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ABSTRACT
We present a fast method for estimating the cosmic microwave background polarization power
spectra using unbiased estimates of heuristically weighted correlation functions. This extends
the O(N 3/2

pix ) method of Szapudi et al. to polarized data. If the sky coverage allows the correlation
functions to be estimated over the full range of angular separations, they can be inverted
directly with integral transforms and clean separation of the electric (E) and magnetic (B)
modes of polarization is obtained exactly in the mean. We assess the level of E–B mixing that
arises from apodized integral transforms when the correlation function can only be estimated
for a subset of angular scales, and show that it is significant for small-area observations.
We introduce new estimators to deal with this case on the spherical sky that preserve E−B
separation; their construction requires an additional integration of the correlation functions but
the computational cost is negligible. We illustrate our methods with application to a large-area
survey with parameters similar to Planck, and the small-area Background Imaging of Cosmic
Extragalactic Polarization experiment. In both cases we show that the errors on the recovered
power spectra are close to theoretical expectations.

Key words: methods: analytical: – methods: numerical – cosmic microwave background.

1 I N T RO D U C T I O N

With the recent detection of polarization in the cosmic mi-
crowave background (CMB) by the Degree Angular Scale Inter-
ferometer (DASI; Kovac et al. 2002), and the detection of the
temperature–polarization cross-correlation by the Wilkinson Mi-
crowave Anisotropy Probe (WMAP)1 (Kogut et al. 2003), the imme-
diate goal for upcoming polarization experiments is to map accu-
rately the polarization power spectra over a wide range of angular
scales. CMB polarization is generated at last scattering from the lo-
cal quadrupole moment of the photon total intensity. The expected
rms polarization is ∼6.4 µK, peaking around an angular scale of
∼10 arcmin (the angle subtended by the width of the last scattering
surface), making mapping a challenging prospect. Further scattering
once the Universe reionizes tends to destroy polarization on scales
that are then sub-Hubble, but generates additional large-angle po-
larization (Zaldarriaga 1997). The potential cosmological returns
from polarization observations are high. Current polarization data
(Kovac et al. 2002; Kogut et al. 2003) already allow a stringent
test to be made of the paradigm for structure formation from ini-

�E-mail: gchon@mrao.cam.ac.uk
1 http://map.gsfc.nasa.gov/

tially super-Hubble, passive, adiabatic fluctuations. Furthermore,
the detection by WMAP of large-scale power in the temperature–
polarization cross-power-spectrum has provided new constraints on
the reionization process, and helped lift major degeneracies that af-
fect the determination of cosmological parameters from the CMB
temperature anisotropies (in particular, the degeneracies between
reionization optical depth and the scalar spectral index and gravita-
tional wave amplitude). Potential returns from future, more precise,
observations include (i) detection of the clean signature of a stochas-
tic background of gravitational waves (Kamionkowski, Kosowsky &
Stebbins 1997; Seljak & Zaldarriaga 1997) and hence fine selection
between inflation models (Kinney 1998); and (ii) evidence for weak
gravitational lensing through the distortion of CMB polarization on
small scales (Zaldarriaga & Seljak 1998; Benabed, Bernardeau &
van Waerbeke 2001). Estimating the polarization power spectra is an
important intermediate step in achieving these science goals. This
paper addresses that problem, presenting a fast, robust method for
estimating the power spectra from large data sets in the presence
of real-world complications, such as incomplete sky coverage and
inhomogeneous noise.

The accurate analysis of CMB data places strong demands on the
statistical methods employed. Even for total intensity data, which is
simpler than polarization, the extraction of the power spectrum from
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upcoming mega-pixel data sets with standard maximum-likelihood
methods (e.g. Bond, Jaffe & Knox 1998) is beyond the range of
any supercomputer. [The operations count scales as the number of
pixels cubed, N 3

pix, while the storage requirements are O(N 2
pix).] In

the search for fast alternatives to brute-force maximum-likelihood
power-spectrum estimation, two broad approaches have emerged.
In the first, experiment-specific symmetries are exploited to make
the brute-force analysis tractable, or, if the symmetries are only ap-
proximate, to pre-condition an iterative solution to the likelihood
maximization. An example of the former is the ingenious ‘ring-
torus’ method of Wandelt & Hansen (2003), while the latter was
pioneered by Oh, Spergel & Hinshaw (1999) during the develop-
ment of the pipeline for the WMAP satellite. The second class of
methods sacrifice optimality in favour of speed by adopting a more
heuristic weighting of the data (such as inverse weighting with the
noise variance). An estimate of the underlying power spectrum is
then obtained from the raw, rotationally invariant power spectrum
of the weighted map (the pseudo-Cls; Wandelt, Hivon & Górski
2001) either by a direct linear inversion (Szapudi et al. 2001; Hivon
et al. 2002) or with likelihood methods (Wandelt, Hivon & Górski
2001; Hansen, Górski & Hivon 2002). The linear inversion, which
yields estimators quadratic in the data, can be performed directly in
harmonic space (Hivon et al. 2002), or, more simply, by first trans-
forming to real space (i.e. by constructing the correlation function)
and then recovering the power spectrum with a (suitably apodized)
integral transform (Szapudi et al. 2001). The estimation of polar-
ization power spectra is less well explored than for total intensity,
although all of the above methods can, in principle, be extended
to handle polarization. To date, only brute-force maximum likeli-
hood (Kovac et al. 2002, Munshi et al. in preparation), minimum-
variance quadratic estimators (Tegmark & de Oliveira-Costa 2002),
pseudo-Cl methods with statistical (Hansen & Górski 2003) or di-
rect inversion (Kogut et al. 2003) in harmonic space, and real-space
correlation function methods (Sbarra et al. 2003) have been demon-
strated on polarized data. Of these, only the pseudo-Cl methods are
fast enough to apply many times (e.g. in Monte Carlo simulations)
to mega-pixel maps. In this paper we extend the fast correlation-
function approach of Szapudi et al. (2001) to polarized data.

A new problem that arises when analysing polarized data, which
is absent for total intensity, is the decomposition of the polarized
field into its electric (E; sometimes denoted gradient) and magnetic
(B; alternatively curl) components. The scientific importance of this
decomposition is that primordial magnetic polarization is not gener-
ated by density perturbations, and so in standard models is sourced
only by gravitational waves (Kamionkowski et al. 1997; Seljak &
Zaldarriaga 1997). However, with incomplete sky coverage, sepa-
rating the polarization field into electric and magnetic components
is no longer straightforward. Exquisite monitoring of leakage be-
tween E and B in analysis pipelines will be required if primordial
B polarization is to be detected down to the fundamental confusion
limit set by cosmic shear (Kesden, Cooray & Kamionkowski 2002).
The question of performing the E–B separation on an incomplete
sky has received considerable attention recently (Zaldarriaga 2001;
Bunn 2002; Chiueh & Ma 2002; Lewis, Challinor & Turok 2002;
Bunn et al. 2003). Methods are now available for extracting pure
measures of the E and B fields which can then be used for sub-
sequent power-spectrum estimation. An alternative approach is to
perform a joint (i.e. E and B) power-spectrum analysis of the original
polarization data, removing the need for an additional stage in the
analysis pipeline and the non-optimalities that this may introduce.
The efficacy of maximum-likelihood methods for performing the

E–B separation is explored by Munshi et al. (in preparation). How-
ever, the computational demands of likelihood methods, and the
difficulty in monitoring E–B leakage in a non-linear analysis, mo-
tivates the development of fast, unbiased methods. The correlation-
function-based approach we develop here, motivated by Crittenden
et al. (2002), has a significant feature in that, with a little post-
processing of the correlation functions, leakage between E and B
can be eliminated in the mean, even for observations covering only
a small part of the sky. The separation is exact in the mean.

