly patient, the risk-dominant equilibrium 

is again selected. But if players are impatient, the curve that separates the R and L 

regions is strictly downward sloping. An example is depicted in Figure 3. (In general 

the curve need not be straight.) The fact that the indifference line is downwards sloping 

means that for some intermediate range of values of B0 there is history dependence: the 

initial state of play determines the equilibrium on which players eventually coordinate. 

If enough players are initially playing R, the rest of the population will follow; otherwise, 

play converges to L. 

Xt = 1 

L R 

Bt/2 

Figure 3: Case of slowly changing world and fixed frictions. 

Theorem 2 

Fix k and 1·, and let h(x) = ~~tZ. 

For any E > 0, there is a a> 0 and a Ji > 0 such that if a < a and 11- < Ji, 

R must be played whenever Bt > Bh(Xt) + E and L whenever Bt < Bh(Xt) - L 

As players become more and more patient (r ~ 0}, h( x) ~ 1/2, as in Theorem 1.11 

Proof See appendix. 

11 Theorem 2 holds k fixed and takes u and 1-' to zero. This is actually not necessary; the result holds 

whenever k/u and k/Jl both go to infinity. This generalization of Theorem 2 implies Theorem 1 since 

if k goes to oo, h(x) goes to 1/2. 
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4 Intuition 

Outline 

We first explain the intuition for the case of vanishing frictions, and then discuss how 

things change with positive frictions and a slowly changing world. Why must F (and, 

analogously, G) converge to a vertical line at B 112 '! Consider a player who chooses an 

action at time t at some point on F and who believes that all other players will choose 

R to the right of F and L to the left. We show that such a player must be indifferent 

between R and L. We can then infer B1 by counting the proportion p of R opponents 

she expects to meet: since she is indifferent, B1 must equal BP. 

We then show that, if X 1 = 1, the player expects to meet at least one half R players. 

Since she is indifferent, the upper endpoint of F must be to the left of B 112
• Similarly, 

the lower endpoint must lie to the right. Hence, ifF were not identically B 112 , there 

would be some point where F had a finite, negative slope and was not equal to B 112•12 

The heart of the proof shows that whenever F has such a slope, the player expects to 

meet exactly one half R players. Since she is indifferent, F must in fact equal B 112 • 

The Argument in Greater Detail 

Let us say that a player plays "according to F" if she always chooses L to the left 

of F and R to the right. If a player believes that all other players play according to F, 

then she also wants to. Why? To compute j 11 from r-t we use the belief that makes 

R the least desirable: that all players play L to the left of fn-I (and R to the right). 

This is just the belief that mher players play according to Jn- 1
• With this belief, a 

player wants to play according to f''. Since one more iteration from F gives F, a player 

who believes that all other players play according to F will also want to. A continuity 

argument implies that, if the player is on F, she is indifferent between Rand L. 

Suppose our player revises her action at time t. While she is locked into this action 

12 In the intuition we assume that F is continuous. In fact, we don't know this about. F, and the 

formal proof does not. assume it. 
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she will be matched to a sequence of players, whom we divide into two groups: "ne 

players and "old" players. A player is "old" if, at the time of his match with her, ht 

locked into an action that he chose before timet. A "new" player is one who chose 

action after time t. The expected number of "old" players equals the expected num 

of "new" players. Why? Over a player's lifetime, half of the players she is matcl 

with will have chosen their actions before she chose hers, because all players have 

same rate of revision opportunities. But a lifetime is just a sequence of commitment: 

actions. 13 Since the period of commitment that begins at timet is, ex ante, the sam( 

any other, the expected numbers of "new" and "old" players in the period must also 

equal. 14 

The probability that an "old" player plays R is given by X 1• This immediately gi 

bounds on F(O) and F(l). (We now treat F as a function from X 1 to B 1.) Suppose t 

a player chooses an action on F when X1 = 1. Since all old players are playing R, 

cannot expect to meet more than one half L players. Since she is indifferent on F, 

must be to the left of 8 112
• This shows that F(l):::; 8 112

• Analogously, F(O) ~ B'l 

Now suppose that, in the limit as frictions vanish, F is not a vertical line at B 

Then there must be a point away from 8 112 where F has a finite, negative slope. Supr 

a player receives an action revision opportunity on Fat this point at timet. Assume 

believes that all other players play according to F. As argued above, she is indiffer 

between R and L. Let's count the proportion of R players she expects to meet w 

locked into her action. Half of them will be old players; of these, Xt play R. Hal 

them will_be new players; we will show that the probability that a new player p 

13 F'or a discussion, see Hare Krishna (1742). 

14 Morc formally, let 0; and N; be the (random) numbers of old and new players that a player 

nwet while locked into her ith action. Over a player's lifetime she meets equal proportions of 

and old players: plirn1_
00 

[L::f=t N;/2::{= 1 0;] = I. Divide both the numerator and the OPII 

nator by /. Since the expectation of N; is independent of i, the law of large numbers implies 

plim 1_"" [2::{= 1 N;] /I= E(N;), and likewise for 0;. Thus, E(N;) = £(0;). 
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R is 1 - X 1 in the limit. Therefore, the total proportion of R players converges to 

Xt/2 +(I - Xt)/2 = 1/2. Since the player is indifferent, F(Xt) must be close to B 112 

when k is large. 

How does a player forecast how the new players will play? To answer this, we need to 

know how her belief over other players strategies combines with the exogenous stochastic 

process B to give a prediction of how the state of play X will evolve. Suppose all players 

do play according to F. Then X satisfies the following differential equation: 

:,. {k(l.-Xt) .Xt= 
-kXt 

if Bt > F(Xt) 

if B1 < F(Xt) 

Why? When 8 1 > F(X1), all players currently playing L switch toR when they have the 

chance. The proportion of L players is 1 - X 1, and they get chances to change actions 

at the rate k, so X1 = k( 1 - Xt). Similarly, when 8 1 < F(Xt), players switch from R to 

L, and the proportion of R players is Xt. so X 1 = -kX1• 

Figure 4: Local dynamics around F. 

