
Fast Estimation of Gaussian Mixture Model
Parameters on GPU using CUDA

Lukáš Machlica, Jan Vaněk, Zbyněk Zajı́c
Department of Cybernetics, University of West Bohemia in Pilsen, Czech Republic

Email: machlica@kky.zcu.cz, vanekyj@kky.zcu.cz, zzajic@kky.zcu.cz

Abstract—Gaussian Mixture Models (GMMs) are widely used
among scientists e.g. in statistic toolkits and data mining proce-
dures. In order to estimate parameters of a GMM the Maximum
Likelihood (ML) training is often utilized, more precisely the
Expectation-Maximization (EM) algorithm. Nowadays, a lot of
tasks works with huge datasets, what makes the estimation
process time consuming (mainly for complex mixture models con-
taining hundreds of components). The paper presents an efficient
and robust implementation of the estimation of GMM statistics
used in the EM algorithm on GPU using NVIDIA’s Compute
Unified Device Architecture (CUDA). Also an augmentation of
the standard CPU version is proposed utilizing SSE instructions.
Time consumptions of presented methods are tested on a large
dataset of real speech data from the NIST Speaker Recognition
Evaluation (SRE) 2008. Estimation on GPU proves to be more
than 400 times faster than the standard CPU version and 130
times faster than the SSE version, thus a huge speed up was
achieved without any approximations made in the estimation
formulas. Proposed implementation was also compared to other
implementations developed by other departments over the world
and proved to be the fastest (at least 5 times faster than the best
implementation published recently).

I. INTRODUCTION

The Expectation-Maximization (EM) algorithm, in cluster-
ing often used also with Gaussian Mixture Models (GMMs),
was in [1] identified as one of the top 10 data mining
algorithms. GMMs trained via EM are widely used in many
state-of-the art recognition and data mining systems. They are
of most importance in the speaker recognition, they are utilized
in the concept of super-vectors and Support Vector Machines
(SVMs) [2] and in a novel approach called Joint Factor
Analysis (JFA) [3] further extended to the concept of iVectors
[4]. Another usage can be found in speech recognition systems
based on Hidden Markov Models with output probabilities
described by GMMs [5]. Nevertheless, GMMs are utilized
also by biologists and immunologists for counting, sorting,
and analyzing cells suspended in a fluid [6].

All these techniques process huge amounts of data, thus
demanding a superior computing power. Nowadays, parallel
technologies like supercomputers, clusters, grids, and cloud
infrastructures gain on importance [7]. A simpler option is to
utilize the Graphics Processing Unit (GPU), which developed
through time to a highly parallel and computationally powerful
tool useful not only for graphics processing, but also for high
performance computing [8]. The main advantage of GPUs over
Central Processing Units (CPUs) is their price-performance
ratio. Several manufacturers have put a lot of effort to improve

their GPU’s development environment in order to grant access
to their GPU’s computing power. This paper focuses on
NVIDIA’s Compute Unified Device Architecture (CUDA). It
should be stated, that implementations of the GPU algorithm
may be easily included also into the above mentioned parallel
technologies.

Focus will be laid on GMMs described by diagonal covari-
ance matrices. Only the core of the EM algorithm will be
described, because it is the most time consuming part of the
estimation process. Note that we will describe the estimation
of GMM statistics rather than the estimation of new GMM
parameters since the estimated statistics are more general and
may be used also in other techniques, e.g. adaptation of a
GMM frequently performed in speaker recognition tasks [9].

In the first part of the paper GMM statistics and basics
of CUDA are described. The main part of the paper is
devoted to the description of an efficient implementation of the
estimation algorithm of GMM statistics on GPU. In Section
IV also an augmented CPU version is proposed. It utilizes
Streaming SIMD Extension (SSE) instructions, which make
the estimation on CPU significantly faster, but as the results
prove the GPU version performs best (in the sense of the
time consumption). Note that the estimation process does not
involve any approximations, GMM statistics obtained using
any of the methods are equal (to some negligible rounding
errors). Time consumption experiments were performed on a
speech corpus NIST Speaker Recognition Evaluation (SRE)
2008 [10] containing spontaneous telephone speech. In the
last part of the paper, detailed analysis of results along with
comparison with other implementations are described.