The outline of this paper is as follows. In Section 2 we review
the polarization functions on the sphere and their relation with the
power spectra. Section 3 presents a fast, O(N 3/2

pix ) method for com-
puting unbiased estimates of the correlation functions allowing for
heuristic weighting of the data, and describes power-spectrum re-
covery for large-area surveys where the correlation function can be
estimated for the full range of angular separations. We illustrate
our methods by applying them to a survey mission with similar
parameters to those for Planck.2 In Section 4 we provide a care-
ful analysis of the effect of incomplete coverage of the correlation
functions on the direct extraction of the power spectra with apodized
integral transforms. By constructing the relevant window functions
for small-area observations we show that leakage from E to B can
be a significant problem. We remedy this deficiency of the method
in Section 5, where we construct functions from integrals of the
original correlation functions that contain signal contributions from
only E or B in the mean. These functions can be safely inverted
with apodized integral transforms to obtain properly separated es-
timates of the E and B power spectra. We apply this new estimator
to a model of the Background Imaging of Cosmic Extragalactic
Polarization (BICEP)3 experiment, and show that it produces error
bars close to the theoretical expectations. Our conclusions are given
in Section 6, and the appendix contains some technical results on
the analytic normalization of the correlation-function estimators for
uniform weighting on azimuthally symmetric patches.

Throughout this paper we illustrate our results with a flat, �CDM
model with concordance parameters �bh2 = 0.022, �ch2 = 0.12,
�� = 0.7 giving the Hubble constant h = 0.69. The primordial
scalar curvature and tensor spectra are scale-invariant and have ratio
r = 0.31 (making the ratio of tensor to scalar power in temperature
anisotropies r 10 = 0.16 at l = 10).4 We ignore the effects of weak
gravitational lensing. We consider two models for the ionization
history: no reionization and full reionization at redshift z re = 6. Note
that had we adopted a model with earlier reionization, e.g. z re ∼15
as favoured by WMAP data (Kogut et al. 2003), the problem of E–B
mixing described in Section 4 would have been further exacerbated
by the additional large-scale E power.

2 P O L A R I Z AT I O N C O R R E L AT I O N
F U N C T I O N S O N T H E S P H E R E

The Stokes parameters Q(n̂) and U (n̂) are defined for a line of sight
n̂ with the local x-axis generated by θ̂ and the local y-axis by −φ̂.
Here θ̂ and φ̂ are the basis vectors of a spherical-polar coordinate
system. A right-handed basis is completed by the addition of the

2 http://sci.esa.int/home/planck/
3 http://bicep.caltech.edu
4 We define r as the ratio of the amplitudes AS and AT of the primordial
curvature and tensor power spectra, following the conventions of Martin &
Schwarz (2000).
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radiation propagation direction −n̂. The polarization P ≡ Q + iU
is spin −2 (Newman & Penrose 1966) and can be expanded in spin-
±2 harmonics as (Seljak & Zaldarriaga 1997)

(Q ± iU )(n̂) =
∑

lm

(Elm ∓ iBlm)∓2Ylm(n̂). (1)

The reality of Q and U demands E∗
lm = (−1)m E l−m with an equiv-

alent result for Blm. Under parity transformations, (Q ± iU )(n̂) →
(Q ∓ iU )(−n̂) so that Elm has parity (−1)l (electric), but Blm has
parity (−1)l+1 (magnetic). The temperature is a scalar field and so
can be expanded in spherical harmonics with multipoles Tlm. In an
isotropic- and parity-invariant ensemble the non-vanishing elements
of the polarization covariance structure are〈

Elm E∗
l ′m′

〉 = δll ′δmm′C E
l , (2)〈

Blm B∗
l ′m′

〉 = δll ′δmm′C B
l , (3)

〈
Elm T ∗

l ′m′
〉 = δll ′δmm′CT E

l . (4)

If the direction n̂1 corresponds to angular coordinates (θ 1, φ1),
and similarly for n̂2, then the SO(3) composition

D−1(φ1, θ1, 0)D(φ2, θ2, 0) = D(α, β,−γ ) (5)

determines β (0 � β � π), the angle between n̂1 and n̂2, α, the angle
required to rotate θ̂(n̂1) in a right-handed sense about n̂1 onto the
tangent (at n̂1) to the geodesic connecting n̂1 and n̂2, and γ , defined
in the same manner as α but at n̂2. Making use of the relation between
the Wigner D matrices (e.g. Varshalovich, Moskalev & Khersonskii
1988) and the spin-weight spherical harmonics,

Dl
−ms(φ, θ, 0) = (−1)m

√
4π

2l + 1
sYlm(n̂), (6)

we obtain the following representation of equation (5):

Dl
ss′ (α, β,−γ ) =

∑
m

4π

2l + 1
sY ∗

lm(n̂1)s′ Ylm(n̂2). (7)

With this result, the two-point correlation functions for linear po-
larization evaluate to (Ng & Liu 1999)

〈P̄(n̂1)P̄(n̂2)〉 =
∑

l

2l + 1

4π

(
C E

l − C B
l

)
dl

2−2(β), (8)

〈P̄∗(n̂1)P̄(n̂2)〉 =
∑

l

2l + 1

4π

(
C E

l + C B
l

)
dl

22(β), (9)

〈T (n̂1)P̄(n̂2)〉 =
∑

l

2l + 1

4π
CT E

l dl
20(β), (10)

where dl
mn are the reduced D matrices. Note that 〈T (n̂1)P̄(n̂2)〉 =

〈P̄(n̂1)T (n̂2)〉. The quantities

P̄(n̂1) ≡ e2iα P(n̂1), (11)

P̄(n̂2) ≡ e2iγ P(n̂2), (12)

are the polarizations defined on local bases with the x-direction along
the geodesic between n̂1 and n̂2. With these rotations, the correlation
functions depend only on the angle β between the two points. Note
that 〈P̄∗(n̂1)P̄(n̂2)〉 is real, which follows from statistical isotropy,
while 〈P̄(n̂1)P̄(n̂2)〉 and 〈T (n̂1)P̄(n̂2)〉 are only real if the Universe
is parity-invariant in the mean. In the presence of parity violations,

〈P̄(n̂1)P̄(n̂2)〉 =
∑

l

2l + 1

4π

[(
C E

l − C B
l − 2iC E B

l

)
×dl

2−2(β)
]
,

(13)

〈T (n̂1)P̄(n̂2)〉 =
∑

l

2l + 1

4π

(
CT E

l − iCT B
l

)
dl

20(β), (14)

where〈
Elm B∗

lm

〉 = δll ′δmm′C E B
l ,

〈
Tlm B∗

lm

〉 = δll ′δmm′CT B
l . (15)

The correlation functions of the (rotated) Stokes parameters can be
found directly from those for P̄ . Defining

ξ−(β) ≡ 〈P̄(n̂1)P̄(n̂2)〉, (16)

ξ+(β) ≡ 〈P̄∗(n̂1)P̄(n̂2)〉, (17)

ξX (β) ≡ 〈T (n̂1)P̄(n̂2)〉, (18)

we have

〈Q̄(n̂1)Q̄(n̂2)〉 = 1

2
[ξ+(β) + �ξ−(β)], (19)

〈Ū (n̂1)Ū (n̂2)〉 = 1

2
[ξ+(β) − �ξ−(β)], (20)

〈Q̄(n̂1)Ū (n̂2)〉 = 1

2
�ξ−(β), (21)

〈T (n̂1)Q̄(n̂2)〉 = �ξX (β), (22)

〈T (n̂1)Ū (n̂2)〉 = �ξX (β). (23)

In Fig. 1 we plot the correlation functions ξ ±(β) and ξ X (β) for
the cosmological models described in Section 1. The damping of
the polarization power on linear scales that are sub-Hubble at the
epoch of reionization (in this case at z = 6) is just discernible in
the correlation functions in Fig. 1. The additional large-scale power
due to reionization makes a negligible contribution to the correlation
functions for the angular range we have plotted.