Figure 4 illustrates the d;'uamics of the system. Suppose we are initially 011 F. If 

B increases slightly, players start switching to R, so X rises. This causes us to move 

away from F. X will continue to rise unless a rcV<'I"S<' movement of B brings us to the 

other sidt> of the indifferencP line. If this happens, X will begin to fall -again, until a 

suffici<'ntly large revNse movenwnt of B takes us back to F. The longer we stay on one 

sidt' of F, the lt>ss chance that we will return, since the changes in X always take us 

furt.lwr away from F. Thus, sooner or later there will be a bifurcation: a time beyond 
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which we stay on one side of the line until X (almost) reaches either 0 or 1. 15 

As frictions shrink to zero, two things happen. First, the bifurcation happens almost 

mstantaneously, so that almost all new players choose their actions after the bifurcation. 

This means that either nearly all new-players choose R (if there is an upwards bifurca

ttonl or nearly all choose L (if the bifurcation is downwards). Second, the ratio of the 

probabilities of bifurcating up vs. down converges to the ratio of the speeds at which the 

population moves to R versus L on the two sides of F. This ratio is just (I - Xt)/ X 1• 

The mtuition for these two properties is explained below. 

The probability that an "old" player plays R is given by Xt. With small frictions, 

t.he probability that a "new" player will play R is just the probability tha.t X bifurcates 

tlpwards, which is 1 - Xt. In total, the player must believe that her probability of being 

matched to an R player is 

I X 1 X I -· t+-·(1- t)=-
2 2 2 

( 4) 

Sinn~ the player is indifferent between Rand L given her belief. F( Xt) cannot be different 

from 8 112 in the limit as k goes to infinity. This completes the intuition for Theorem I. 

The Case of a Slowly Changing World 

The 111tuition for Theorem 2 is exactly the same, with one exception. With non

vanishing frictions, a player is locked into her action for a positive amount of time. If 

she is impatient. she puts more weight on old players than on new players. This ts 

hecaust> old players are typically encountered earlier than i1ew players during the period 

of commitment This means that in equation (4), she puts a weight of more than one 

half on the Xt and lessThan one halfon the 1 - X 1• Thus. a higher Xt makes R a more 

appealing choice. As a result, F is not vertical but rather slopes dowuward. The rest of 

t h(• argument is still valid. The relevant properties of bifurcations still hold since they 

dq>end only 011 k becoming large relative to a and J.l· 

·--------------
;; Not.e that. X is never exactly equal to 0 or 1 since for every given length of time there is a positive 

frartiou of players who have not yet received a chance to change the1r actions 
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Intuition for Bifurcation Properties 

We first need to show that lhe bifurcation occurs almost instantly. This is easiest 

to see in the second case, of fixed frictions and a slowly changing world. After a short 
- . 

time on either side of F, X takes us away from the line at a fixed rate; the slower B is, 

the smaller is the chance that a reverse movement in B will take us back, and thus the 

earlier is the bifurcation. 

In the other case, of shrinking frictions, we need to show something stronger. In order 

for the player to ignore how new players play before the bifurcation, the bifurcation must 

happen very early 1·elative to the time 1/ k that she expects to be locked into her action, 

which itself shrinks to zero as frictions disappear. To show this, we stretch the time 

scale so as to keep the expected lock-in time fixed. (I.e., we replace B1 with B1 = Btfk 

and X, with Xt = Xtfk·) The Brownian motion in the new scaling becomes slower and 

slower, whereupon the prior argument can be applied. 

The second thing we need to show is that the relative chance of bifurcali'fl:g up vs. 

down equals (I- Xt)/ X 1 • To see this, it helps to transform the problem to one dimension: 

the horizontal distance between B1 and F(Xt). Locally, F is approximately a straight 

line. Thus, the distance D1 = 8 1 - F(Xt) looks locally like a Brownian motion with 

two different constant trends, each pulling D away from zero (see Figure 5). Denote 

the trends pulling D to the right and left by >.n = k( 1 - Xt)IF'(Xt)l + 11 and ),L = 

kXtiF'(Xt)l- Jl· 

Figure .5: Linearization of Dv = Bv- F(Xv) around v = t. 

In this approximation, a bifurcation occurs at timet if D1 equals zero but Dv is nonzero 

for all v > t. An upwards bifurcation in ( 8~, X 1) space corresponds to a positive bi

furcation of D. We will show that the ratio of probabilities of positive and negative 
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hifmcat.ions of D is approximately the ratio of the respective trends, >..nl )..L, which 

converges to ( 1 - X 1 )I X1 as k grows. 

Suppose that Dt = 0. Lt>t pi be the probability of a positive bifurcation of D 

occurring at any time after t. Let pi- be the probability of a negative bifurcation. 

Let P} and pfl, respectively, be the probabilities of a positive and negative bifurcation 

occurring at some time v E [t, t + t]. We claim that the ratio PII pl of bifurcation 

probabilities equals the ratio P} I pfl. Why? Let P( = P} + p£1. If there is no bifurcation 

in the interval [t, t + t], then we must have Dv = 0 for some v > t + t. As of time v, the 

probability of an upwards bifurcation is once again Pl. Thus, P1 = P} + {1- Pf)Pl. 

This shows that pl = p£1 I P(. Likewise, pl = p£11 P(. Therefore, PII pl = P} I P}. 

