
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-30, NO. 4, JULY 1984 587

Fast Evaluation of Logarithms in Fields
of Characteristic Two

DON COPPERSMITH

Abstract-A method for determining logarithms in GF (2”) is presented.
Its asymptotic running time is O(exp (S3 log213 n)) for a small con-
stant c, while, by comparison, Adleman’s scheme runs in time
O(exp(c n ’ I/’ log”’ n)). Tbe ideas give a dramatic improvement even for
moderate-sized fields such as GF (2l*‘), and make (harely) possible compu-
tations in fields of size around 2400. The method is not applicable to
GF (q) for a large prime q.

I. INTRODUCTION

W E ARE interested in computations in a finite field,
specifically F = GF (2”). This field is constructed as

follows. Select a particular irreducible polynomial P(x), of
degree n, over GF(2). An element C of F is a polynomial
C(x) over GF (2), considered mod P(x). There are 2”
elements. Addition and multiplication are defined as addi-
tion and multiplication of polynomials over GF (2),
mod P(x).

It is customary to select P(x) to be primitive. This
means that, as m ranges through the integers 0, 1,. * a, 2” -
2, the field elements A(x) = xm mod P(x) take on the
value of each nonzero field element in F exactly once.
Conversely, to each nonzero field element A(x) in F, we
associate the integer m, and say that m is the logarithm of
A(x). Since x2”-l = lmodP(x), the logarithm is only
defined mod 2” - 1. Thus we consider the logarithm m to
lie in the ring Z/(2n - l), i.e., the integers mod 2” - 1. We
refer to the calculation of m as the discrete logarithm
problem. If the field is small enough, one can tabulate all
the field elements and their logarithms, and use this table
for computation within the field, much as one uses a table
of natural logarithms for calculations involving real num-
bers.

For large fields, such as GF(2127), it is infeasible to
tabulate the logarithms. Further, it is relatively difficult to
extract logarithms in a large field, while it is relatively easy
to exponentiate. This disparity led Diffie and Hellman [7]
to propose a cryptographic scheme based on exponentia-
tion in a finite field. Their proposal involved the finite field
GF (q) for a large prime q, although their scheme has since
been adapted to GF(2”), for ease of implementation. The
point of this paper is that this adaptation was ill-advised;
we show that logarithms are relatively easy to compute in
GF(2”). The techniques of this paper are inapplicable

Manuscript received November 2, 1983; revised December 20,1983.
The author is with IBM Research, P.O. Box 218, Yorktown Heights,

NY 10598.

to GF (q) for large primes q. Thus, as far as we know
today, GF (q) is more secure than GF (2”) i.e., for a given
level of security, GF(2”) requires a far larger word size
than GF (q).

The Diffie-Hellman scheme establishes a random secret
key, for subsequent use as the key to a conventional
cryptographic system, via communication over a public
network. It works as follows: users C and D wish to
establish a secret key. User C selects a random integer c,
computes xc in the field, and sends xc to user D. Meanwhile
user D selects a random integer d, and sends xd to user C.
Now user C can compute (x~)~ = xCd, while user D can
compute (x~)~ = xCd. Both users know the same random
quantity xCd, and can use it as a cryptographic key for
subsequent communication in a conventional crypto-
graphic system. A wiretapper can obtain the key if he can
find logarithms in F. Namely, if he calculates log (xc) = c,
he can easily compute (x~)~ = xCd. Similar schemes exist
for exchange of arbitrary (nonrandom) information.

This cryptographic application has sparked renewed in-
terest in the discrete logarithm problem. An early algo-
rithm published by Pohlig and Hellman [15] and also
attributed to Roland Silver, works in time about fi, where
p is the largest prime dividing q - 1, and where q is the
size of the field. (In the present case, q = 2” is often
chosen such that q - 1 is a prime, so that the running time
is about 2n/2.) In this algorithm, to obtain log A(x) one
would tabulate i and xi(qV1)/p for all i between 1 and
k = [fi], evaluate A(x) (4-l)/PXjk(q-l)/&’ for all j be-

tween 0 and [n/k], and compare to the table to find an
instance of equality: (A(x)xjk-‘)(q-‘)‘p = 1. This yields
the desired result mod p: log A(x) = i - jk mod p. The
Chinese remainder theorem takes care of q - 1 being the
product of distinct prime factors pi, and repeated prime
factors pose no extra difficulty.

Adleman [l] found the first subexponential algorithm for
the problem. Its running time is exp (cdlog q log log q) for
a field of size q, where c is a small constant. As proposed,
his algorithm only deals with the case where q is a prime.
Hellman and Reyneri [8] adapted the algorithm to work in
GF (2n), where the running time becomes exp (c’d-).
This algorithm will be described in Section II. Like the
Morrison-Brillhart algorithm for factoring integers ([12]
and [lo]), its success depends on the probability of a
random integer being “smooth” (expressible as the product
of small primes), or on the probability of a random poly-

0018-9448/84/0700-0587$01.00 01984 IEEE

Authorized licensed use limited to: Ecole Polytechnique. Downloaded on January 29, 2009 at 12:37 from IEEE Xplore. Restrictions apply.