We can invert equations (9), (13) and (14) using the orthogonality
of the dl

mm′ ,∫ 1

−1

dl
mm′ (β)dl ′

mm′ (β) d cos β = 2

2l + 1
δll ′ , (24)

Figure 1. The correlation functions ξ +(β) (top panel), ξ −(β) (middle) and
ξ X (β) (bottom). The cosmological model is as described in Section 1; the
solid lines are for no reionization, while the dashed lines have complete
reionization with z re = 6. The angle β is in degrees.
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to determine the power spectra from the correlation functions:

C E
l − C B

l − 2iC E B
l = 2π

∫ 1

−1

ξ−(β)dl
2−2(β) d cos β, (25)

C E
l + C B

l = 2π

∫ 1

−1

ξ+(β)dl
22(β) d cos β, (26)

CT E
l + iCT B

l = 2π

∫ 1

−1

ξX (β)dl
20(β) d cos β. (27)

Since those reduced D matrices that appear in these equations
are polynomials in cos β for [−1,1], the integrals can be per-
formed essentially exactly for band-limited data by Gauss–Legendre
quadrature.

3 FA S T C O R R E L AT I O N - F U N C T I O N
E S T I M ATO R S

If we had available unbiased estimates of the various correlation
functions for all angles 0 � β � π, we could obtain unbiased esti-
mates of the power spectra by performing the inversions in equations
(25)–(27). Direct evaluation of the correlation functions (e.g. Sbarra
et al. 2003) requires O(N 2

pix) evaluations and is complicated by the
need to perform a rotation to the appropriate basis for each pair of
points. Here we consider an O(N 3/2

pix ) method based on fast spherical
transforms. This method generalizes that of Szapudi et al. (2001) to
polarization fields.

We consider an arbitrary weighting of the noisy polarization field
P(n̂) and the noisy temperature field T (n̂) with some weight func-
tions wP (n̂) and wT (n̂) respectively. The weight is zero for those
pixels in regions that are either not observed or are removed from
the map due to foreground contamination. In this paper we only
consider real weighting of the polarization field, thus preserving
the direction of polarization at any point; relaxing this condition is
straight-forward if required. In the presence of instrument noise, the
weights allow for a heuristic pixel-noise weighting of the data. We
start with the following estimators for the signal-plus-noise corre-
lations:

Ĉ+(ψ) = AP (ψ)

∫
dn̂1dn̂2[δ(n̂1 · n̂2 − cos ψ)

×wP (n̂1)wP (n̂2)P̄∗(n̂1)P̄(n̂2)],

(28)

Ĉ−(ψ) = AP (ψ)

∫
dn̂1dn̂2[δ(n̂1 · n̂2 − cos ψ)

×wP (n̂1)wP (n̂2)P̄(n̂1)P̄(n̂2)],

(29)

ĈX (ψ) = AX (ψ)

∫
dn̂1dn̂2[δ(n̂1 · n̂2 − cos ψ)

×wT (n̂1)wP (n̂2)T (n̂1)P̄(n̂2)].

(30)

The delta functions ensure that we only consider those points that
have angular separation ψ . The normalizations A(ψ) are chosen so
that our correlation function estimators are unbiased in the absence
of noise. This requires

1

AP (ψ)
=

∫
dn̂1dn̂2[δ(n̂1 · n̂2 − cos ψ)

×wP (n̂1)wP (n̂2)], (31)

1

AX (ψ)
=

∫
dn̂1dn̂2[δ(n̂1 · n̂2 − cos ψ)

×wT (n̂1)wP (n̂2)]. (32)

These expressions for the correlation functions and normalization
factor can be simplified by using the completeness relation∑
l�max(|m|,|n|)

2l + 1

2
dl

mn(β)dl
mn(ψ) = δ(cos β − cos ψ) (33)

to substitute for the delta functions. To evaluate Ĉ+(ψ) we set m =
n = 2, so the integrand in equation (28) involves

wP (n̂1)P̄∗(n̂1)dl
22(β)P̄(n̂2)wP (n̂2)

= P̃∗(n̂1)Dl
22(α, β,−γ )P̃(n̂2), (34)

where cos β = n̂1 · n̂2, and we have used equations (11) and (12).
Here, P̃(n̂) ≡ wP (n̂)P(n̂) is the weighted polarization field on the
(polar) coordinate basis. We can now use equation (7) to express
the D matrix in terms of spin-weight harmonics. Performing the
angular integrals extracts the spin-weight 2 (pseudo-)multipoles of
the weighted, noisy polarization field, defined by

P̃(n̂) =
∑

lm

(Ẽlm − iB̃lm)−2Ylm(n̂), (35)

P̃∗(n̂) =
∑

lm

(Ẽlm + iB̃lm)+2Ylm(n̂), (36)

leaving

Ĉ+(ψ) = 2πAP (ψ)
∑

lm

dl
22(ψ)|Ẽlm + iB̃lm |2. (37)

Introducing the real pseudo-Cls for the weighted fields:

C̃ E
l ≡ 1

2l + 1

∑
m

|Ẽlm |2, (38)

C̃ B
l ≡ 1

2l + 1

∑
m

|B̃lm |2, (39)

C̃ E B
l ≡ 1

2l + 1

∑
m

Ẽlm B̃∗
lm = 1

2l + 1

∑
m

B̃lm Ẽ∗
lm, (40)

C̃T B
l ≡ 1

2l + 1

∑
m

T̃lm B̃∗
lm = 1

2l + 1

∑
m

B̃lm T̃ ∗
lm, (41)

we can write

Ĉ+(ψ) = 2πAP (ψ)
∑

l

(2l + 1)dl
22(ψ)(C̃ E

l + C̃ B
l ). (42)

To evaluate Ĉ−(ψ) we follow the same procedure, but with m = −2
and n = 2 in equation (33). The result is

Ĉ−(ψ) = 2πAP (ψ)
∑

l

(2l + 1)dl
2−2(ψ)

(
C̃ E

l − C̃ B
l − 2iC̃ E B

l

)
.

(43)

Finally, for ĈX (ψ) we take m = 2 and n = 0 to find

ĈX (ψ) = 2πAX (ψ)
∑

l

(2l + 1)dl
20(ψ)

(
C̃T E

l − iC̃T B
l

)
. (44)

The normalization factors A(ψ) can be evaluated by taking m =
n = 0 in equation (33), e.g.

1

AP (ψ)
= 2π

∑
l�0

(2l + 1)Pl (cos ψ)wP,l , (45)

where

wP,l = 1

2l + 1

∑
m

|wP,lm |2, (46)

with w P,lm the (spin-0) spherical multipoles of the weight function
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wP (n̂). Note that we have used dl
00(ψ) = Pl(cos ψ) where Pl(x) is a

Legendre polynomial. Once the mean noise contribution (noise bias)
is removed from the estimators Ĉ(ψ) [leaving unbiased estimators
of the signal correlation functions ξ (ψ)], we can use equations (25)–
(27) to compute estimates of the power spectra. The real parts of
ξ̂ (ψ) give estimates of CE

l , CB
l and CX

l , while the imaginary parts of
ξ̂−(ψ) and ξ̂X (ψ) can be used to estimate CEB

l and CTB
l and hence

test for parity violations.
The full set of pseudo-multipoles can be obtained efficiently in

O(N 3/2
pix log N pix) operations using fast spherical transforms such as

those implemented in the HEALPix 5 and IGLOO (Crittenden & Turok
1998) packages. (Our current implementation employs HEALPix.)
To remove the noise bias from Ĉ(ψ) it is generally most efficient
to resort to Monte Carlo simulations of pure noise fields (Szapudi
et al. 2001). (An exception is the case where the noise is uncorre-
lated between pixels; see below for details.) The ensemble mean of
these pure-noise correlation functions can be subtracted from Ĉ(ψ)
to yield (asymptotically) unbiased estimates of the signal correla-
tion functions. Monte Carlo estimation of the noise bias provides
a robust means of dealing with discretization effects due to the
chosen pixelization. Monte Carlo methods also offer the simplest
method of computing the variance of the power-spectrum estimates.
In the presence of uncorrelated noise it is straightforward to proceed
analytically with the noise contribution to the variance, but the cos-
mic variance contribution is complicated by the presence of signal
correlations.