Since this equality holds for all t, it also holds as t goes to zero. This limit turns out 

to be easy to compute. For an upwards bifurcation to occur in [t, t + t], two things must 

happen. First, D must be positive at timet+ t. Second, D must remain positive forever 

after. Where is D at t + t:.? Since D1 = 0, the value of D at time t +f. is dominated 

by the noise in B. This is because the standard deviation of Bt+£ - B1 is proportional 

to yff, while the linear trends )..R and )..L produce a. change of order only t. For small 

t, vfflt:. is arbitrarily large. So for small f. we can treat the distribution \Iff of Dt+f as 

approximately symmetric around zero. (In particular, it is approximately normal with 

mean 0 and variance u 2 t:.). 16 

Given that D is positive at t + t:., what is the probability that it remains so forever 

after? If Dt+£ = z and z is small, this probability is proportional to the distance z 

times the trend )..R, To ~ee this, let p be this probability, and consider what happens 

if Dt+r starts twice as far away, at 2z. What is the probability that D never hits zero? 

16This property of Brownian motions, that the noise swamps the trend over short intervals, is au 

implication of independent increments. The change in the J3rownian motion over a given interval of 

length, say, I, is the sum of N i.i.d. changes over intervals of length 1/N. The only way this surn can 

retain a nontrivial variance as N grows is for the variance over each subinterval to remain relatively 

large; i.e., at least proportional to 1/N. 
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It is the probability p that D never hits z, plus the probability 1 - p that D hits z 

times the probability p that, from z, D never reaches zero. This is p+ (1- p)p, which is 

approximately 2p since, for small z, 1-pis close to one. This shows that the probability 

that D never hits zero if it starts at z is proportional to z for small z. 

Why is this probability is also linear in An? Note that as long as D > 0, D is simply 

a Brownian motion with trend An. Let us multiply the time scale by 4 and the space 

scale (the horizontal axis) by 2. This gives a new Brownian motion Dv = 2Dv;4 , which 

has the same variance as the old one: 

The new process b begins at 2z. Since the time scale is stretched by twice the space 

scale, the trend of b is An/2, half the trend of D. But a change in the scaling cannot 

affect the probability that b never hits zero, which must still be p after doubling the 

initial distance z and halving the trend An. Since the probability that D never hits zero 

is linear in z, it must also be linear in An. 

Hence, if Dt+< = z and z is small, the probability that Dv remains positive for all 

v > t + t is proportional to zAn. Since most of the weight of W, is on small z's, the 

probability P} is approximately proportional to 

The probability P,l that D bifurcates to the left in [t, t + t] is approximately proportional 

to 

1:_,>0 !z!ALdW,(z) ~ 1: zAulw,(z) = A£ 1: zdW,(z) 

because W, is approximately symmetric. Therefore, the ratio P/ / P} equals An/ AL as E 

goes to zero. Since An= k(I- Xt)!F'(Xt)! + fL and AL = kXt!F'(Xt)l- JL, this ratio 

converges to (I - X 1)/ X 1 as k goes to infinity. This shows that the relative probability 

of bifurcating up vs. down equals (I - Xt)/ Xt as frictions vanish. 
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5 Relation to the Literature 

This paper is related to two research programs. The first studies how connections among 

"nearby" games can determine how rational players will behave in a given game. The 

second is the literature on population models. 

The first program began with Nash [26, 27, 28]. He showed that his bargaining game 

has a unique solution if one imposes conditions on how the solution can vary when the 

game is changed.17 Later contributions used a strategic rather than axiomatic approach; 

important examples include Carlsson and van Damme [10) and Morris, Rob and Shin 

[25]. 

Our framework is closely related to Carlsson and van Damme's. They study a one

shot 2 x 2 game whose payoffs are not common knowledge. Rather, each player receives 

a noisy signal of the true payoffs. The space of possible payoffs includes regions where 

each action is strictly dominant. Because of the noise, there is no common knowledge 

among the players that the true game is not in one of these regions. Iterated strict 

dominance gives rise to a contagion effect that starts from these regions and determines 

how players will play throughout the space of possible payoffs. For small enough noise 

in the signals, the players must play the risk-dominant equilibrium of the true game. 

In both their paper and ours, the connection between different decision problems 

gives rise to a contagion effect. A player's optimal action depends on what she thinks 

her opponent will do. In Carlsson and van Damme, a player does not know exactly which 

signal her opponent received, so she must take into account a distribution of possible 

types of opponents. The m:tion of each of these opponents is the solution to a decision 

problem in a slightly different game. In our game, a player does not know what the state 

of the environment will be when her future opponent chooses his own action. Again, 

there is a distribution of possible "types" of opponents, each seeing a different state. 

However, it is not possible to apply the technique of Carlsson and van Damme directly 

17See Carlsson and van Damme [10, pp. 1007-1008] for a discussion. 
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to our framework. A naive attempt to do iterated dominance on the payoff variable Bt 

alone leads to a much weaker result: that an action must be played if it is better than 

1/4-dominant. No prediction can be reached if Bt is greater than B314 but less than 

B 114
• This is because the iterative procedure· tells us only how new players will play, 

and these constitute just half of a player's potential opponents. 18 

The second research program, on population models, divides into three branches: 

"mechanical", "boundedly rational" and "rational". The "mechanical" branch (e.g., 

Foster and Young [12], Fudenberg and Harris [14]) postulates some law of motion for 

the whole population, such as the replicator dynamics. While well suited to biological 

evolution, this paradigm has been criticized as an economic model of human behavior 

because it ignores the individual's decision problem. In contrast, the "boundedly ra

tional" branch derives the population's law of motion from a rule of thumb used by 

individual players. The rule of thumb need not be optimal but has to be "reasonable". 

For example, players might play a best response to the actions that others have used 

in the past. The classic papers in this branch are Kandori, Mailath and Rob [18] and 

Young [30]. Other contributions include Bergin and Lipman [2], Binmore and Samuelson 

[4], and Binmore, Samuelson, and Vaughan [5]. 