588 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-30, NO. 4, JULY 1984

nomial over GF (2) being expressible as the product of
small irreducible polynomials. Its limitation lies in the fact
that, the larger the degree of a polynomial, the less likely it
is to be smooth.

The present algorithm has an asymptotic running time of
O(exp (cy1 ‘I3 log213 n)). It relies on the fact that squaring is
a linear operation in fields of characteristic two; that is,
(A + B)2 = A2 + B2. With this fact, we are able to pro-
duce polynomials of moderate degree, which we then re-
quire to be smooth. Since our polynomials are smaller than
those involved in Adleman’s algorithm, they have a better
probability of being smooth. This fact allows the decrease
in running time. The idea for our algorithm stems from the
concept of “systematic equations” due to Blake, Fuji-Hara,
Mullin, and Vanstone [4].

Throughout this paper we will use for our example the
field GF (2127). The primitive polynomial involved is P(x)
=x 127 + x + 1. The Diffie-Helhnan key exchange algo-
rithm, as described above, has been implemented in this
field. To build the database necessary to take logarithms in
this field, Adleman’s algorithm seems to take two weeks;
a modification due to Blake, Fuji-Hara, Mullin, and
Vanstone [4] takes about nine hours, and the present
scheme takes eleven minutes. (These estimated timings for
an IBM 3081K assume 250 microseconds for a “smooth-
ness test.“)

The organization of the rest of the paper is as follows. In
Section II, we describe Adleman’s algorithm. In Section
III, we describe the improvement due to Blake et al.
Section IV details Blake, Fuji-Hara, Mullin, and Vanstone’s
concept of “systematic equations.” Section V introduces
the major idea in the present algorithm, and shows its
applicability to fields of moderate size, such as GF(2127).
Sections VI and VII detail two parts of the present algo-
rithm. Section VIII gives the full algorithm, as used in very
large fields, and begins examination of the asymptotic
running time of the algorithm; this examination is con-
tinued in Section IX. Section X gives specific examples,
and Section XI gives some programming considerations
based on our experience with GF (2127).

II. ADLEMAN'SALGORITHM

Adleman’s algorithm [l] for the discrete logarithm is
based on the ideas used by Morrison and Brillhart [12] for
factoring large integers. For integers A and B, the state-
ment A is smooth with respect to B is defined to mean that
all of the prime factors of A are less than B. Adleman’s
algorithm, and the Morrison-Brillhart algorithm, depend
on the fact that smooth integers are relatively common.
Although Adleman’s algorithm was described for GF (q)
for q a prime, it applies equally well for GF(2”), as noted
by Hellman and Reyneri [8]. We describe the algorithm for
this case.

Select a bound b - c,/z, where c is a small con-
stant, perhaps c = 1. Say that A(x) is smooth with respkct
to b when A(x) is the product of irreducible polynomials
of degree at most b. Select a random integer m between 0

and 2” - 2. Set A(x) = x”’ mod P(x). Then A(x) is a
random nonzero polynomial of degree at most n - 1. Test
A(x) for smoothness with respect to b. If it is smooth,
factor A(x) explicitly as A(x) = xm = llj qj(x)‘j
mod P(x), where qj(i) are various irreducible polynomials
of degree at most b. Interpret in logarithms: m =
C.i ej log qj in the ring Z/(2n - 1). If A(x) is not smooth,
discard and try again.

Accumulate many such equations (slightly more equa-
tions than irreducible polynomials of degree at most b).
Indexing the equations by i, we have m, = Cj eijlogqj.
Solve this collection of linear equations, using sparse ma-
trix techniques. This yields log qj for all irreducible poly-
nomials qj of degree at most b.

When given a particular field element B(x) whose loga-
rithm we want, choose a random integer m’, calculate
A(x) = B(x)xm’ modP(x), and keep trying until A(x) is
smooth. Then simply read off the logarithm from the
relation A(x) = B(x)x”’ s FI, qj(x)‘j mod P(x) and the
previously computed logarithms of the qj(x).

One major component of the running time of this algo-
rithm is the search for smooth functions A(x) in the
compilation of the initial data base. We need to gather
about 2b+1/b equations, since there are about that many
irreducible polynomials of degree no more than b. A
random polynomial A(x) of degree it is smooth with
respect to b with probability (n/b)-(l+o(l))n/b, for IZ and b
in the range of interest, n ‘I3 4 b < n2i3 [13]. Thus the
total number of trials necessary is about

(2b+l,b)(n,b)+(l+o(1))n/b

= exp ([clog2 + & + o(l)]l/tY&),

with the particular choice of b = c,/z. (Here “log”
denotes the natural logarithm, to the base e.) One chooses
c (and b) to minimize this work factor at exp((l +
o(l)) 2n (log n)(log 2)). (In fact, one might select b to be
smaller, since otherwise, depending on the sparse matrix
techniques used, one might find the subsequent sparse
matrix calculations to be more costly than this first stage.
This is brought out in [13] and will be mentioned in
Section IX below.)