For the simple case of noise that is uncorrelated between pixels
it is straightforward to compute the noise bias analytically. For sim-
plicity consider noise that is uncorrelated between Q, U and T , and
has equal variance in Q and U. If the noise variance of the Stokes
parameters per solid angle is σ 2

P (n̂p), then in the continuum limit
the polarization noise correlations can be summarized by

〈PN (n̂1)P∗
N (n̂2)〉 = 2σ 2

Pδ(n̂1 − n̂2), (47)

〈PN (n̂1)PN (n̂2)〉 = 0, (48)

〈TN (n̂1)PN (n̂2)〉 = 0, (49)

where PN (n̂) is the spin −2 noise, and TN (n̂) is the noise on the tem-
perature. As the noise is uncorrelated between pixels its mean effect
on correlation-function estimates is confined to zero separation:

〈�Ĉ+(ψ)〉 = AP (0)δ(1 − cos ψ)

∫
dn̂w2

P (n̂)2σ 2
P (n̂), (50)

〈�Ĉ−(ψ)〉 = 0, (51)

〈�ĈX (ψ)〉 = 0, (52)

with

1

AP (0)
= 2π

∫
dn̂w2

P (n̂). (53)

Here, 〈�Ĉ〉 is the mean noise contribution to the estimators Ĉ .
Making use of dl

mm′ (0) = δmm′ we find that the non-zero noise
biases in the estimates of the power spectra in the continuum limit
are

〈�Ĉ E
l 〉 = 〈�Ĉ B

l 〉 =
∫

dn̂w2
P (n̂)σ 2

P (n̂)∫
dn̂w2

P (n̂)
. (54)

5 http://www.eso.org/science/healpix/

However, we would recommend removing the noise bias with Monte
Carlo techniques even for simple, uncorrelated noise. This is to en-
sure that the effective band-limit introduced on the noise by com-
puting the correlation functions via pseudo-Cls up to some finite
l max is properly accounted for.

3.1 Application to large-area surveys

As an application of our method we consider extracting the power
spectra from simulated maps obtained with a full-sky survey with
pixel noise similar to that expected for Planck. To be specific, we
assumed uncorrelated pixel noise on Q and U with rms 6.95 µK in a
10 × 10 arcmin2 pixel. We adopted a beam size of 10 arcmin, some-
what larger than the polarization-sensitive channels of the Planck
High-Frequency Instrument, to ensure oversampling of the beam at
HEALPix resolution N side = 1024. We ignored the variation in pixel
noise across the map, but this could easily be included in our simu-
lations at no additional computational cost. Noise correlations could
also be included easily if fast simulation of noise realizations were
possible. We made a constant-latitude Galactic cut of ±20◦. The
underlying cosmological model was as described in Section 1 and
we assumed reionization at z = 6. We adopted a uniform weighting
scheme motivated by the constant variance of the noise.

The recovered power spectrum CE
l is shown in Fig. 2. We com-

puted estimates of the correlation function at the roots of a Legen-
dre polynomial from the pseudo-Cls (obtained with the fast spher-
ical transforms in HEALPix). Inversion of the correlation functions
was performed with Gauss–Legendre integration. We averaged the
recovered l(l + 1)Cl to form flat band power estimates with a
�l = 10, and the results of one simulation are shown as the points
in Fig. 2. We adopted a �l = 10 to ensure the errors were essen-
tially uncorrelated. The shaded area in Fig. 2, centred on the true
spectrum smoothed with a 10-arcmin beam, encloses the ±σ error
region based on the rule of thumb (generalized from Hivon et al.
(2002) for the temperature case)

�C E
l ≈

√
2

νl

(
C E

l + Nl

)
. (55)

Here Nl is the (full-sky) noise power spectrum, and ν l ≡ �

l(2l + 1) f skyw
2
2/w4 is the effective number of degrees of free-

dom in a band of width �l on a fraction of the sky f sky, where
4πwi fsky ≡ ∫

wi
P (n̂)dn̂. Note that ν l takes no account of the loss

Figure 2. Recovered CE
l power spectrum for a large-area survey with a

±20◦ Galactic cut. The points are flat band-power estimates, with �l = 10,
from a single simulation; the shaded region shows the ±σ region on the
basis of equation (55).
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of degrees of freedom associated with disentangling E and B polar-
ization, since the fractional loss of modes is small for f sky close to
unity (Lewis et al. 2002). The scatter of points in the simulation is
broadly consistent with that expected on the basis of the theoretical
errors. A more detailed analysis of the optimality of our method
must await comparison with optimal, maximum-likelihood codes
when these become available at sufficiently high resolution.

4 W I N D OW F U N C T I O N S F RO M
I N C O M P L E T E C O R R E L AT I O N F U N C T I O N S

In this section we construct the window functions that arise when the
correlation functions can only be estimated over a limited angular
range. We shall concentrate on the polarization autocorrelations; the
generalization to the polarization–temperature cross-correlation is
straightforward.

If unbiased estimates of the correlation functions are available
over the full angular range (0, π), they can easily be inverted to
obtain unbiased power spectra. This case would describe full-sky
experiments with a cut excising less than a 90◦ band about the
Galactic plane. In the case where the correlation functions cannot
be estimated for all separations ψ , estimating the power spectra by
direct integration (e.g. equations 25 and 26) over the observed range
will introduce window functions ±2 Kll ′ such that〈

Ĉ E
l ± Ĉ B

l

〉 =
∑

l ′
±2 Kll ′

(
C E

l ′ ± C B
l ′
)

. (56)

Fourier ringing can be reduced by pre-multiplying the correlation
functions with a scalar apodizing function f (ψ) prior to integration,
in which case the window functions take the form

±2 Kll ′ ≡ 2l ′ + 1

2

∫
f (β)dl

2±2(β)dl ′
2±2(β) d cos β, (57)

where the integral is over the range of angles for which the corre-
lation functions can be estimated. Note that the window functions
are not symmetric but rather satisfy

(2l + 1)±2 Kll ′ = (2l ′ + 1)±2 Kl ′l . (58)

Introducing the sum and difference window functions, ±Kll ′ ≡
(2 Kll ′ ± −2 Kll ′ )/2, the means of the estimated power spectra are
related to the true spectra by〈

Ĉ E
l

〉 =
∑

l ′

(
+Kll ′C

E
l ′ + −Kll ′C

B
l ′
)
, (59)

〈
Ĉ B

l

〉 =
∑

l ′

(
−Kll ′C

E
l ′ + +Kll ′C

B
l ′
)
. (60)

The window function −Kll ′ controls the mixing of E and B polariza-
tion. Recent results from DASI (Kovac et al. 2002) are in line with
theoretical expectations that B polarization should be subdominant,
so that cross-contamination due to partial sky effects is propor-
tionately more troubling for B polarization than for E. While not
presenting a fundamental problem for cosmological parameter ex-
traction, a non-zero −Kll ′ makes interpretation (and presentation) of
the estimated CB

l awkward. Mixing can obviously be eliminated by
pre-multiplying the estimates Ĉ E

l ± Ĉ B
l with the inverse of the win-

dow functions ±2 Kll ′ , but this inversion is awkward in practice due
to the ill-conditioned nature of the window functions when cov-
erage of the correlation functions is incomplete. In Section 5 we
introduce a simple, robust technique for extracting the power spec-
tra from correlation functions which eliminates mixing in the mean
(i.e. produces a zero −Kll ′ ). Before turning to that, in the following
subsections we first explore the properties of the window functions

given by equation (57), and the circumstances under which mixing
is significant.

4.1 General properties

If we define the apodizing function f (ψ) to be zero outside the
observed range of ψ , and perform a Legendre expansion

f (ψ) =
∑
l�0

2l + 1

2
fl Pl (cos ψ), (61)

the window function 2 Kll ′ reduces to

2 Kll ′ = 2l ′ + 1

2

∑
L

(2L + 1) fL

(
l l ′ L
2 −2 0

)2

, (62)

while −2 Kll ′ has an additional factor of (−1)(l+l ′+L) in the summa-
tion. The array in brackets in equation (62) is a Wigner 3-j symbol
arising from the integral of a product of three rotation matrices. If the
apodizing function is effectively band-limited to L max, the window
functions vanish for |l − l ′| > L max.