One limitation of both mechanical and boundedly rational models is that equilibrium 

selection occurs only in the long run and takes the form of a ergodic distribution with 

most of its weight on the selected equilibrium. 19 Some have also criticized models with 

18To see this, suppose that iterated dominance from the regio1_1 where R is strictly dominant "goes 

as far as b". That is, if a player4lelieves that others choose R when Bt > b and L when Bt < b, then 

she is always willing to play Rat b and is sometimes indifferent. When is she indifferent? In the worst 

case, when all old players are playing L. With small frictions, the player cares only about the very near 

future, when the Brownian motion is equally likely to be above or below b. Therefore, given her belief, 

she expects that half of the new players will play R and half L. Since she is indifferent and one quarter 

of her opponents play R, b must be B 114
• 

19 Models of bounded rationality with local interactions in place of random matching yield faster 

convergence; see, for example, Ellison [ll] and Blume [6]. 
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boundedly rational players on the grounds that it is hard to justify the choice of a 

particular rule of thumb. This is especially true when a player could do better by 

recognizing that others are using the given rule. 
0 

In models with rational players, equilibrium selection is typically fast and irreversible. 

Moreover, a clever player cannot "outsmart" her opponents if they are fully rational 

as well. Most importantly, the "rational" approach makes it possible to analyze the 

individual player's decision problem and the process of forming beliefs about what others 

will do. 

Matsui and Matsuyama [24] study a "rational" model like ours but with a fixed world. 

Both steady states in which all players play the same action are rational expectations 

equilibria of the dynamic game. However, Matsui and Matsuyama find support for the 

prediction that the risk-dominant equilibrium of the static game is more likely to be 

played: from any initial state of play there is a rational expectations equilibrium leading 

to it; and from initial states close enough to the risk-dominant equilibrium, play must 

converge to it. 

Lagunoff and Matsui [21] consider models with large (rational) players and lock-in. 

In pure coordination games with patient players, every subgame perfect equilibrium 

must lead to the Pareto dominant equilibrium of the static game. This happens because 

players are large enough to influence aggregate play, so they can "steer" others into the 

Pareto dominant equilibrium by playing it themselves. Although they may_lose in the 

short run, they do not care if they are sufficiently patient. Matsui and Rob [23] and 

Lagunoff and Matsui [2~also assume large, rational players but do not use equilibrium 

reasoning. Instead, they identify conditions (including restrictions on beliefs) under 

which play converges to the Pareto dominant equilibrium. 

Our paper also belongs to the "rational" branch, but differs in two ways from the 

above models. First, we use backwards induction rather than equilibrium notions or ex 

ante restrictions on beliefs. Second, we assume that payoffs change stochastically over 

time. Fudenberg and Harris [14] also assume that payoffs follow a Brownian motion, 
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but in a mechanical model. They show that this perturbation alone does not give rise 

to equilibrium selection under the replicator dynamics. Changes in payoffs appear also 

in the model of Ben-Porath, Dekel and Rustichini [ l], who study how different mutation 

rates perform in a changing world. 

6 Concluding Remarks 

We view a normal form game as an abstraction that captures aspects of strategic inter

action that are common to a variety of contexts. Since the normal form game is often 

not enough to make a prediction, we would like to learn which omitted features affect 

the outcome. An analysis of which assumptions are critical for our results can shed some 

light on conditions that make coordination on the risk-dominant equilibrium more likely. 

Small Players 

We assumed that players are small enough that they do not think that theii" actions 

will be observed and affect the evolution of play. If this assumption is relaxed, punish

ments can be devised that can sustain other types of behavior or, as in Lagunoff and 

Matsui [21], a player may incur short term losses in order to steer play towards the 

Pareto dominant equilibrium. 

The Contagion Argument 

A contagion argument works by connecting nearby decision problems, which enables 

players to predict what others will do. A few assumptions seem to be critical. For the 

argument to have a place tostart, there must be regions of the parameter space where 

each action is strictly dominant. In addition, for the argument to work throughout the 

parameter space, a.ll of a player's opponents must face decision problems that are different 

from (but close to) her own. Otherwise there may be a region of the parameter space 

with multiple equilibria, since players can have different self-sustaining beliefs about the 

behavior of those who face the same decision problem. In our model, we ensure that 

decision problems differ by breaking the simultaneity of moves: the measure of players 
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who change their actions simultaneously (and thus who see the same the same value of 

Bt) is always zero. Carlsson and van Damme [10] achieve a similar effect by assuming a 

continuous distribution of payoff signals, so that the two players never observe exactly 

the same signal. 

Our contagion argument also uses the assumption that the relative payoff to R against 

either action is strictly increasing in Bt. One might be interested in cases where this does 

not hold. For example, in some range, a higher Bt may raise the payoff to coordinating on 

either action; i.e., it may raise the relative payoff to R if others choose R, but lower it if 

others choose L. More generally, the relative payoff to R may depend in an arbitrary way 

on Bt. This may prevent the contagion from spreading throughout the parameter space. 

Nevertheless, the following weaker version of Theorem 1 can still be proved. Assume only 

that the game has strategic complementarities (6-(R, Bt) > 6-(L, Bt)) and that b.( a, Bt) 

is Lipschitz in Bt. (A function is Lipschitz if its rate of change is bounded.20
) Let b be 

any value of Bt at which R is strictly dominant. Let (Q, b) be the largest (potentially 

infinite) interval that includes b, such that R is risk-dominant (and Lis not) throughout 

the interval. In the limit as frictions vanish, R must be played at all points in this 

interval. An analogous result can be proved for L. 

The Stochastic Process 

Brownian motion is a natural process to study because it is the only continuous 

process that has independent, statjonary increments [29, pp. 146, 157].21 However, one 

may still wonder how our assumption of Brownian motion limits the generality of our 

results. Here we consider-two ways in which this assumption can be weakened. 