In the case GF(2127), one might select b = 23. Then
there are 766 150 irreducible polynomials of degree at most
23, and at least that many equations must be developed. A
random polynomial of degree at most 126 will be smooth
with respect to b = 23 with probability 0.000138. Thus, for
each equation, one expects to try 7692 random values of
A(x) before finding an appropriate one. So the precompu-
tation requires about 5 549 000 000 smoothness tests. (This
analysis is from [4].) At 250 microseconds per test, this
would require about 400 hours.

III. THEWATERLOOIMPROVEMENT

The bottleneck in Adleman’s algorithm lies in the proba-
bility of smoothness. He is dealing with random polynomi-
als of degree n, and waiting for them to be smooth. If one

Authorized licensed use limited to: Ecole Polytechnique. Downloaded on January 29, 2009 at 12:37 from IEEE Xplore. Restrictions apply.

COPPERSMITH: FAST EVALUATION OF LOGARITHMS 589

could instead deal with random polynomials of degree less
than n, one would have a better chance of smoothness, and
a correspondingly faster algorithm. This was the objective
of the work of Blake, Fuji-Hara, Mullin, and Vanstone at
University of Waterloo [4], as well as the present work.

Blake, Fuji-Hara, Mullin, and Vanstone adapted
Adleman’s algorithm as follows. Having generated a ran-
dom polynomial A(x) = xm mod P(x) (during the pre-
computation stage) or A(x) = B(x)xm’ mod P(x) (during
the actual usage), they use the extended Euclidean algo-
rithm to develop polynomials C(x) and D(x), each of
degree at most n/2, satisfying

A(x)D(x) = C(x)modP(x).

They then wait for both D(x) and C(x) to be smooth.
When this happens, they have an equation of the form

A(x)D(x) = x”nqj(x)‘J = yq,‘(x)/”
j

= C(x)modP(x),

which they use just as Adleman uses his equations. The
point is that it is more likely that two random polynomials
of degree at most n/2 are both smooth, than that one
random polynomial of degree at most n - 1 is smooth.

The Waterloo group worked on the case of GF(2127).
With a choice of b = 17, there are 16 510 irreducible
polynomials of degree at most b. If one randomly chooses
C(x) and D(x), of degree at most 63, with C(x) and D(x)
relatively prime, the probability of both C(x) and D(x)
being smooth with respect to b = 17 is about l/7277, so
that the precomputation should involve about 120 000 000
smoothness tests. Again assuming 250 microseconds for a
smoothness test, this gives an estimated running time of
nine hours.

Asymptotically, the Waterloo scheme has a running
time of exp ((1 + o(l))J2n(logn)(log2)), the same as
Adleman’s. But the “o(1))’ term is much better than Adle-
man’s, allowing for the marked decrease in running time.
In the present work, we will ask that two polynomials of
degree n 2/3 log113 n both be smooth. As n213 log113 n is
much less than either n or n/2, we will have a much better
probability of smoothness, and thus a much better running
time, than either Adleman or Blake et al.

IV. SYSTEMATIC EQUATIONS

Besides the practical improvements mentioned in the
previous section, Blake, Fuji-Hara, Mullin, and Vanstone
[4] introduced a new theoretical idea, that of “systematic
equations,” which opened up a new line of thought. The
present work is a continuation of this line of thought.

Consider the case GF(2127). Let P(x) = x127 + x + 1,
which is primitive. We have that

x128 = x2 + xmodP(x). (4.1)

Notice two facts about this equation: on the left-hand side,
128 is a power of 2, and on the right-hand side, x2 + x is
of very low degree.

Let A(x) be an irreducible polynomial over GF(2) of
degree k < b. Since 128 is a power of 2, raising to the
128th power is a linear operation in fields of characteristic
two. Thus A(x)‘~* = A(x’~~). By (4.1), A(x12’) = A(x2 +
x) mod P. Finally, A(x2 + x), considered as a polynomial
in x, has degree 2k. It can be shown that either A(x2 + x)
is itself irreducible or it factors into two irreducible poly-
nomials B and C, each of degree k. In the latter case we
would have

Abet = B(x)C(x)mod P(x).

This would give a relation among the logarithms of three
irreducible polynomials, each of degree k < b. (The other
case will also give a useful equation if 2k 4 b.)

Letting A(x) range through all the irreducible polynomi-
als of degree at most b, this procedure gives about half the
equations necessary to construct the database for GF (2127),
at very little cost. The rest of the equations must still be
obtained by the techniques outlined in Section III.
(GF (2127) is an especially favorable case because of the low
degree of the right-hand side of (4.1). In another field, if
the right-hand side has degree d, we will get at most l/d
of the required equations by this technique. Further, a
heuristic argument implies that this degree d will typically
be about log, n.)