The normalization
∑

l ′ ±2 Kll ′ of the window functions is also
of some interest. For 2 Kll ′ we can perform the sum over l ′ in
equation (62) directly using the orthogonality of the 3-j symbols
(Varshalovich et al. 1988) to find∑

l ′
2 Kll ′ =

∑
L�0

2L + 1

2
fL = f (0). (63)

The last equality follows from Pl(1) = 1, or, more directly, by em-
ploying

∑
l ′ (l

′ + 1/2)dl ′
22(β) = δ(cos β − 1) in equation (57). The

normalization of −2 Kll ′ is a little more involved. We start with the
result∑

l ′

2l ′ + 1

2
dl ′

2−2(β) = δ(cos β − 1) + csc2(β/2), (64)

which follows by summing equation (89) of Section 5 over l ′. If we
now sum equation (57) over l ′, and use equation (57), we find that∑

l ′
−2 Kll ′ =

∫
f (β) csc2(β/2)dl

2−2(β) d cos β, (65)

where we have used dl
2−2(0) = 0 [and the assumed regularity of

f (β)]. The function csc2(β/2)dl
2−2(β) is a polynomial in cos β and

so the integral can easily be evaluated numerically by, e.g. Gauss–
Legendre integration for smooth apodizing functions. To make fur-
ther progress analytically we insert the Legendre expansion of f (β)
in equation (65) and use the differential representation of the re-
duced D matrices (e.g. section 4.3.2 of Varshalovich et al. 1988).
Repeated integration by parts then establishes the result∑

l ′
−2 Kll ′ =

∑
L�l

2L + 1

2
fL

[
1 − 4

L(L + 1)

l(l + 1)

+3
(L + 2)!

(L − 2)!

(l − 2)!

(l + 2)!

]
. (66)

If f (β) is effectively band-limited, for l � L max we have∑
l ′ −2 Kll ′ ≈ f (0). In this limit, the normalization of −Kll ′ is much

smaller than that of +Kll ′ , and mixing of E and B power is suppressed
in the mean (Bunn 2002).

4.2 No apodization

Consider the case where the correlation functions can be estimated
in the range (0, βmax). If we apply no apodization to the correlation
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functions, we obtain window functions

±2Wll ′ ≡ 2l ′ + 1

2

∫ 1

cos βmax

dl
2±2(β)dl ′

2±2(β) d cos β. (67)

For l �= l ′ this integral can be evaluated directly since the dl
mn are

eigenfunctions of a self-adjoint operator. The result is

±2Wll ′ = 2l ′ + 1

2

cos2 βmax

l(l + 1) − l ′(l ′ + 1)

(
d dl

2±2

d cos β
dl ′

2±2

− d dl ′
2±2

d cos β
dl

2±2

)∣∣∣∣
βmax

, l �= l ′. (68)

For l = l ′ the integral can be evaluated recursively as described in
Appendix C of Lewis et al. (2002). The window function −Wll ′ ≡
(2Wll ′ − −2Wll ′ )/2 can be evaluated directly for all l and l ′ (Lewis
et al. 2002):

−Wll ′ = 2l ′ + 1

2
(ulul ′ + vlvl ′ )|βmax , (69)

with the vectors

ul (β) ≡
√

(l − 2)!

(l + 2)!
sin β

d

dβ

(
dl

20

sin β

)
, (70)

vl (β) ≡
√

(l − 2)!

(l + 2)!

√
3

sin β
dl

20(β). (71)

Both vectors vanish for βmax = π to ensure that −Wll ′ = 0 when the
full angular range (0, π) is considered.

Some representative rows of the window functions ±Wll ′ are
shown in Fig. 3 for βmax = 20◦ (corresponding to, for example,
observations over a circular patch of radius 10◦). Note that +Wll ′ is
localized around l = l ′ (with width varying inversely with βmax),
while −Wll ′ shows no localization. Equation (69) shows that, con-
sidered as a matrix, −Wll ′ is of rank 2, so the rows of the window
function are constructed from linear combinations of ul ′ and vl ′ . The
approximate scaling of −Wll ′ with l for fixed l ′, which is evident in
Fig. 3, arises because the vector ul oscillates with larger amplitude
than vl for l � 1/βmax.

In Fig. 3 we also show the mean of the estimated power spectrum
〈Ĉ B

l 〉 obtained by multiplying the window functions ±Wll ′ with the
true CE

l and CB
l (equation 60) for the cosmological models detailed

in Section 1. The true spectra are convolved with a Gaussian beam
of full-width 10 arcmin at half-maximum. In the case of no reion-
ization, the mean of the recovered CB

l is a faithful representation of
the true spectra. This is because (i) the inner products between C E

l ′
and either of (l ′ +1/2)ul ′ and (l ′ +1/2)vl ′ are sufficiently small that
the leakage from E polarization causes only a small amplitude os-
cillation in the recovered CB

l ; and (ii) for +Wll ′ sufficiently localized
compared to the scale of features in C B

l ′ , we can approximate their
product by∑

l ′
+Wll ′C

B
l ′ ≈ C B

l

∑
l ′

+Wll ′ ≈ C B
l (l � 1/βmax). (72)

For the second approximation note that the window function +Wll ′

inherits its normalization from that of 2Wll ′ (which is unity) and
−2Wll ′ . For the latter we use equation (65) and the differential rep-
resentation of dl

2−2 to find∑
l ′

−2Wll ′ = 1 + 2

√
(l − 2)!

(l + 2)!
cot(βmax/2)

× [√
l(l + 1)dl

1−2(β) − cot(β/2)dl
0−2(β)

]
βmax

. (73)

For large l � 1/βmax we find
∑

l ′ −2Wll ′ ≈ 1 (see also the discussion
after equation 66). Reionized models are more problematic since
they have additional large-scale power in E polarization (and so
are more sensitive to the truncation of the correlation functions at
βmax). The effect of this large-scale power can clearly be seen in
Fig. 3 for the model with reionization at z = 6. The large amplitude
oscillations in the recovered CB

l trace those of the vector ul(βmax) at
large l.

4.3 Gaussian apodization

The Fourier ringing evident in the window functions in Fig. 3 can be
reduced by apodizing the correlation functions. Here we consider
Gaussian apodizing functions, i.e.

f (β) = e−β2/(2σ 2). (74)

The half-width at half-maximum is σ
√

2 ln 2 which should be small
compared to the cut-off βmax in the correlation functions for effective
apodizing. The window functions, accounting for apodization and
the finite range (0, βmax) of the observed correlation functions, can
be written as matrix products:

±2 Kll ′ =
∑

L

±2 Fl L ±2WLl ′ , (75)

where

±2 Fll ′ ≡ 2l ′ + 1

2

∫ 1

−1

f (β)dl
2±2(β)dl ′

2±2(β) d cos β. (76)

Note that the full window functions ±2 Kll ′ are insensitive to the
behaviour of the apodizing function for β > βmax. Note also that
the order of the matrix product in equation (75) is irrelevant since
the window functions commute. If the apodizing function is narrow
compared to βmax we expect ±2 Kll ′ ≈ ±2 Fll ′ .

In Fig. 4 we show representative rows of the sum and difference
window functions, ±Kll ′ , for βmax = 20◦ and a Gaussian apodiz-
ing function with half-width at half-maximum equal to βmax/2 [so
f (βmax) = 1/16]. These are well approximated by Gaussians cen-
tred on l = l ′ with width 1/σ . The amplitude of the difference
window functions are much smaller than those of the sum, and for
large l the ratio of amplitudes ∝ 1/ (lσ )2.