II. GMM STATISTICS

Let us briefly introduce the GMM statistics of interest.
Assume a set of feature vectors O = {o1, . . . , oT }, where
dim(ot) = D, and a GMM given by a set of parameters
λ = {λm}Mm=1 = {ωm, μm,Σm}Mm=1 containing M mix-
ture components, their weights, mean vectors and covariance
matrices, respectively. Let us define a function

L(ot, {λb, . . . , λe}) = log
e∑

m=b

ωmN (ot|μm,Σm), (1)

where b ≥ 1, e ≤ M . In the paper only diagonal covariance
GMMs will be assumed, where σ2

m = diag(Σm), hence

L(ot, λm) = log(ωm) +
D∑

i=1

logN (ot,i|μm,i, σ
2
m,i), (2)

where N (o|μ, σ2) denotes the Gaussian probability density
function with mean μ and variance σ2. Then

γm(ot) = exp
(L(ot, λm)− L (

ot, {λk}Mk=1

))
(3)

cm =
T∑

t=1

γm(ot), (4)

εm =
∑T

t=1 γm(ot)ot, ε2
m =

∑T
t=1 γm(ot)oto

T
t (5)

are the mth component’s posterior probability given a feature
vector ot, the mth component’s soft count and the (unnormal-
ized) first and second moment of features aligned to a com-
ponent m, respectively. Note that L(ot, {λk}Mk=1) = L(ot, λ)
represents the log-likelihood of ot given the model λ. The
update formulas for new GMM parameters λ̄ are given as

ω̄m = cm

T , μ̄m = 1
cm

εm, Σ̄m = 1
cm

ε2
m − μ̄mμ̄T

m. (6)

III. ESTIMATION UTILIZING CUDA

GPU’s CUDA may be seen as a fully parallel system
operating with hundreds of threads at once. According to the
GPU architecture threads are organized into thread blocks.
Thread blocks are independent on each other (algorithm ex-
ecuted in each of the blocks does not depend on what is
going on in other blocks), while threads in each block are
allowed to cooperate. All thread blocks execute the same
algorithm called a kernel. Note that not only threads in a
block, but also several thread blocks may be executed at once.
Hence, CUDA parallelism is provided at 2 levels - threads
and block of threads. All thread blocks are ordered in an one-
or two-dimensional grid (a 2 dimensional grid is depicted in
Fig. 1). Each thread block carries specific information about
its position within the grid (row and column position of the
block in the grid).

A high GPU computing performance can be fully utilized
only with proper memory management. Several memory types
exist, which significantly differ in their size, access speed
and access permission. Global memory (GM) has read/write
access, has hundreds of mega bytes available and can be
accessed from every block and every thread, but the access
latency is relatively high. The best performance of GM can
be achieved using the Texture Memory (TM). TM can be seen
as a part of GM, but it is read only and cached, thus the
access speed may be significantly faster than in the case of
GM. Another type of memory is the Shared Memory (SM),
which storage size is around kilo bytes, but the access speed
is very high (very low latency). SM is visible only for threads
in a thread block. In summary, one has to carefully choose the
memory management according to a given task.

Other CUDA environment descriptions exceed the range of
the paper, for further details and deeper understanding of the
problem the reader is referred to [11].

Fig. 1. Two dimensional S1×S2 grid with thread blocks. Each thread block
contains several threads, where the optimal number of threads is a multiple
of the warp size.