The present work will generalize this concept, in effect
finding a richer source of “systematic equations,” so that
all of the necessary equations can be obtained at low cost.

V. THE PRESENT SCHEME: AN EXAMPLE

Here we demonstrate the basic idea behind our algo-
rithm. As before, we consider the example F = GF(2127),
with the primitive polynomial being P(x) = x127 + x + 1.

We consider the first stage of precomputation, that of
building up the linear equations relating logarithms of the
various irreducible polynomials of degree at most b = 17.
Select A(x) and B(x), two polynomials over GF (2) each
of degree at most 10, such that gcd(A(x), B(x)) = 1.
There are two million (221) such choices available. Set
C(x) = x~~A(x) + B(x), and set D(x) = C(X)~
mod P(x). We compute:

D(x) = C(x)4mod P(x)

= (x3*A(x) + B(x))4mod P(x)

= x~~~A(x)~ + B(x)4mod P(x)

= (x2 + x)A(x)~ + B(x)4mod P(x),

since raising to the fourth power is a linear operation in
fields of characteristic two, and since x128 = x2 +
x mod P(x). By our choice of A(x) and B(x), we find that
both C(x) and D(x) have degree at most 42. Test C(x)
and D(x) for smoothness with respect to the bound b = 17.
If both are smooth, then factor each explicitly into a
product of irreducible polynomials of degree at most 17.
Then

D(x) = C(x)4mod P(x)

Authorized licensed use limited to: Ecole Polytechnique. Downloaded on January 29, 2009 at 12:37 from IEEE Xplore. Restrictions apply.

590 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-30, NO. 4, JULY 1984

becomes an equation relating the small irreducible poly-
nomials multiplicatively (mod P(x)), and can be interpret-
ed as a linear relation among the logarithms of these
irreducible polynomials in the field GF (2127).

Repeat this procedure for all choices of A(x) and B(x)
such that gcd (A(x), B(x)) = 1. This involves two million
smoothness tests, or eleven minutes. The procedure yields
about 47 000 equations relating the 16 510 unknown loga-
rithms. Alternatively, selecting b = 12, the procedure yields
1061 equations in the 747 unknown logarithms.

VI. BUILDING THE DATABASE

Using the previous example as a guide, we show how our
algorithm can be applied to larger fields GF (2”).

Choose a primitive polynomial P(x) of degree n, such
that P(x) = x” + Q(x), where the degree of Q(x) is
smaller than n213. (This should be possible; heuristically,
for a given n, we expect the best possible Q(x) to have
degree about log, n.) We remark that if the field is pre-
sented to us with a different defining polynomial Pi(x), we
can just solve the problem in our preferred presentation
(given by P(x)) and transfer the results to the given
presentation (given by Pi(x)) [17].

The first step is to construct a database of many linear
equations relating the logarithms of small irreducible poly-
nomials. Select a bound b 2 c,Tz’/~ log213 n for a small
constant cl. Irreducible polynomials of degree at most b
will be considered “small.” Choose an integer d near b; we
will see later how to select d. Let k be a power of 2 near
@. Let h be the least integer greater than n/k. In our
example, we had b = 17, d = 10, k = 4, and h = 32.

Set R(x) = xhk mod P(x), so that R(x) = Q(x)xhkp”.
Let Y = deg R(x). If P(x) was well chosen, Y may be less
than k. Select a pair of polynomials A(x) and B(x), both
of degree at most d, with gcd (A(x), B(x)) = 1. (The gcd
condition avoids redundant equations: if A(x) = e(x)a(x)
and B(x) = e(x)b(x), then the equation obtained from
the pair (A(x), B(x)) is the same as that obtained from the
pair (a(x), b(x)).) Set C(x) = x*A(x) + B(x), and set
D(x) = C(X)~ mod P(x). We compute:

D(x) = C(x)kmodP(x)

= (xhA(x) + B(x))kmod P(x)

= x~~A(x)~ + B(x)kmod P(x)

= RAN + B(x)kmod P(x).

The degree of C is at most h + d, and the degree of D is
at most Y + kd. Both these bounds are about &?. If C
and D were independent random polynomials of these
degrees, then both would be smooth with probability about

(h ; d)p(h+d)“(r +bkd)-(‘+k’)‘h _ (F)-2m”

= exp (m - -$-- log 5
1

[13]. By choice of b and d, this is exp (-c2n113 log2/3 n)

for some constant c2. (In fact C and D are neither random
nor independent, so this estimate of the probability of
smoothness must be viewed as only heuristic.)

If both C and D are smooth, proceed as in the example.
Express C and D explicitly as the product of small irre-
ducible polynomials, convert the equation D(x) =
C(X)~ mod P(x) to a linear equation relating the loga-
rithms of these irreducible polynomials in the field, and
add this linear equation to our database. Thus

D(x) = nqj(x)?
i

D(x) = C(x)kmod P(x),

c(kej -fj)logqj = 0.