To understand this behaviour, consider the limit where σ � 1
and lσ � 1. In this flat-sky limit we can approximate the reduced
D matrices by Bessel functions (Varshalovich et al. 1988):

dl
22(β) ≈ J0(lβ), dl

2−2(β) ≈ J4(lβ), (77)

and the window functions ±2 Fll ′ are easily computed to be

2 Fll ′ ≈ l ′σ 2e−σ 2(l2+l ′2)/2 I0(ll ′σ 2), (78)

−2 Fll ′ ≈ l ′σ 2e−σ 2(l2+l ′2)/2 I4(ll ′σ 2). (79)

The leading-order asymptotic expansions of ± Fll ′ (ll ′σ 2 � 1) then
follow:

+ Fll ′ ∼
√

l ′σ 2

2πl
e−(l−l ′)2σ 2/2, (80)

− Fll ′ ∼ 4

ll ′σ 2

√
l ′σ 2

2πl
e−(l−l ′)2σ 2/2, (81)

which reproduce the behaviour seen in Fig. 4. The window func-
tion 2 Fll ′ is normalized to unity by virtue of equation (63). The
normalization of −2 Fll ′ can be calculated for all l in terms of
modified spherical Bessel functions by approximating f (β) ≈
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Figure 3. Left: representative rows of the window functions +Wll ′ (top panel) and −Wll ′ (bottom panel) when the correlation functions are known in the
angular range (0, 20◦), and no apodization is applied. The solid lines are for l = 30, the dashed lines for l = 120 and the dotted lines for l = 210. Right: mean
recovered CB

l (solid lines), obtained from the convolution in equation (60) with the windows ±Wll ′ , compared to the true CB
l (dashed lines). The top panel has

no reionization while the bottom panel is a model with full reionization at z = 6.

Figure 4. Left: representative rows of ±Kll ′ for βmax = 20◦ and Gaussian apodization with half-width at half-maximum equal to βmax/2. Right: mean
recovered CB

l (points) compared to the true CB
l (lines) with (bottom) and without (top) reionization.

exp[−(1 − cos β)/σ 2] in equation (65). However, the result is cum-
bersome so we shall only give its asymptotic form here (valid for σ

� 1 and lσ � 1):∑
l ′

−2 Fll ′ = 1 − 4

l2σ 2

(
2 + e−l2σ 2/2

)
+ 24

l4σ 4

(
1 − e−l2σ 2/2

)
. (82)

(This result also follows directly from integrating equation 79 over
l ′.) Asymptotically, we then have

∑
l ′ − Fll ′ ∼ 4/(lσ )2, consistent

with Fig. 3.
We also show in Fig. 4 the mean of the recovered CB

l for a range
of l values with Gaussian apodizing (corresponding to the window
functions in the left-hand panels of Fig. 4). The spacing of points
is chosen to reflect the l-range over which recovered power spectra
should be roughly decorrelated. While apodizing has clearly re-
moved the high-frequency oscillations in the mean of the recovered
CB

l , it has done so at the expense of introducing considerable bias
due to leakage from E polarization. As expected, apodization has
reduced the sensitivity of the recovered CB

l to the level of large-
scale power in E polarization (and hence reionization; cf. Fig. 3),
but has replaced it with a local bias ≈4 CE

l /(lσ )2. The bias becomes
non-local in models with sufficiently early reionization, where the

level of large-scale E power can be such that it is transmitted to the
recovered B power spectrum for all l through the low-l tail of the
window function.

A more effective way to reduce oscillations in CB
l without intro-

ducing additional bias due to E–B leakage is to recover the power
spectra with no apodization, and then to post-convolve with a suit-
ably wide smoothing function. Such an approach is illustrated in
Fig. 5, where we have post-convolved the results in Fig. 3 with
the asymptotic form of + Fll ′ (equation 80). The Gaussian smooth-
ing produces well-localized +Kll ′ window functions, removing the
Fourier ringing from +Wll ′ , and reduces the amplitude of −Wll ′ by
a factor ∼40. Only a low-frequency, oscillatory bias remains in the
recovered CB

l in the model with reionization. Whether this bias is
significant depends on the level of reionization (and primordial B
polarization).

5 R E M OV I N G E – B L E A K AG E

Although we are able to reduce the level of cross-contamination in
the recovered power spectra by simply post-convolving them with
a suitably wide smoothing function, it is actually straightforward to
remove this E–B mixing exactly in the mean. Crittenden et al. (2002)
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Figure 5. Window functions (left) and mean of recovered CB
l (right) obtained by post-convolving the results in Fig. 3 with the Gaussian asymptotic approximation

to + Fll ′ .

showed how to construct correlation functions on small patches of
the sky that contain only E or only B modes in the mean. (Their
work was in the context of weak gravitational lensing, but their
results are equally applicable to CMB polarization.) In this section
we extend the central result of Crittenden et al. to the sphere, so we
are able to handle large-angle polarization signals, and demonstrate
the methods with simulations for an experiment similar to BICEP.

We begin by considering the function

ξ (β) ≡
∑

l

2l + 1

4π
(C E

l + C B
l )dl

2−2(β). (83)

If we had access to ξ (β) over some range of scales we could combine
with the real part of ξ −(β) to extract the function

1

2
[ξ (β) − �ξ−(β)] =

∑
l

2l + 1

4π
C B

l dl
2−2(β), (84)

which depends only on B-polarization. We could thus recover an
estimate of CB

l by integrating unbiased estimates of ξ (β) − ξ −(β)
against dl

2−2 [with appropriate apodization f (β)]:

Ĉ B
l = 2π

∫
1

2
[ξ̂ (β) − �ξ̂−(β)] f (β)dl

2−2(β) d cos β. (85)

Such an estimate would contain no contamination from E polariza-
tion in the mean (i.e. the difference window function −Kll ′ would
vanish for arbitrary apodization). A similarly unbiased estimate of
CE

l could be obtained by considering ξ (β) + � ξ −(β).
The result we now prove is that the function ξ (β) can be obtained

in the range (0, βmax) from the correlation function ξ +(β) in the
same range by quadrature. We start by inserting equation (26) into
the summand of equation (26) which gives

ξ (β) =
∫ 1

−1

d cos β ′ξ+(β ′)
∑

l

2l + 1

2
dl

2−2(β)dl
22(β ′). (86)

Our strategy for simplifying the summation in this equation is to
express dl

2−2(β) in terms of integrals involving dl
22(β), and then

perform the summation with the completeness relation, equation
(33). Making repeated use of the recursion relation (Varshalovich
et al. 1988)

−m + m ′ cos β

sin β
dl

mm′ (β) = 1

2

√
(l + m ′)(l − m ′ + 1)dl

mm′−1(β)

+1

2

√
(l − m ′)(l + m ′ + 1) dl

mm′+1(β)
(87)

and the relation

d

dβ
dl

mm′ (β) + m − m ′ cos β

sin β
dl

mm′ (β)

= −
√

(l − m ′)(l + m ′ + 1)dl
mm′+1(β), (88)

we find that

dl
2−2(β) = dl

22(β) − 2(2 + cos β)

sin4(β/2)

∫ β

0

tan3(β ′/2)dl
22(β ′)dβ ′

+ 2

sin2(β/2)

∫ β

0

sec3(β ′/2) sin(β ′/2)dl
22(β ′)dβ ′. (89)

Multiplying by (l + 1/2)dl
22(β ′) and summing over l we find

ξ (β) = ξ+(β) + 1

sin2(β/2)

∫ 1

cos β

d cos β ′ξ+(β ′) sec4(β ′/2)

−2(2 + cos β)

sin4(β/2)

∫ 1

cos β

d cos β ′ξ+(β ′)
tan3(β ′/2)

sin β ′ . (90)

As ξ (β) depends only on ξ +(β) in the range (0, β), it is possible to
construct ξ (β) in this range from an unbiased estimator of ξ +(β) in
the same range. By construction, ξ (β) − �ξ −(β) will contain only
B polarization in the mean.

The window function for this method is simply −2 Kll ′ (equa-
tion 57), so that

〈Ĉ B
l 〉 =

∑
l ′

−2 Kll ′C
B
l ′ , 〈Ĉ E

l 〉 =
∑

l ′
−2 Kll ′C

E
l ′ . (91)

As in the previous section, we can write −2 Kll ′ = ∑
L −2 Fl L −2WLl ′ .