A. Preparing the Data

In order to make the best of the GPU computing power one
has to align the data into Memory-Aligned-Blocks (MABs).
The optimal size of a MAB is closely related to the number
of threads in a thread block. Number of threads in a block
is user dependent, but optimally has to be a multiple of the
warp size. Warp size is hardware dependent and represents
the minimum number of threads in a thread block that run
at once (mostly a multiple of 32) – run in a warp. For the
best performance threads in a warp have to access data in
the memory sequentially, therefore data in MABs have to be
properly organized.

We have input data (a set of feature vectors O and a set
of GMM parameters λ), temporary data (mixture component
posteriors (3) together with log-likelihoods of feature vectors
given λ), and output data (first and second moments (5) and
soft counts (4)) that have to be properly organized in the GPU
memory. The memory storage of feature vectors, model means
and posteriors of mixture components are depicted in Fig. 2,
Fig. 3 and Fig. 4, respectively. Storage of GMM diagonal
variances is the same as the storage of model means depicted
in Fig. 3. The reason why model parameters and mixture
component posteriors are stored in group of 4 is that CUDA
supports X4 (e.g. short4, int4, float4, etc.) data types – one
can read data from the memory in quaternions.

Rather than to store only weights of a mixture component
we store the precomputed normalization coefficient of each
component, which logarithm is given as

gm = log(ωm)− 0.5Dlog(2π)− 0.5log |Σm| . (7)

Memory management of gm, soft counts (4) and first and
second moments (5) is trivial (recall that only the diagonal
of second moments is stored), they are all stored sequen-
tially in ascending order according to the number of mixture
component they belong to (e.g. a vector of first moments
[εT

1, ε
T
2 , . . . , ε

T
M] represents one memory block). Also data log-

likelihoods L(ot, λ) are stored sequentially in ascending order
according to the position of a vector ot in the set O, thus
forming a vector [L(o1, λ), . . . ,L(oT , λ)].

Fig. 2. Organization of feature vectors O = {o1, . . . , oT } in the GPU’s
global memory, where dim(ot) = D. Data are stored column-wise – 1st

dimension of first 8 feature vectors then 2nd dimension of first 8 samples, etc.
In each warp a block of memory is read sequentially enabling optimal speed
performance.

Fig. 3. Organization of model means μi in the GPU’s global memory.
Storage of GMM diagonal variances σ2

i is the same. Data are stored column-
wise – 1st four dimensions of μ1 then 1st four dimensions of μ2, etc.

It should be stated that all the GPU’s memory management
of feature vectors, model parameters, temporary data (once
computed) is assigned to the cached TM (all data are visible
to all thread blocks and their threads). However, feature vectors
are copied to the faster SM in some kernels, see next section.

B. CUDA Kernels

Kernels specify what should threads in a thread block
do (number of threads is specified by the user) assuming
additional information about the position of a thread block
in a grid, grid dimension and given input data. The position
information along with the grid dimension is utilized to
properly divide input data into smaller independent portions.
Each of the data portions is then handled by a separate thread
block according to the specified kernel function.

Not all the tasks can be parallelized using only one kernel
function since a problem can not always be divided into several
fully independent parallel subtasks. More often a result of one
subtask depends on a result of a different subtask. However,
such tasks may have only a few points where they need to
exchange their outcomes. Thus, to parallelize the task one has
to employ more kernels. We have proposed 4 kernels

• γ̂-kernel – computes γ̂m,t = L(ot, λm) for each t, m,
• L-kernel – computes L(ot, λ) for each t,
• γ-kernel – normalizes each γ̂m,t by L(ot, λ), see (3),
• ε-kernel – estimates first and second moments εm, ε2

m

for each m.

In order to describe the data portions handled by
distinct kernels described in the next section assume a set
Γ = {{1, . . . , QT}, . . . , {T − QT , . . . , T}} = {Γi}S1

i=1

containing equally large disjoint subsets of feature vector in-
dexes, a set Ω = {{1, . . . , QM}, . . . , {M − QM , . . . , M}} =
{Ωj}S2

j=1 containing equally large disjoint subsets

Fig. 4. Organization of unnormalized posteriors γ̂m(ot) = L(ot, λm)
given in (2) of a mixture component in the GPU’s global memory. Data are
stored column-wise – 1st four posteriors of 1st GMM component given first
four feature vectors {o1, . . . , o4}, 1st four posteriors of 2nd component, etc.