We need to find slightly more equations than there are
irreducible polynomials of degree at most b. Thus we need
about 2b+1/b equations. The number of tests required to
develop each equation is about

exp
i

f q log 5) = O(exp (c2tY3 log2/3 n))

from the above discussion. Thus the total amount of work
necessary to develop enough equations is about

exp
i
blog2 + q log $) = O(exp (c3n113 log213 n))

for a small constant c3.

This forces a relation between d and b: the 22d+’ pairs
(A(x), B(x)) of relatively prime polynomials of degree at
most d must be sufficient to provide for the

Otexp (c3 n ‘I3 log213 n)) tests.
The time required to invert the resulting sparse equa-

tions is of the same general form, roughly exp(c,b). Thus
we have constructed a database consisting of the loga-
rithms of all irreducible polynomials of degree at most b,
using time and storage O(exp (O(n113 log213 n))).

VII. LOGARITHMS OF MEDIUM-SIZED POLYNOMIALS

A second feature of our present algorithm is the ability
to take logarithms of moderate-sized polynomials easily.
That is, if we are given G(x), where degree G(x) is, say,
n213, we can take advantage of its small degree when
taking its logarithm. This is in contrast to both Adleman’s
algorithm and the Waterloo improvement. Both algorithms
begin by multiplying G(x) by xm mod P(x), thus destroy-
ing its small degree, in order to randomize. Their only hope
is that G(x) might itself be smooth, and if it is not,
anything they do to it (multiplying by xm, extended
Euclidean algorithm, etc.) destroys its small degree.

We use the techniques introduced in Sections V and VI.
Suppose our database has been constructed with degree
bound b. Suppose we are given G(x) of degree g -=z n.
Select d near (g + m log, (n/b))/2. Let k be a power

Authorized licensed use limited to: Ecole Polytechnique. Downloaded on January 29, 2009 at 12:37 from IEEE Xplore. Restrictions apply.

COPPERSMITH: FAST EVALUATION OF LOGARITHMS 591

of 2 near \ln/d. Let h be the least integer greater than
n/k. Choose A(x) and B(x) from among polynomials of
degree at most d, subject to the usual restriction that
gcd(A(x), B(x)) = 1, and the new restriction that G(x)
divides C(x) = xhA(x) + B(x). (Given G(x), it is a rela-
tively easy matter to find the linear space of applicable
pairs (A(x), B(x)).) Set D(x) = C(X)~ mod P(x). When
both C(x)/G(x) and D(x) are smooth with respect to the
bound b’ = [&I’], then we have expressed logG(x) in
terms of the logarithms of irreducible polynomials of de-
gree at most b’. Further, there are fewer than 2g < n such
irreducible polynomials.

By the usual arguments, the number of trial pairs
(A(x), B(x)) needed should be on the order of

exp (2(h/b’)log (h/b’)) - exp (ds 1% (Wbd)

- exp(Jn/blodn/b)).

By our choice of d, we should have enough pairs
(A(x), B(x)) available to find one pair that works. If not,
choose a slightly larger value of d.

VIII. THE ALGORITHM AND ASYMPTOTIC RUNNING
TIME

The algorithm is just a combination of the two steps just
outlined. First we build a data base of logarithms of
irreducible polynomials of degree up to bound b =
~rz’/~ log2/3 n. The data base has size 2’+‘/b and takes
time exp (c’n’13 log213 n) to construct.

Given a polynomial G(x) whose logarithm we want, first
we follow the scheme of Blake et al. outlined in Section III.
For a random m, evaluate G(x)xm mod P(x). Use the
extended Euclidean algorithm to set G(x)x”’ =
G1(x)/G2(x) mod P(x), where G, and G2 have degree
about n/2. Wait until both G, and G, are smooth with
respect to the bound b, = fi. Factor G, and G,
into polynomials of degree at most b,. So far we
have spent time about exp (2(n/b,) log (n/b,)) =

exp <m 1% (n/b)), and we have fewer than n poly-
nomials of degree between b and b,, whose logarithms we
must obtain. For each of these polynomials, apply the
technique in Section VII. Each polynomial requires time
exp (m log (n/b)) to be expressed as the product and
quotient of fewer than n irreducible polynomials of degree
at most b, = \lbb,. To each of the resulting polynomials,
apply the technique in Section VII again. After t stages, we
have expressed G(x) in terms of fewer than n’ poly-
nomials, each of degree less than bt = b(n/b)2m’. We have
taken work less than

n’exp(mlog(n/b)) = exp(mlog(n/b) + tlogn)

to do so. When t = log n, all of our polynomials are in the
original database, and we have found the logarithm of the
given G(x).

Thus we require time

exp (m log n/b + log2 n)

= exp ((1 + o(l))Jn/blog(Vb))

to find each new logarithm. Selecting, for example, b =
n1/3 log213 n, this-time is O(exp((+ + 0(1))n’/~ log213 n)).
If b is larger, the larger data base allows us a smaller
per-logarithm time.

IX. DEPENDENCE ON SPARSE MATRIX TECHNIQUES

So far, our analysis of running time has concentrated on
the first phase of precomputation, the acquisition of equa-
tions. But the second phase, the solution of these linear
equations, may turn out to be the dominating factor.