The first is continuity. There are many discontinuous processes with independent, 

stationary increments. A discrete process with this property is a random walk; it makes 

a sequence of i.i.d. jumps at fixed intervals. Alternatively, the time between jumps may 

20 F'ormally, g is Lipschitz if there exists a c > 0 such that lg(t)- g(s)l $ell- sl for all t and .~. 

21 Stationarity means that the distribution of increments over a given time interval can depend only 

on its length. 
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itself be a random variable; e.g., jumps may occur at Poisson intervals. Brownian motion 

is the limit of all such processes as the (expected) time between jumps goes to zero. 22 

Proposition 1 shows that our results hold for all such processes in a neighborhood of 

Brownian motion in the case of vanishing -frictions {Theorem 1 ). The time between 

jumps must be small relative to the frictions so that only a small fraction of players face 

the same decision problem. An analogous result can be proved for the case of a slowly 

changing world {Theorem 2). 

Consider a right-continuous process (A 1k::o· We will say that (At)t>o has i.i.d. jumps 

if there is a (random) sequence of times {to= 0, t 1 , t2 , •• • } such that: (1) the process At 

is constant on every interval [ti-t, ti); and (2) the random vectors { ti- ti-t, At; - A1;_ 1
) 

are independent and identically distributed. (In particular, each jump has a distribution 

that can depend only on the time since the prior jump.) 

Proposition 1 

For each i, let (ADt>o be a process with i.i.d. jumps. Suppose that, as i goes to infinity, 

(AD converges in distribution to a Brownian motion ( B1) with trend J.l and variance 

a 2
. Let ri be the game described in section 2, except that the payoff parameter changes 

according to (AD instead of(Bt)· 

For any f > 0, there is a k and a function t/;(·) such that if k > k and i > t/;(k), R must 

be played in ri whenever A; > B 112 + f and L must be played whenever Aj < B 112 - t:. 

Proof See appendix. 

The assumption of independent, stationary increments can. also be weakened. First, 

our results hold if B is any strictly increasing Lipschitz function of a Brownian mo

tion. This is because any such transformation of B is equivalent to a change in the 

22 More precisely, both the time between jumps and the jumps themselves must shrink to zero in an 

appropriate way. If the jumps shrink too slowly relative to the tirne between them, the increments of 

the resulting process over a fixed time period will not have a finite mean and variance. If they shrink 

too quickly, the process will become a straight line. Otherwise, the end result must be a Brownian 

motion. 
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utility function: instead of u( a, a', Bt) where B1 = g( Bt), we use the utility function 

ii(a,a', Bt) = u(a,a',g(Bt)). With u, the relative payoff to playing R is still a Lipschitz 

function of 8 1• This extension is important because the primitives that affect payoffs in 

the real world (such as prices or temperatures) may be bounded. 

The results also hold if the trend parameter, rather than being the constant fl., 1s 

a bounded Lipschitz function of t. For instance, 8 1 may be the price of oil, which has 

a seasonal component. The trend can also be a Lipschitz function of 8 1 itself. One 

important example is the mean-reverting process dB1 = dB1 - f.J.(Bt - b)dt, where 8 1 

is a Brownian motion with no trend. Our results may be of greater interest with such 

processes. This is because Brownian motions tend to wander away from 8 112 to regions 

where one action is strictly dominant; a mean reverting process with b close to 8 112 

spends a positive fraction of its time in the area where the static game has multiple 

equilibria. 23 

Homogeneity of Players 

How robust are our results to the assumption that all players have the same payoff 

function? Suppose that the payoff of player i E [0, 1) is u(a, a', B1 + Oi), where 0; is a 

personal taste parameter. Assume that most of the players have taste parameters in 

the range [0, 0']: no more than f are below 0, while no more than f
1 are above 0'. A 

modification of our argument shows that as frictions vanish, at least 1 - f of the players 

play R when 8 1 ·> 8 112-(12
- () and at least 1 - f

1 play L when B 1 < 8 112+('12 - 0'. 

This shows that there is continuity: when most of the players have very similar tastes, 

our results hold approrimately. It remains an open question whether one can determine 

what happens for intermediate values of 8 1• This is especially interesting when there is 

a large degree of heterogeneity. 

23 1n tlu~ long run B1 has a stationary distribution that is normal with mean b and variance o-2 /21-l 

(see Proposition 5.1 in Karlin and Taylor [20, p. 219]). A Brownian motion does not have a stationary 

distribution, as its variance goes to infinity. 
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Discounting 

We have assumed that the discount rate r is positive. However, there are relevant 

situations in which a player has some reason to put more weight on the future. For 

example, a technology (such as the Internet) may be used by a growing number of 

people. A user thus might expect to interact with other users more often as time passes. 

With a negative discount rate, a player's payoff while committed to a given action 

may still be well defined. This is because, when the player takes into account her 

chance of obtaining a new revision opportunity, her effective discount rate becomes 

k + r. Therefore, a player's payoff during her commitment pe1·iod is finite as long as 

r > -k. In the case of vanishing frictions ( k -+ oo ), this is true for any r, and the result 

of Theorem 1 can be proved in this case. With a slowly changing world, payoffs are well 

defined only if r· > -k. Even in this range, iterated dominance implies a weaker result 

than that of Theorem 2. If 7' E ( -k, 0), players must play R when Bt > 8 112->. and L 

when Bt < 8 112+>., where,\= lr"/(4k + 2r)l. What happens for Bt E (B 112+?-, B'/'2->.) 

remains an open question. 
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A Proofs 

Mathematical Preliminaries 

We first collect several mathematical results that are proved in Burdzy, Frankel, and 

Pauzner [9] (henceforth, BFP). We begin with two lemmas. The first states that the 

differential equation that governs the evolution of the state of play has a unique solution 

that depends on certain parameters of the model in a continuous way. 