Algorithm 1 γ̂-kernel function → blocks Γi,Ωj

Require: Thread block position (i, j) in the grid

1: SM
{ot}t∈Γi←− GM

2: m := Ωj,thread index

3: γ̂m,Γi,1 := gm; . . . ; γ̂m,Γi,QT
:= gm

4: for d = 1 to S3 do
5: for t ∈ Γi do
6: γ̂m,t := γ̂m,t +

∑
x∈Δd

(ot,x − μm,x)2/σ2
m,x

7: end for
8: end for
9: GM ←− {γ̂m,Γi,k

}QT

k=1

of indexes of GMM components, and a set
Δ = {{1, . . . , QD}, . . . , {D − QD, . . . , D}} = {Δd}S3

d=1

formed by equally large disjoint subsets of dimension indexes
of feature vectors. QT , QM and QD are user defined
scalars, where QT ≤ T , QM ≤ M and QD ≤ D. Loosely
speaking, Γi,j = (i − 1) · QT + j, Ωi,j = (i − 1) · QM + j,
Δi,j = (i − 1) · QD + j. Memory management depicted
in Figs. 2 and 3 is well suited for QT = 8, QM = 32,
QD = 4. In order to preserve the robustness of calculations
all intermediate results are kept in logarithms (as long as
possible).

1) γ̂-kernel: operates on a two-dimensional S1 × S2 grid,
which rows indicate the portion of feature vectors and the
columns of the grid indicate the portion of mixture components
to be processed. Hence, the (i, j)th thread block operates with
sets Γi and Ωj , and the output of a thread block are the
corresponding weighted log-likelihoods γ̂m,t = L(ot, λm) of
a mixture component written to given positions in GM as
illustrated in Fig. 4.

At the very beginning of the kernel execution, the complete
input portion of feature vectors {ot}t∈Γi (in Fig. 2 are these
all the dimensions of 8 feature vectors) handled by one thread
block is read sequentially (as described in Section III-A) from
GM and written to SM.

Each thread estimates one mixture component’s weighted
log-likelihood of QT different feature vectors, thus a set
{γ̂m,t}t∈Γi for one specific m. Particular steps of the kernel
algorithm are described in Alg. 1. The sum

∑
x∈Δd

(. . .)
across a subset of dimensions of a feature vector and across
a subset of dimensions of GMM parameters in the for-loop is

caused by the fact that the model parameters are read from
TM as float4, thus Δd = {(d − 1) · 4 + j}4j=1 consists of 4
indexes of 4 dimensions (see Fig. 3). The relationship between
the storage of model parameters and feature vectors should be
now clearer – mainly the reason why the vectors are divided
to dimension blocks of 4. Also note that rather than using the
for-loop through indexes in Γi = {Γi,1, . . . , Γi,QT } we unroll
the loop in order to boost the performance.

2) L-kernel: is a sum kernel, it computes the overall log-
likelihood of each feature vector given a GMM. Hence, the
input to the kernel is the output of the γ̂-kernel. The output of
L-kernel is a set {L(ot, λ)}Tt=1 written to the GM as described
in Section III-A. Several efficient algorithms for a parallel
sum have already been proposed, we use the implementation
described in [12].

3) γ-kernel: performs the normalization of each γ̂m,t with
L(ot, λ) and produces true posteriors of GMM components,
thus γm(ot) = exp (γ̂m,t − L(ot, λ)). These are written to the
same positions as their unnormalized counterparts. One thread
block processes QT feature vectors from a set Γi and all the
mixture components, and outputs {γm(ot)}t∈Γi,m∈Ω.