Suppose that a sparse system of N linear equations in N
unknowns can be solved in time 0(N”‘), where by “sparse”
we mean that each equation has about log N nonzero
coefficients per equation. Using straight Gaussian elimina-
tion we would have w = 3; Strassen [16] would give w =
2.807; Coppersmith and Winograd [5] would give ~3 =
2.496; all of these treat the matrix as dense. Taking ad-
vantage of the sparseness one might find o 6 2. It turns
out that this second stage will be a determining factor only
if w > 2.

For a fixed value of w, we relate d (the degree of A(x)
or B(x)) and b (the smoothness bound) by two equations.
Balancing the work of the first stage (22d+1 trials) against
that of the second stage (solution of linear equations) we
have

/ rrhil \ w

whence

2d -- wb.

Requiring that the 22d+1 trials give enough successful pairs

(A(x), B(x)), we get

22d+l - (y)exp(2Flogq),

or

2dlog2 - (blog2) ++qlogn.

Solving, we find

i

2un log2 n
l/3

b-
9(w - 1)210g2 2

and the work is

exp (1 + o(l)) 9~~~~;2nlog2n [(
l/3

) I .
Recall we selected k to be a power of 2 near Jn/d. The

preceding analysis assumed w was close to a power of
2, so that deg C and deg D were both around m. This is
the best case. In the worst case, J2n/d is close to a power
of 2. A similar analysis there yields a work factor of

exp (1 + o(l)) 0410g2 L (
l/3

4(ti - 1)2
nlog2n . 11

Authorized licensed use limited to: Ecole Polytechnique. Downloaded on January 29, 2009 at 12:37 from IEEE Xplore. Restrictions apply.

592 IEEE TRANSACTIONSON INFORMATIONTHEORY,VOL. IT-30,N0. 4,JULy 1984

TABLE I
DEPENDENCEOFTHEWORKFACTOREXPONENTONU

enough equations. We worked backwards then to obtain
deg C, from which we could calculate n.

Matrix Best
Exponent Case Case

w C C Comment

3 1.461 1.520 Gaussian Elimination
2.807 1.431 1.488 Strassen
2.496 1.387 1.443 Coppersmith-Winograd
2 1.351 1.405 Possible Sparse Techniques

<2 1.351 1.405 No Longer a Bottleneck

Summarizing, we find that the overall work is exp ((c +

4W ‘I3 log213 n), where the dependence of c on the ma-
trix exponent o is given in Table I.

As we will see in the next section, GF(2127) requires less
than an hour to construct a data base for b = 12. Allowing
250 microseconds per “operation” (which was what we
observed for the smoothness tests), this table would indi-
cate three hours running time. One difference seems to be
that we used b = 12 while the table indicates using b = 11;
the smoothness probabilities must be fairly unstable in this
region. The table’s choice of b = 11 was influenced by the
assumption of N3/3 operations for the equation solving,
while we had better running time than that.

X. SPECIFIC CASES

These asymptotic running times are encouraging. But we
feel compelled to analyze some specific cases, to see how
the algorithm works in practice.

In the first stage, call an “operation” a smoothness test.
Assume, for concreteness, that in the second stage, the
solution of the N linear equations in N unknowns requires
N3/3 operations (Gaussian elimination, without taking
advantage of sparseness, i.e., the most pessimistic assump-
tion), where now an “operation” is a multiplication of two
elements of the ring Z/(2n - l)(i.e., the multiplication of
two integers mod 2” - 1).

Allowing one millisecond per “operation” for larger
values of n, one can guess that GF (2241) could be done in
a year on an existing mainframe computer. Special-purpose
chips might bring the “operation” time to the microsecond
range, allowing calculations in fields of size 2@“. Better
sparse matrix techniques would further increase the effec-
tive range of this algorithm, as would several chips running
parallel.

XI. PROGRAMMING CONSIDERATIONS (WITH JAMES
DAVENPORT, UNIVERSITY OF BATH, ENGLAND)

We develop the estimates of Table II. The first column
gives n. The second column gives the total number of
“operations” involved in precorzlputation (either smooth-
ness tests or multiplications in Z mod2” - 1). The third
column gives the number of smoothness tests; the fourth,
the number of multiplications. Columns 5 through 7 give
the parameters b, d, and k.

We have completely determined the logarithms of all
polynomials of degree at most 12 in GF (~)[x]/(x’~~ + x
+ l), and looked at the possibility of extending this to
higher degree, in particular 13. We note that, for the sieve
size we chose (d = lo), 12 is the smallest number at which
we can start this process-there are not enough equations
to determine the logarithms of polynomials of degree at
most 11 directly.