Representative elements of the window functions −2 Kll ′ are plotted
in Fig. 6 for βmax = 20◦ and Gaussian apodizing with half-width
at half-maximum equal to βmax/2. They are well approximated by
Gaussians with asymptotic normalization given by the right-hand
side of equation (82). For presentation purposes it is desirable to
have window functions normalized to unity. We can enforce this by
dividing the power spectrum reconstructed from equation (85) by∑

l ′ −2 Kll ′ . The exact normalization is easily computed from equa-
tion (65) by, e.g. Gauss–Legendre integration, and can be performed
while inverting the correlation functions at negligible computational
cost. The renormalized window functions are also shown in Fig. 6,
along with the mean recovered CB

l , obtained from equation (85)
with and without renormalization by

∑
l ′ −2 Kll ′ . The renormalized

estimates agree very well in the mean with the true power spectra.
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Figure 6. Left: window functions −2 Kll ′ (top) and their renormalized counterparts (bottom) for βmax = 20◦ and Gaussian apodization with half-width at
half-maximum equal to βmax/2. Right: mean recovered CB

l with (crosses) and without (circles) renormalization for the cosmological models with (bottom) and
without (top) reionization.

Note also that since we have removed cross-contamination, the re-
covered CB

l are insensitive to large-scale power (from reionization)
in E polarization.

5.1 Application to BICEP

As an application of our new estimator, we consider simulated maps
for the BICEP experiment. BICEP is the first of a new generation of
large bolometer arrays that are designed to target B-mode polariza-
tion. We used the experimental parameters taken from the BICEP
home page.6 The survey will cover a polar-cap region of angular
radius 18.◦5, integrating for a nominal 300 d. BICEP will be com-
posed of 48 polarization-sensitive bolometers (PSBs) operating at
100 GHz with a resolution of 1◦ (full-width at half-maximum) and
48 at 150 GHz with 0.◦7 resolution. For our simulations we ignored
the difference in beam size between the two channels taking the
beam size to be 1◦, so maps from each channel could be easily com-
bined without introducing noise correlations. We took each PSB to
have an instantaneous sensitivity of 300 µK

√
sec.

We simulated 100 noisy CMB maps using a realistic map of
the integration time per pixel based on the BICEP scanning strat-
egy (see Fig. 7). The cosmology was that described in Section 1
(with reionization at z = 6). The pseudo-Cls were extracted with
HEALPix at resolution N side = 512 using the weight function shown
in Fig. 7. This corresponds to inverse noise variance weighting for
white noise in the time domain, and the azimuthal symmetry reflects
the symmetry of the proposed BICEP scan strategy. We generated a
further suite of Monte Carlo noise realizations which were used to
remove the noise bias. The integral in equation (90) was performed
with a cumulative Simpson rule, giving estimates of ξ (β) at the
roots of a Legendre polynomial scaled to the angular range (0, 31◦).
In principle we can estimate the correlation functions in the range
(0, 37◦), but very few pixel pairs contribute to the largest separa-
tion angles so the correlation functions are very noisy there. During
the integration to form ξ (β) we constructed ξ+(β) directly from the
pseudo-Cls, with the noise bias removed, at points linearly spaced
between the Legendre roots. (We used a nine-point Simpson rule.)

We recovered the angular power spectra by evaluating equa-
tion (85) with Gauss–Legendre quadrature. We adopted a Gaussian
apodizing function with half-width at half-maximum equal to 18.◦5.
We further compressed our estimates into flat band powers with�l =
6 http://bicep.caltech.edu

Figure 7. Azimuthally symmetric weight function wP (n̂) adopted for the
BICEP simulations. We chose to weight in proportion to the integration time
per pixel. For white noise this is equivalent to weighting with the inverse of
the noise variance.

35 thus removing much of the sensitivity to the choice of apodiza-
tion. We verified with Monte Carlo simulations that �l = 35 is suf-
ficient to remove any significant correlations between adjacent band
powers. The mean band powers for CE

l and CB
l (smoothed with the

1◦ beam) from 100 simulations are plotted in Fig. 8, along with ±σ

error boxes estimated from the simulations. From the simulations
we have verified that the method is unbiased (to within the standard
error of the Monte Carlo averages). We also compared the errors es-
timated from the 100 simulations with the rule of thumb in equation
(55). We found that to get good agreement with the Monte Carlo
errors on CE

l it was necessary to refine equation (55) to take account
of the noise inhomogeneity and the compression to band powers
more properly. We used the following approximation to the covari-
ance of the recovered beam-smoothed CE

l s (see Efstathiou 2004 for
a derivation of this formula for the temperature anisotropies):

cov(Ĉ E
l , Ĉ E

l ′ ) ≈ 1

2π(w2 fsky)2

∑
L

[
C E

l C E
l ′

∑
M

|(w2
P )L M |2

+ 2
√

C E
l C E

l ′
∑

M

(w2
Pσ 2

P )L M (w2
P )∗L M

+
∑

M

|(w2
Pσ 2

P )L M |2
](

l l ′ L
0 0 0

)2

. (92)
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Figure 8. The mean in 100 BICEP simulations of the flat band powers for CE
l (left; smoothed with a 1◦ beam) and CB

l (right). Monte Carlo error estimates
from the 100 simulations are shown as boxes, centred on the average band powers from the simulations. The error bars are the theoretical approximation in
equation (92). The solid lines are the input theoretical spectra, smoothed with the beam, for the cosmological model described in Section 1 with reionization
at z = 6. Note they are not convolved with the band-power window function.

Here, σ 2
P (n̂) is the polarization noise variance per solid angle (see

equation 47), wP (n̂) is the polarization weight function, and e.g.
(w2

P σ 2
P )LM are the (spin-0) multipoles of the product w2

P (n̂)σ 2
P (n̂).

Equation (92) makes a number of approximations: (i) it takes no
account of the need to separate E and B, which is reasonable for
E given that it dominates B, but will not be valid if extended to B
when CE

l /CB
l > (l�w)2, where �w is the characteristic width of w P,l ;

(ii) it ignores the spin-2 nature of the polarization, which is accept-
able at high l; and (iii) it only treats the inversion from pseudo-Cls
to Ĉls approximately (i.e. divide by w2 f sky). We defer a full dis-
cussion of analytic approximations to the covariance of polarization
power spectra to a future paper (Challinor & Chon in preparation),
where we show how to generalize equation (92) to take account of
E–B mixing on an apodized sky. Here, we simply note that the above
assumptions should hold well for CE

l in this application to BICEP.
For the level of CB

l in our assumed cosmology (r = 0.31), and given
the smooth apodization of the edges of the survey region by wP (n̂),
the application of equation (92) to B should serve as a useful first
approximation to the errors. Note also that, for uniform noise, we
recover equation (55) if we average into bands that are wide com-
pared to the power spectrum of the square of the weight function,∑

m |(w2
P )lm |2/(2l + 1). The theoretical approximation to the errors

in Fig. 8 are obtained by summing equation (92) over l and l ′ in a
given band. These theoretical predictions agree well with the Monte
Carlo errors for E, and are in broad agreement for B. As expected,
in the latter case the details of the E–B separation process that are
ignored in our rough theoretical predictions are more critical.