4) ε-kernel: operates on a two-dimensional S2 × S3 grid,
which rows indicate the portion of GMM components and the
columns of the grid indicate the portion of feature dimensions
to be processed. Hence, the (i, j)th thread block operates with
sets Ωi and Δj , and the output of a thread block are the
dimension blocks of first and second (diagonal) moments (5)
of features aligned to a given mixture component along with
the soft counts (4). The output is written to GM on positions
described in Section III-A. Thus, each thread block processes
the whole set of feature vectors, however only values for a
specific subset of dimensions of first and second moments are
estimated. The ε-kernel operates with all the data – feature
vectors, model parameters and temporary data obtained as the
output of the γ-kernel. The kernel algorithm is described in
Alg. 2. Note that {ot,d}t∈Γq,d∈Δj is one block depicted in
Fig. 2 containing 8 feature vectors (QT = 8) and their 4
dimensions (QD = 4), thus 32 elements in common. Again,
to boost the performance instead of using the most inner for-
loops through indexes in Γq ,Δj we unroll the loops. Also
note that posteriors γm(ot) are read from TM as float4 data
types.

Such set up is efficient mainly in cases when the number
of mixture components or dimension of feature vectors is
high, otherwise only a few thread blocks have to be executed
what decreases the speed performance. In these cases the input
portion of feature vectors is divided into QN blocks and each
thread block accumulates statistics for one of these blocks.
Hence, now the ε-kernel processes T/QN feature vectors,
QM mixture components and QD dimensions. After all the
statistics for disjoint feature sets have been accumulated an
additional kernel is utilized in order to sum up the resulting
QN distinct statistics.

The estimation of full second moments is out of the scope
of this paper. The memory management stays the same, the ε-
kernel has to be slightly altered, where an additional problem

Algorithm 2 ε-kernel function → blocks Ωi,Δj

Require: Thread block position (i, j) in the grid
1: m := Ωi,thread index

2: cm := 0
3: εm,Δj,1 := 0; . . . ; εm,Δj,QD

:= 0
4: ε2

m,Δj,1
:= 0; . . . ; ε2

m,Δj,QD
:= 0

5: for q = 1 to S1 do

6: SM
{ot,d}t∈Γq,d∈Δj←− GM

7: for all t ∈ Γq do
8: cm := cm + γm(ot)
9: for all d ∈Δj do

10: εm,d := εm,d + γm(ot) · ot,d

11: ε2
m,d := ε2

m,d + γm(ot) · o2
t,d

12: end for
13: end for
14: end for
15: GM ←− {εm,Δj,k

, ε2
m,Δj,k

}QD

k=1

16: GM ←− cm

of distinct dimension blocks that have to be available at once
has to be solved.

IV. ESTIMATION UTILIZING SSE

We have tried to speed-up also the estimation on CPU
utilizing Streaming SIMD Extensions (SSE), where SIMD
stands for Single Instruction, Multiple Data. The power of
SSE is that it can perform several instructions (addition, sub-
traction, multiplication, etc.) at once using 128-bit registers.
Thus, assuming 32-bit single-precision floating point (SPFP)
numbers one can perform 4 operations at a time.

We have incorporated the SSE instructions into the estima-
tion of L(ot, λm) given in (2), which is the most frequent,
thus most time consuming. More precisely, SSE is used when
computing the exponential part of the normal distribution∑D

d=1 (od − μd)2/σ2
d. Using SSE and SPFP such sum can

be added up in D/4 steps. In situations where D is not a
multiple of 4 one has to correctly align the memory (pad ends
with zeros) where GMM parameters (means and variances)
and feature vectors are stored. Additional less significant speed
bursts may be acquired extending the SSE instructions into the
accumulation process of moments given in (5).

V. EXPERIMENTS

Experiments were performed on a single EM iteration. Data
were taken from NIST SRE 2008 [10], only training data were
used for adaptation. More precisely, it was the short2 training
condition and only male telephone speech of approximately
five minutes total duration was used (non-speech events were
discarded during feature extraction). In common 648 speakers
were involved, approximately 54 hours of speech were used.
In summary, the training data consisted of 3,125,506 (3125.6k)
feature vectors of dimension 40.