To construct Table II we first selected b, and estimated
the work involved in solving an N x N system of equa-
tions, where N - 2’+‘/b. We selected d so that the 22d+’
smoothness tests would cost about as much as the solution
of the linear equations. It turned out that k = 4 was the
optimal setting of k throughout the range. Setting deg D =
kd + k, we found the probability that D was smooth. We
could then hypothesize a probability for C being smooth,
which would make the choice of d just sufficient to get

There are essentially three steps to building a data base
of logarithms for all polynomials of degree at most b:

1) finding a sufficient number of polynomials

2)

3)

A(x), B(x) such that C(x) = AXIS + B(x) and
D(x) = C(~)~mod P(x) = A(x)~(x~ + x) + By
are both smooth with respect to b;
factoring the polynomials C(x) and D(x) thus pro-
duced-each factorization giving a linear equation
among the logarithms of the irreducible factors of
C(x) and D(x);
solving these equations.

TABLE II
NUMLSER OF OPERATIONS REQUIRED BY THE FIRST STAGE

n Total

96 7.49E6
124 3.95E7
156 3.68E8
188 1.83E9
220 9.17E9
268 1.02Ell
304 4.76Ell
344 2.53E12
400 2.67E13
444 1.35E14
488 7.15E14
552 7.04E15
604 3.88E16
676 4.25E17

Stage 1 Stage 2 b d k

3.64E6 3.84E6 10 11 4
1.62E7 2.33E7 11 12 4
2.29E8 1.39E8 12 14 4
9.56E8 8.70E8 13 15 4
3.72E9 5.45E9 14 16 4
6.66ElO 3.51ElO 15 18 4
2.49Ell 2.27Ell 16 19 4
1.03E12 1.50E12 17 20 4
1.67E13 9.97E12 18 22 4
6.78E13 6.72E13 19 23 4
2.59E14 4.56E14 20 24 4
3.91E15 3.13E15 21 26 4
1.73E16 2.16E16 22 27 4
2.75E17 1.50E17 23 29 4

Step 1) was performed with a special machine-code
program. To test whether C(x) is smooth, we evaluate

“<x>n,, b (X2k - x) modC(x). The factor x2k - x con-
tains as factors all irreducible polynomials of degree k, as
well as all irreducible polynomials of degree j where j
divides k. The factor C’(x) (the formal derivative of C(x))
contains all repeated irreducible factors of C(x). Thus the
indicated product will be zero when C(x) is smooth. By
testing the product after each value of k, we can determine
the size of the largest irreducible factor. In 250 microsec-
onds (4000 instructions) per pair (C(x), D(x)), this pro-
gram made six lists of pairs, according to the size of the
largest irreducible factor appearing in either: up to 12,
exactly 13, 14, 15, 16, or 17, and discarding pairs contain-
ing a larger irreducible.

Authorized licensed use limited to: Ecole Polytechnique. Downloaded on January 29, 2009 at 12:37 from IEEE Xplore. Restrictions apply.

COPPERSMITH: FASTEVALUATIONOF LOGARITHMS 593

The product will also be zero when C(x) has a large
repeated irreducible factor. In this rare event, it will falsely
report “smoothness.” In the actual calculations, of two
million trials, the program reported that 1094 pairs
(C(x), D(x)) were smooth with respect to the bound b =
12. Of these, 33 were false reports, the other 1061 giving
useful equations.

Steps 2) and 3) were performed in the NEWSPAD
algebra system [9] since their performance is (relatively)
uncritical to the running of the algorithm, and since they
can be solved by well-known algorithms.

The factorizations over GF(2) were performed by a
three-stage process:

equations resulting from the previous step, hence the rank
of the matrix is at most 747 - 8 = 739. In fact it is exactly
739, and the logarithms of the irreducibles that appear are
discovered. The solution took fractionally under 20 minutes
of CPU. This is the only step that required a significant
amount of storage, using 1 880 768 bytes of working stor-
age at its peak. The solution could probably be found more
readily-since the system is over-determined, one could
use fewer equations than the 1062 found from the previous
step. We estimate that such improved algorithms could
halve the amount of time taken.

We could, of course, find all the logarithms of polynomi-
als of degree at most 13 the same way, but there is an
easier way. The same sieve as described above found a
further 1928 pairs A(x), B(x) such that C(X) and D(X)
were (apparently) smooth with respect to 13, but not 12.
Factoring the resulting C(x) and D(X) showed that 18 of
them were spurious, thus leaving 1910 valid equations for
the logarithms of the 630 irreducible polynomials of degree
13. These equations determine the eight missing polynomi-
als of degree 12, and 1205 of them only involve one
polynomial of degree 13, thus enabling us to find the
logarithms of 550 such polynomials (there are many dupli-
cations, of course) immediately. Simple back-substitution
into the remaining equations enables us to find 77 of the
remaining 80, and the last three never occur in these
equations, and so have to be postponed until the next
stage. The amount of working storage required for this
stage is negligible, consisting of that for the factorization
plus enough to hold the known logarithms, say 38 556
bytes. Furthermore, this step (and subsequent liftings to
14 . ..) are highly parallehzable, since each factorization
could be performed on a separate processor.