Our new estimator removes the cross-contamination between E
and B in the mean, however, the variance of an estimate of CE

l or CB
l

contains a contribution from both E and B modes. To assess more
carefully the level of cross-contamination due to the geometric effect
of E–B mixing, we compute exactly the covariance of our decou-
pled power-spectrum estimates in the absence of noise. Since the
cross-contamination will be more significant for B than E, we con-
centrate on the former. We compute the error covariances first with
E and B power retained, and then with only the B power. The latter
calculation approximates the errors we would obtain if we separated
the E and B modes at the level of the map prior to power-spectrum
estimation. The mechanics of the calculation are as follows. First,
we compute the covariance of the polarization pseudo-Cls using
the techniques described by Hansen & Górski (2003). This is only
tractable because of the azimuthal symmetry of the BICEP scanning

strategy. We then linearly transform the pseudo-Cl covariance to that
of the decoupled estimates using the fact that our power-spectrum
estimation method is linear in the pseudo-Cls, i.e.

cov(Ĉ X
l , ĈY

l ′ ) =
∑

L,L ′,X ′,Y ′
M X X ′

l L cov
(

C̃ X ′
L , C̃Y ′

L ′
)

MY Y ′
l ′ L ′ , (93)

where X , X ′, Y and Y ′ run over E and B, and the coupling matrices
relate the decoupled power-spectrum estimates to the pseudo-Cls:

Ĉ X
l =

∑
l ′ X ′

M X X ′
ll ′ C̃ X ′

l ′ . (94)

The columns of the coupling matrices M X X ′
ll ′ are conveniently ex-

tracted by setting all of the pseudo-Cls to zero except for C̃ X ′
l ′ in

our power-spectrum code, and then reading out the recovered Ĉ X
l .

The matrix is symmetric on the indices X and X ′. Fig. 9 summa-
rizes our results obtained for the B-mode power spectrum. As in
Fig. 8 we compress our results into flat band powers. We see that,
in the noise-free case, the errors we obtain using the BICEP weight
function wP (n̂) are not dominated by the cross-contribution from E-
mode polarization; this accounts for approximately only 20-per cent
of the error budget. Of course, a lower level of B-mode polarization
would increase the relative significance of the cross-contribution.
Ultimately, this cross-contamination may make our method un-
suitable for future, high-sensitivity B-mode experiments surveying
small regions if the tensor amplitude is too low. We leave quan-
tification of this statement to a future paper (Challinor & Chon, in
preparation), where we show how to estimate the cross-contribution
to the variance for non-symmetric weight functions.

Since full covariance information is available from equation (93),
the level of correlation between adjacent band powers can be cal-
culated directly. For the BICEP scan strategy, M XY

ll ′ oscillates with
a full-width at half-maximum of approximately 12. Hence, for the
chosen bin width �l = 35, the correlation between adjacent bins is
negligible.

6 C O N C L U S I O N

We presented a fast and unbiased method to extract CMB polar-
ization power spectra from large maps via the two-point corre-
lation functions. The method, which generalizes that of Szapudi
et al. (2001) to polarization, can be summarized as follows. First,
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Figure 9. The variance of an estimate of CB
l obtained by equation (93)

in the absence of noise with the BICEP sky coverage. The boxes are the
full error, including the cross-contribution from E modes. The bars are the
variance obtained by setting CE

l to zero, and thus are representative of the
errors that would be achieved if B were separated from E at the level of
the map.

we compute unbiased estimates of the three (complex) polariza-
tion auto- and cross-correlation functions at the roots of a Legendre
polynomial from pseudo-Cls of heuristically weighted maps. The
estimates of the correlation functions can be computed in O(N 3/2

pix )
operations using fast spherical transforms. If the correlation func-
tions can be estimated for all angular separations, the power spectra
can be accurately recovered with Gauss–Legendre integration. In
this case, the method is unbiased: the theoretical window function
is a Kronecker delta. Further compression to band powers can then
be made, and the resulting theoretical window functions would be
top-hat functions. If the correlation functions cannot be estimated
for all angular separations, due to limitations of sky coverage, we
showed that significant E–B mixing can occur. In particular, large-
scale E power (due to reionization) can be aliased into B on all
scales. Although E–B mixing does not present a fundamental prob-
lem for parameter extraction, it does complicate the interpretation
(and presentation) of the recovered power spectra. For this reason,
we proposed a new estimator, extending earlier work by Critten-
den et al. (2002), that removes E–B mixing exactly in the mean
when working with incomplete correlation functions. Note that this
is not the case for regularized inversions of the pseudo-Cls in har-
monic space (e.g. by working with pseudo-band-powers as in a
polarized extension of MASTER; Hivon et al. 2002). The new es-
timator requires one further numerical integration of the estimated
correlation function ξ̂+(ψ) to obtain functions that contain only E
or B power in the mean. Using, for example, a cumulative Simpson
rule, these functions can be estimated accurately at the roots of a
Legendre polynomial and inverted to power spectra with Gauss–
Legendre quadrature. The increase in computational effort is mini-
mal, and the theoretical window functions that result do not couple
E and B power in the mean by construction. Fourier ringing in the
estimates can be safely controlled by apodizing the integral trans-
forms (or by compressing into band powers), without introducing
any E–B mixing.

An essential part of our method (and indeed any quadratic
method) is being able to remove the mean noise contribution from
the correlation functions (i.e. to remove the bias due to the noise).
For general noise properties we must resort to Monte Carlo evalu-
ation of the mean over an ensemble of pure noise realizations. The
method presented here is thus dependent on being able to simulate
noise maps efficiently. Error estimation on the recovered Cls must

also generally proceed by Monte Carlo evaluation. The O(N 3/2
pix )

scaling of our method makes this a realistic proposition, even for
mega-pixel maps.

We applied our methods to simulations of a large-area survey,
with parameters similar to Planck, and also to the BICEP experiment
which will cover 3 per cent of the sky. In both cases we obtained er-
rors in line with theoretical expectations. Although our algorithm in
its present form is already practical for analysing mega-pixel CMB
maps, further work is required to assess the optimality of the under-
lying methods. In particular, comparison with current (brute-force)
maximum-likelihood codes should be possible for low-resolution
simulations; comparison at higher resolution must await further al-
gorithmic development of the likelihood codes. Another issue worth
investigating further is the impact of the choice of pixel weighting
on the cosmic variance contribution from, e.g. CE

l to the recovered
CB

l . Although we have separated E and B in the mean, this does not
guarantee that in a single realization there is no recovered B power
due to E modes in the signal. We have shown that this geometric
effect does not dominate the error budget for CB

l for the BICEP
weight function, in the absence of noise, for a tensor-to-scalar ratio
of r = 0.31. However, ultimately this cross-contribution may limit
the applicability of our method if the tensor amplitude is low enough
(Challinor & Chon, in preparation). To eliminate this undesirable
contribution to the variance would require separating E and B at
the level of the map, e.g. Lewis et al. (2002), prior to performing
power-spectrum estimation.
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A P P E N D I X A : A (ψ) F O R U N I F O R M LY
W E I G H T E D , A Z I M U T H A L LY
S Y M M E T R I C PAT C H E S

In the special case that the analysis is performed over an az-
imuthally symmetric part of the sky with uniform pixel weighting
w(n̂) = 1, the correlation function normalization A(ψ) can be eval-
uated analytically. (We can drop the subscripts P , T and X in this
case since there is no distinction between the normalizations.)

We begin by considering a polar-cap region with angular radius
α, and assume that α � π/2. The integral in equation (31) then
evaluates to give

1

A(ψ)
= 4π

[
cos−1

(
2 sin2(ψ/2)

sin2 α
− 1

)

− cos α cos−1

(
2 tan2(ψ/2)

tan2 α
− 1

)]
(A1)

for ψ � 2α, and zero otherwise. Note that 1/A(0) = 4π2 (1 −
cos α) = 8π2 f sky as required by equation (53). Note also that
1/A(ψ) goes continuously to zero as ψ → 2α. We can now con-
struct the other important case of a Galactic cut by symmetry. For a
symmetric cut subtending an angle αc, provided that αc �π/2, there
are pixel pairs at all angular separations and 1/A(ψ) is non-zero for
all ψ ∈ (0, π). If we denote the normalization for a polar-cap region
of angular radius (π − αc)/2 by A∗ (ψ), then we find

1

A(ψ)
=




2

A∗(ψ)
0 � ψ � αc,

2

A∗(ψ)
+ 2

A∗(π − ψ)
αc � ψ � π − αc,

2

A∗(π − ψ)
π − αc � ψ � π.

(A2)
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