In our implementation we used only floating point arith-
metic. The user defined constants used in Section III-B were

set to QT = 8, QM = 32, QD = 4 (such settings correspond
with Figs 2-4), and QN = 8. The number of threads in each
thread block was set to 32.

CPU and SSE implementations were tested on 2.39 GHz
Intel 4 GB RAM PC, the GPU implementation was tested
on low-end NVIDIA GeForce GTX 280 video card and the
algorithms were developed in CUDA toolkit 3.1. All the GPU
time consumptions were computed as the sum of times of all
the executed kernels.

A. Analysis of the implementation performance

Comparison of time consumptions of the proposed imple-
mentation can be found in Tab. I. Only the time needed to
accumulate statistics was measured, and just one thread was
used in all CPU implementations. Results are given in seconds,
the data set consists of 3125.6k feature vectors of dimension
40. GPU is approximately 150 times faster than the CPU-SSE
implementation and more than 400 times faster than the naive
CPU implementation. The relative GPU execution times of
particular kernels can be found in Fig. 5.

The comparison of GPU and CPU version strongly depends
on the implementation of the CPU version. In order to express
only the performance of the GPU implementation one can
evaluate the number of floating point operations per second
(GFLOPS). Counts of operations executed in each kernel are

• γ̂-kernel – 4×D × T ×M operations,
• L-kernel – T × M of logarithmic addition functions

(which we rated as 13 operations), thus T × M × 13
operations,

• γ-kernel – T × M of 5 simple operations + one ex-
ponential operation (equal to 4 simple operations), thus
T ×M × 9

• ε-kernel – 4×D × T ×M + T ×M operations.
We distinguish simple operations as addition, subtraction, and
multiplication from operations as logarithms and exponentials,
which are on GPUs calculated using special function unit
that have four times lower throughput. Therefore we rate
logarithms and exponentials as 4 simple operations. Hence,
when number of mixture components M , number of feature
vectors T , and dimension of feature vectors D are known,
the overall number of operations of the estimation can be
computed. In our case this is the sum of operations of all
4 kernels. Tab. II contains the number of operations per
second (giga FLOPS = GFLOPS), which are computed as the
number of operations needed to estimate GMM statistics for
various number of components divided by the estimation times
from Tab. I. GFLOPS increase from 163.4 to 242.1 because
larger models utilize GPU cores better, and the overhead of
kernel executions is relatively lower in cases of larger models.
The theoretical peak of the GTX 280 GPU is 933 GFLOPS
(according to specifications of the manufacturer), which is
in comparison to the performance on real tasks significantly
overstated. In a benchmark task performed in [13], where a
well optimized task of multiplication of two large matrices
on GTX 280 GPU is carried out, the achieved performance
varies between 190 – 375 GFLOPS in dependence on matrix

Fig. 5. Relative GPU execution times for all of the kernels described in
Section III-B.

TABLE I
THE AMOUNT OF TIME IN SECONDS NEEDED TO ESTIMATE STATISTICS OF

3125.6K FEATURE VECTORS OF DIMENSION 40 FOR VARIOUS NUMBER OF

GMM COMPONENTS.

#Comps 32 64 128 256 512 1024 2048
CPU 78 150 287 559 1094 2174 4289
SSE 32 54 95 171 325 619 1199
GPU 0.21 0.32 0.63 1.18 2.34 4.57 9.07

TABLE II
PERFORMANCE OF THE ALGORITHM RUNNING ON NVIDIA GEFORCE

GTX 280 IN GFLOPS WHEN PROCESSING 3125.6K FEATURE VECTORS
OF DIMENSION 40 FOR VARIOUS NUMBER OF GMM COMPONENTS.