Lemma 1 (BFP) Let B 1 be a Brownian motion with drift JL and variance cr2
• Let 

k > 0. Fix xo E (0, 1) and bo E ~and assume that (Bo,Xo) = (bo,xo). Assume that f 

is a decreasing Lipschitz function. Consider the following differential equation: 

{ 

k(l- Xt) 
dXtfdt = 

-kXt 

if Bt > f(Xt), 

if Bt < f(Xt)· 
(5) 

I. This equation has a unique Lipschitz solution ( Xt) 1 ~ 0 for almost every path ( Bt) 1 ~ 0 • 

2. Over any closed time interval [0, T], the solution X 1 is a uniformly c~ntinuous 

function of b0 and Xo. If f(Xt) is replaced by f(Xt) +.A, the solution X 1 is also 

uniformly continuous in A. 

Since equation (5) does not specify what happens when Bt = f(X1), umqueness 

applies only to Lipschitz solutions. For example, X 1 may be identically equal to f- 1 
( Bt) 

in some time interval; this gives a solution to (5) that is not Lipschitz. However, only 

Lipschitz solutions are consistent with the model, since no more than kdt of the agents 

can change strategies in a. period of length dt. 

A trivial corollary to Lemma 1 shows that the relative payoff to playing R in the 

dynamic game is also a continuous function of initial conditions and of f. Let ¢>( b, x; f) 

be the relative payoff to playing R that a player expects if she believes that (5) will hold 

and chooses her action at (80 ,X0 ) = (b,x), which is 

E [1: e-(r+k)t(Xt~(R,B 1 )+(l-Xt)~(L,Bt))dt I (Bo,Xo) = (b,x)] 
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Corollary 1 Assume that f is Lipschitz. Then the function 4>( b, x; f) is continuous in 

b and x. Moreover, 4>( b, x; f + 1) is continuous in 1 E ~. 

Proof 

Without loss of generality, we assume that Brownian motions B1 and B1 starting 

from any two different points Bo = b and Eo = b are related by Bt - b = B1 - band 

suppose that (b, x) converges to ( b, x ). Note that 

4>( b, x; f) - 4>(b, x; f) = E [1: e-(r+k)t ( Xt.6.( R, Bt) - Xt.6.( R, Bt)) dt 

+ 1: e-(r+k)t ((1- Xt).6.(L, Bt)- (1- Xt).6.(L, Bt)) dt 

I (Bo,Xo) = (b,x); (Bo,Xo) = (b,x)]. 

By Lemma I, X1 converges uniformly to X 1 on any closed time interval [0, T] as (b, x) -+ 

( b, x ). This implies that 4>(b, x; f)- </>(b, x; f) goes to zero. Thus, 4>( b, x; f) is continuous 

in its first two variables. Continuity in f follows in a similar manner. Q.E.D. 

Lemma 2 shows that bifurcation times go to zero and that the relative chance of 

bifurcating up vs. down equals the relative speed of X on the two sides of F. 

Lemma 2 (BFP) For each n > 0, let B~ be a Brownian motion with drift lln and 

variance u~, where lim71 ..... 00 P.n = limn ..... oo u; = 0. Let fn be a continuously differentiable 

decreasing function. Suppose that x~ E [0, I] conver'!Je to some fixed x 0 E ( 0, 1) as 

n -+ oo. Assume that lin~ ..... 00 f~(x 0 ) exists and is nonzero, and the derivatives ar·e 

asymptotically uniformly continuous at x 0 , i.e., for every E > 0 there exists an n0 < oo 

and a 8 > 0 such thatlf~(x)- f~(xo)l <eo for all x E [xo- 8, Xo + 8] and all n > n0 • Let 

x;· be the solution to the following differential equation, with x;; = X~ and B!f = In (X~)' 

Assume thatlim,. ..... 00 ..\, = ,.\ E (O,oo) andlim,. ..... 00 ~" = ~ E (O,oo). Let co E (O,min(x0 , 1-

xo)), and letT{'= inf{t > 0: X~ rf. (c0 , 1- c0 )} and Tl) = sup{t < T{': B~ = fn(X~)}. 
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1. The random bifurcation times T~· converge to 0 in distribution as n --+ oo. 

2. The probability that the bifur·cation is positive (i.e., that dXnjdt > 0 for all t E 

(T.n T,.)) converges to .-\(l-xo~ . 
0' 1 .-\(1-xo)+.-\xo 

For brevity, Lemma 2 is stated only for the case x0 E (0, 1 ). It also holds when x0 E 

{0, 1}, with a slight change in the definition of Tt Let Co E (0, 1). If x0 = 0, let 

T1k = inf{t > 0: Xt;::: 1- Co}. If Xo = 1, let Tlk = inf{t > 0: )(tk ~Co}. 

Lemma 3 concerns the case of processes with i.i.d. jumps (see definition on p. 24). 

It is used to show that, as the processes converge to a Brownian motion, so does the 

relative payoff to playing R. Fix a discount rate c > 0 and let v(b, x) be any Lipschitz 

function. Let A be either a Brownian motion or a discrete process with independent, 

stationary increments. Suppose that A0 = f(Xo) and that X satisfies 

if At> f(Xt) 

if At< f(Xt) 
(6) 

Because equation (6) does not specify what happens if At = f(Xt), it does not pm 

down what happens to X in the period after 0 before A jumps: X can either remain 

unchanged, move up, or move down. Let X 1 and X 1 be the maximal and the minimal 

Lipschitz solutions to (6). Let 

<I>(x,b;A,J) = E [1: e-ctv(A 11 Xt)dt I (Ao,Xo) = (b,x)] 

and 

<I>(x, b; A, f7 = E [J: e-ctv(At. X 1)dt I (Au, Xo) = ( b, :z:)] 

Note that if c = r· + k and v(b, x) = x~(R, b)+ ( 1- x)~(L, b), <I> and <I> are the highest 

and lowest relative payoffs to playing R that a player can expect. 

Lemma 3 (BFP) 

Let A i be a sequence of processes with i. i. d. jumps that con verges in distribution to 

the Brownian motion B as i--+ oo. Let fi be a sequence of strictly decreasing Lipschitz 
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functions that converges to f as i - oo. Suppose that (xi, bi) converges to (x, b). Then 

<l>(xi, bi; Ai, Ji) and <l>(xi, bi; Ai, Ji) both converge to <l>(x, b; B, f) = <l>(x, b; B, f). 