#Comps 32 64 128 256 512 1024 2048
GFLOPS 163.4 214.4 217.8 232.6 234.6 240.2 242.1

sizes. Hence, GFLOPS of our implementation are in the range
of such a well optimized task. Nevertheless, matrix-matrix
multiplications consist only of fused multiplication/addition
instructions, which are evaluated in a single GPU clock (dou-
bles the GFLOPS performance). However, our task consists
also from other instructions, which are not as efficient.

B. Comparison with previous works

We have tried to compare the time consumptions also with
other implementations. We have tested several freely available
implementations, but all of them failed (lack of numerical
stability) on our large dataset of high dimensional real data.
We have found two remarkable recent publications interested
in the GPU implementation of the EM algorithm focusing
on GMMs with diagonal covariances, namely a publication
by Kumar et al. [14] and a master thesis from Andrew
Pangborn [6].

Experiments performed by Kumar et al. used NVIDIA
Quadro FX 5800, which is almost identical to the NVIDIA
TESLA C1060 on which the experiments of Andrew Pangborn
were performed, and to NVIDIA GeForce GTX 280 on which
our experiments were performed. Time consumptions of both
implementations were taken from Tab. 5.8 from [6]. In order
to compare the implementations to ours we set up same
conditions as in [14] and [6]. Hence, we reduced the dimension
of our data to 32 and took only 153.6k and 230.4k feature
vectors. Tab. III is the extended table containing also our
results denoted as UWB and the CPU reference computed

TABLE III
COMPARISON GIVEN IN MILLISECONDS OF DIFFERENT IMPLEMENTATIONS

FOR DIFFERENT AMOUNTS OF TRAINING DATA ASSUMING FEATURE

VECTORS OF DIMENSION 32 AND GMM WITH 32 COMPONENTS.

#samples Kumar et al. A.Pangborn UWB MATLAB R©
153.6k 215.0 51.1 9.25 10936.0
230.4k 264.9 71.1 13.99 16461.0

in MATLAB R© 7.5.0.342 (R2007b) utilizing the Statistics
Toolbox function gmdistribution.fit().

As can be seen from Tab. III, our proposed implementation
outperformed the others. It is more than 5 times faster than
A. Pangborn’s implementation and more than 20 times faster
than Kumar’s implementation.

The key part of the speed up is the proper memory
management of the data adhering to the rules of coalesced
access. In addition, data loaded to the kernels are reused as
much as possible (higher degree of parallelization), e.g. the
log-likelihoods are estimated for several frames and several
mixture components at once in each kernel, the same principle
holds for the accumulation kernel (see descriptions of γ̂- and
ε-kernel in Section III-B). Another important performance
related technique lays in the use of the Texture Memory (TM)
with float4 data types for read-only data. Data shared across
a thread block or data that are accessed repeatedly should
be copied into the Shared Memory (SM) in advance. The
mentioned advices are of course well known, but it is quite
difficult to integrate them to a specific task.

Another drawback of Kumar et al. implementation is that
the GPU memory requirements are very high, this holds
particularly also for A. Pangborn. The most of the memory
is occupied by the intermediate results. Since the statistics are
additive, the computation can be divided into smaller parts that
require significantly lower amount of memory. In our case the
most of the memory is occupied only by the input data, thus
we are able to fit up to 6 millions of 40 dimensional feature
vectors into the GPU memory of size 1 GB. However, even
in cases where a huge data set containing several hundreds of
millions of feature vectors needs to be processed, the memory
problem can be solved efficiently. Most of GPUs dispose of
concurrent copy and execution feature, thus additional data
can be uploaded to the GPU memory while already uploaded
data are processed.

VI. CONCLUSION

The paper presented a novel approach to the estimation of
GMM statistics using GPU and CUDA environment. Since the
EM algorithm does converge only locally it is often convenient
to run EM several times with different initializations. Hence,
in order to train a reliable GMM via EM one has to perform
a lot of reestimations. With increasing amount of training
data and increasing complexity of models, the training of
GMMs becomes very time consuming. As has been shown (see
Tab. I), the GPU implementation offers a huge increase in the
speed of GMM training. However, the final speed up strongly
depends not only on the GPU hardware, but also on a proper

implementation itself (see Tab. III). The estimation process can
be easily parallelized also on the CPU (e.g. dividing feature
vectors to smaller disjoint sets, estimating statistics for each
set, and at the end adding the statistics up), but the resources
spent on the hardware are much higher than in the case of
GPU, which is parallel inherently.