Proof of Theorem 1 

Since we know little about the shapes of the /'&'s, it is technically difficult to work 

with them directly. Instead, we work with sequences of functions whose form we do 

know. Fix some p > 0 and let q0(x) = -px + >.0 , where >.0 is the smallest constant such 

that R is strictly dominant at every (b,x) for which b > q0 (x). Then inductively define 

q,(x) for n 2:: 1 by letting qn(x) = -px +>.,,where>." is the smallest number such that 

~(b,x;q"_t) 2::0 for all (b,x) with b = qn(x). 

Let Qk(x) be the infimum of q,(x) as n goes to infinity. (We write Qk to denote the 

dependence on k.) By iterated elimination, R must be played to the right of Qk. We 

first show that Q k must have the indifference pmperty: that there is an x E [0, 1] such 

that ~(Qk(x),x;Qk) = 0. Suppose otherwise. Then we have ~(Qk(x),x;Qk) > Q f9r all 

x. By the continuity of~ and compactness of [0,1], there is a band of strictly positive 

width to the left of Qk such that ~(b, x; Qk) > 0 for all (b, x) within this band. But 

~( b, :z:; Q k + 1) is continuous in 1 E ?R by Corollary I. Thus, for q, sufficiently close to 

Qk. ~(b, x; q,) > 0 for all (b, x) in some band to the left of qn that includes Qk. This 

implies that q,+1 < Qk, a contradiction. So Qk must have the indifference property. For 

any k, let Xk be one such point of indifference. That is, 

(r+k)E [1: e-(r+k)t(Xt~(R_:Bt)+(I-Xt)~(L,Bt))dt (Bo,Xo) = (Qk(xk),xk)l =0 

wl]('re ( Xt)t>O satisfies: 

-, · { A:( 1 - Xt) 
At= 

-kXt 

if Bt > Qk(Xt) 

if Bt < Qk(Xt) 

(7) 

(8) 

By passing to a subsequence if necessary, we may assume that the indifference points Xk 

converge to a point X 00 E [0, 1] as k- oo. 
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We now make a simplification: in taking the limit of (7) as k - oo, 8 1 can be 

replaced by Bo. The intuition is that as k - oo, players care increasingly about the 

payoffs they get in smaller and smaller neighborhoods of t = 0, where 8 1 is closer and 

closer to Bo (since Bt is continuous with-probability one). By (1), for any a E {R, L}, 

(r· + k)E [1: e-(r+k)tl6(a, Bt)- 6(a, Bo)ldt] 

is no greater than 

Since B1 - 8 0 is normal with mean p.t and variance u2t, this is no greater than 

w(r· + k) 1: e-(r+k)tyiu2t + (p.t)2dt < w(1· + k) 1: e-(r+k)t[uVt + jp.jt]dt 

= w(r+k) [u 2 (r·~)3/2 +IJLI(k~r)2] 
which goes to zero as k - oo. Hence, we can substitute Bo = Qk(xk) for 8 1 when we 

take the limit of (7) as k- oo. 

We now want to show that the time of bifurcation goes to zero as k goes to oo, even 

relative to the agent's time horizon (which also goes to zero). We rescale time so that the 

agent's horizon is independent of k. We then need to show that the time of bifurcation 

in the new units goes to zero. Let v = (r + k)t, Xv = Xv/(r+k)• and Bv = Bv/(r+k)· Then 

(7), witp 8 0 = Qk(xk) substituted for Bv, becomes 

l~~ E [1: e-v (Xv6(R, Qk(xk)) + (1- Xv)6(L, Qk(xk))) dt I .\"0 = xk] = 0 

where Xv satisfies 

aud ( B" )v?.O is a Brownian motion with drift parameter tt/( r+ k) and variance parameter 

a2 f(r· + k) that begins at B0 = Qk(xk)· 

We now define the t.ime of bifurcation. Fix an arbitrarily small Co > 0. If X 00 E (0, 1 ), 

we will assume moreover that Co< min(x00 , 1- X 00 ). Let T1k be the first time vat which 
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Bv ~ (Qk(I -eo), Qk(Co)). Let r; be the largest v ~ rt at which Bv = Qk(Xv)· The 

time of bifurcation is defined as r;; it is the last time at which iJ" = Qk(Xv) before x" 
reaches an eo-neighborhood of either 0 or 1. If x= = 0, we let T1k be the first time v at 

which Bv ~ Qk(1- eo). If x= = 1, we let T{be the first time vat which Bv ~ Qk(Co). 

The definition of T0k is unchanged in these cases. 

By Lemma 2, as k --+ oo, 

(i) The bifurcation times r; converge to zero in distribution; and 

(ii) The probability that Xv = r!k(1- Xv) for all v E (T;,rn, converges to 1- x=. 

The probability that X v = - r!kX" for all v E (T;, T1k), converges to X000 

By taking Co arbitrarily close to zero, we obtain 

= 1 -X=+ (2x=- 1)e-v 

so that 

}~~ E [1: e-v ( Xvb.(R, Qk(xk)) + {1 - Xv)b.(L, Qk(xk))) dv I .\"o = Xk] 

= kl}!.~ 1: e-v ( E(Xv I Xo = xk)[D.(R, Qk(xk))- D.(L, Qk(xk))] + D.(L, Qk(xk))) dv 

= }}_~1: e-v ([1- x= + (2xoo -1)e-"][D.(R,Qk(xk))- D.(L,Qk(xk))J + b.(L,Qk(xk))) dv 

= lim D.(R, Qk(xk)) + D.(L, Qk(xk)) 
k--oc 2 

Since the first line is equal to zero by the indifference property, it must be that 

By (2), limk--= Qk(xk) = 8 112
. This concludes the proof for R, since the slope -p of 

the function Qk can be arbitrarily close to zero. The proof for L is analogous. 

Proof of Theorem 2 

The proof follows the lines of the proof of Theorem 1, so we simply sketch the 

main steps. We need to show that the indifference line is given by Bh(x). We construct a 
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sequence of functions qn as follows. Let qo( x) = Bh(x) + .-\0 , where .-\0 is large enough that 

<P( b, x; qo) > 0 for all ( b, x) with b > q0 ( x ). Then inductively define qn( x) = Bh(x) + An, 

where An is the smallest number such that <P(b,x;qn-d ~ 0 for all (b,x) with b = qn(x). 

Notice that each qn is Lipschitz. This is because Bh(x) is given implicitly by 

By differentiating this with respect to x, we obtain 

---= 
dx 

x6.2(R, Bh(x)) + (1- x)t:.2(L, Bh(x)) 

t:.(R, Bh(x)) _ t:.(L, Bh(x)) 

where 6.2 (·,·) denotes the derivative of 6.(·,·) with respect to the second argument. 

Since t:.( R, Bt) > 6.( L, Bt) for all B~, the denominator is bounded away from zero over 

the compact interval [Bh(t), Bh(O)]. By (1), the numerator is bounded above, so Bh(x) is 

Lipschitz, as are its translations qn. 

Let Qu,
11 

be the infimum of the qn 's. (The subscripts of Qu,11 indicates its dependence 

on the parameters of the Brownian motion.) By iterated dominance, R must be played 

to the right of Qu,w As in Theorem 1, we can show the "indifference property" for Qu·~-'' 

i.e., that there exists an Xu, 11 with <P(Qu,11 (xu, 11 ), Xu, 11 i Qu,11 ) = 0. Again, we can assume 

that Xu, 11 converges to X00 as 0' and JL go to zero. 

As before, we can substitute Qu,11 (xu, 11 ) for B1 in computing the limit of 

<P( Q u,11 ( Xu, 11 ), Xu, 11 ; Q u,11 ). The indifference property then implies 

}!~ 0 (r + k)E [1:~-(r+k)t (Xt6.(R, Qu, 11 (xu, 11 )) + (1- Xt)6.(L, Qu, 11 (xu, 11 ))) dt 

I ( Bo, Xo) = ( Q u,11 ( Xu, 11 ), Xu, 11 )] = 0 

where X 1 satisfies an equation analogous to (8). Using the same change of variables 

v = (r· + k)t, we obtain 
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where Xv satisfies 

Xv = { r!k(I- Xv) if Bv > QO",J<(Xv) 

- r!kXv _ if Bv < QO",J<(.~v) 

and (Bv)v>o is a Brownian motion with drift parameter J.L/(1·+k) and variance parameter 

a2 j(1· + k) that begins at B0 = QO",J<(xO",J<). 

Fix an arbitrarily small Co > 0, and let r;·~< be the corresponding bifurcation time. 

By Lemma 2, as a, J.L -t 0, the time of bifurcation converges to zero and t~e chances of 

bifurcating to I and 0 converge to I - X 00 and x00 , respectively. Therefore, 

so that 

}i~o E [1: e-v ( Xvf:l(R, QO",,.(xO",J<)) +(I - Xv)f:l(L, Q 17 ,~<(X 17 ,J<))) dv I X0• =· X 17 ,~<] 

. [rxoo + k ( -7'X00 + r + k l 
= }~~o r+2k !:l(R,QO",J< xO",J<))+ r+2k !:l(L,QO",J<(xO",J<)) 

Since the first line is equal to zero by the indifference property, and f:l( ·, ·) is strictly 

increasing in its second argument by (I), it must be that 

rx00 + k . -rX00 + 7' + k . Q ( 
--k-1:l(R, lim Qk(xk)) + k !:l(L, hm k xk)) = 0 

r + 2 J<,O"-o r + 2 J<,O"-o 

By (2), lim~<. 17 -o Q 17 ,~<(x 17 ,J<) =_Bh(xoo) where h(x) = ~:tZ· The proof for Lis analogous. 

Proof of Proposition 1 

To find out where R must be played, we do the iterative elimination using the lowest 

possible relative payoff to playing R. This equals the function .P (defined on p. 29), where 

we let c = r + k and v(b,x) = x!:l(R,b) +(I- x)!:l(L,b). Let qb(x) = -px + A0 , where 

R is strictly dominant at every (b,x) for which b > qMx) and b is a possible value of Ai. 

Let q~(x) = -px +An, where An is the smallest number such that .P(b, x; Ai, q~-t) 2: 0 

for all (b,x) such that b = q;,(x) is a possible value of Ai. Let Qi be the infimum of the 
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q~ 's over n. Qi must have the indifference property: there is an xi E [0, I] such that 

<I>(Qi(xi),x~;Ai,Qi) = 0. Moreover, R must be played to the right of Qi if the payoff 

perturbation follows A i. 

By passing to a subsequence if necessary, we may assume that the limits Xk = 

lim;-= xi and Qk = lim;-.00 Qi exist. By Lemma 3, <I>(Qi(xD, xi; Ai, Qi) converges 

to <I>( Qk(xk), Xk; B, Qk), which therefore must also be zero. This means (following the 

argument of Theorem 1} that Qk(xk} converges to B 112 as k - oo. Hence there is a 1£ 

such that, if k > 1£, Qk(xk) ::; B 112 + f/3. Since p was chosen arbitrarily, we can assume 

that it is less than f/3; this guarantees that Qk(x) ::; B 112 + 2f/3 for all x. Finally, 

choose tb(k) such that if i > 1/J(k), Qi is no further than f/3 to the right of Qk (i.e., 

Ql ::; Qk + f/3). It follows that Qi(x) ::; B 112 +f. for all x. Accordingly, if k > 1£ and 

i > tb(k), R must be played under the discrete process Ai whenever A; > B 112 + c An 

analogous proof holds for L using <I>. 
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