We have focused on the estimation of GMM statistics with
diagonal covariances since often full covariance GMMs can
be accurately replaced by diagonal covariance GMMs with
higher number of components. The estimation of diagonal
covariances is more robust mainly with increasing dimension
of feature vectors. This is often the case in tasks of speech
and speaker recognition, where frequently only the diagonal
covariances are used. Note that one of the outputs of the
algorithm produced by the L-kernel is also the log-likelihood
of feature vectors given a GMM, which is required in the
classification phase.

ACKNOWLEDGMENT

This work was supported by the Grant Agency of the Czech
Republic, project No.GAČR 102/08/0707, by the Ministry of
Education of the Czech Republic, project No.MŠMT LC536
and by the grant of the University of West Bohemia, project
No. SGS-2010-054.

REFERENCES

[1] W. Xindong, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda,
et al., ”Top 10 algorithms in data mining,” Knowledge and Information
Systems, Volume 14, 2007.

[2] W. M. Campbell, D. E. Sturim, D. A. Reynolds and A. Solomonoff,
”SVM based speaker verification using a GMM supervector kernel and
NAP variability compensation,” Acoustics, Speech and Signal Processing,
2006.

[3] P. Kenny, ”Joint Factor Analysis of speaker and session variability: Theory
and algorithms,” technical report, Centre de Recherche Informatique de
Montral (CRIM), 2006.

[4] N. Dehak, P. Kenny, R. Dehak, P. Dumouchel and P. Ouellet, ”Front-end
Factor Analysis for speaker verification,” IEEE Transactions on Audio,
Speech and Language Processing, 2010.

[5] J. Vaněk, J. Trmal, J. V. Psutka and J. Psutka, ”Optimization of the Gaus-
sian Mixture Model Evaluation on GPU,” Interspeech 2011, in press.

[6] A. D. Pangborn, ”Scalable data clustering using GPUs,” Masters thesis,
Rochester Institute of Technology, 2010.

[7] C. Plant and C. Bohm, ”Parallel EM-clustering: Fast convergence by
asynchronous model updates,” International Conference on Data Mining
Workshops, 2010.

[8] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer and K. Skadron, ”A
performance study of general-purpose applications on graphics processors
using CUDA,” Journal of Parallel and Distributed Computing, Volume 68,
2008.

[9] D. A. Reynolds and R. C. Rose, ”Robust text-independent speaker iden-
tification using Gaussian Mixture speaker models,” IEEE Transactions on
Speech and Audio Processing, 1995.

[10] ”NIST SRE 2008 evaluation plan,” http://www.itl.nist.gov/iad/mig/tests/
sre/2008/sre08 evalplan release4.pdf

[11] ”NVIDIA CUDATM, NVIDIA CUDA C programming guide version 3.2,
11.9.2010. Online: http://developer.download.nvidia.com/compute/cuda/
3 2 prod/toolkit/docs/CUDA C Programming Guide.pdf.

[12] D. B. Kirk and W. Hwu, ”Programming massively parallel processors:
A hands-on approach,” Morgan Kaufmann, San Francisco, 2010.

[13] V. Volkov and J. W. Demmel, ”Benchmarking GPUs to tune dense linear
algebra”, ACM/IEEE Conference on Supercomputing (SC08), 2008.

[14] N. Kumar, S. Satoor and I. Buck, ”Fast parallel Expectation Maxi-
mization for Gaussian Mixture Models on GPUs using CUDA,” 11th
IEEE International Conference on High Performance Computing and
Communications, 2009.