Based on these figures, we can extrapolate the total time
required to build a database of logarithms of all irreducible
polynomials of degree at most 17. The results are contained
in Table III. Times in italics are estimates. All times are in
CPU minutes on an IBM 3081 model K, and include
garbage collection and operating system overhead.

4

b)

the problem is reduced to the factorization of
square-free polynomials;
the problem is reduced to the factorization of poly-
nomials all of whose irreducible factors are of the
same degree;

4 such polynomials are factored.

We wrote (fortunately less than an hour’s task) a special
domain in NEWSPAD to handle GF (2), in which 0 and 1
were represented by the LISP objects NIL and non-NIL.
The use of this, rather than a general domain which
represented GF(p) as integers in the range [0, p - 11,
halved the running time of the program. We used our
general representation for sparse polynomials, as a list of
exponent-coefficients pairs for all nonzero terms, even
though there is only one nonzero coefficient, since we did
not wish to embark on the task of writing a new poly-
nomial representation. Clearly such a representation, e.g.,
by bit-vectors, could be written, and it would be much
more efficient.

Step b) was performed by Knuth’s [lo, p. 3891 algorithm
S, which he attributes to being “fairly well-known.” Step c)
is often not needed, but, when it was, we used Berlekamp’s
“small field” algorithm [2]. The reader may wonder why
we use Step b), since, as [3] points out, for small primes, his
method is generally faster, even though the running times
of the two methods have the same asymptotic growth, as
functions of degree of the polynomials being factored. This
is indeed true, but our polynomials are far from being
“general.” Indeed, all the “correct” ones have factors of
degree at most 12. For our application, the method out-
lined is more than twice as fast as a direct application of
Berlekamp’s algorithm, and takes 8 minutes 21 seconds to
factor the 2188 polynomials.

Cantor and Zassenhaus [6] propose another algorithm
for the splitting of factors remaining after Step 2). In the
case of GF (2), their algorithm requires one to work over a
quadratic extension of GF(2). Since such programs were
not available at the time these calculations were performed,
we did not investigate this algorithm further, though it may
in fact be more efficient.

The linear equations were solved by a relatively
straightforward sparse matrix method written specially for
the application (157 lines of code). There are eight irreduc-
ibles of degree at most 12 which do not appear in the

TABLE III
TIME(IN MINUTES)FORTHE FIRST PHASEOF THE

ALGORITHM FOR GF(2127)

Time Operation Factorizations

11 Sieve
8 Factorization-b = 12 2188

20 Solve
18 Factorization-b = 13 3856
40 Factorization-b = 14 8356
80 Factorization-b = 15 15946

130 Factorization-b = 16 26038
190 Factorization-b = 17 38966
497 Total

ACKNOWLEDGMENT

Thanks are due to I. F. Blake, R. Fuji-Hara, R. C.
Mullin, and S. A. Vanstone, who showed me their work
and got me interested in the subject. Stimulating conversa-

Authorized licensed use limited to: Ecole Polytechnique. Downloaded on January 29, 2009 at 12:37 from IEEE Xplore. Restrictions apply.

594 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-30, NO. 4, JULY 1984

tions with Victor Miller, Andrew Odlyzko, and James VI
Davenport are gratefully acknowledged; Odlyzko, in par-
ticular, provided references, analysis, and ideas for future [71
work. The author wishes to thank the Computer Algebra
Group at IBM Research, particularly James Davenport 181

and Patrizia Gianni, for adapting their symbolic algebra
package to factor the resulting polynomials and to do the
sparse matrix calculations involved in trying GF (2127). [91

111

121

[31

[41

[51

WI

REFERENCES WI

L. Adleman, “A subexponential algorithm for the discrete logarithm M
problem with applications to cryptography,” in Proc. IEEE 20th
Annual Symposium on Foundations of Computer Science, 1979, pp. [I31
55-60.
E. R. Berlekamp, “Factoring polynomials over finite fields,” Bell
Syst. Tech. J., vol. 46, pp. 1853-1859, 1967. P41
-, “Factoring polynomials over large finite fields,” Math. Comp.,
vol. 24, pp. 713-735, 1970. 1151
I. F. Blake, R. Fuji-Hara, R. C. Mullin, and S. A. Vanstone,
“Computing logarithms in finite fields of characteristic two,” to
appear in SIAM J. Algebraic and Discrete Methoak WI
D. Coppersmith and S. Winograd, “On the asymptotic complexity
of matrix multiplication,” SIAM J. Comput., vol. 11, no. 3, pp. P71
472-492, Aug. 1982.

D. G. Cantor and H. Zassenhaus, “A new algorithm for factoring
polynomials over finite fields,” Math. Comp., vol. 36, pp. 587-592,
1981.
W. Diffie and M. E. Hellman, “New directions in cryptography,”
IEEE Trans. Inform. Theory, vol. IT-22, pp. 644-654, 1976.
M. E. Hellman and J. M. Reyneri, “Fast computation of discrete
logarithms in GF(q),” Advances in Cryptography: Proceedings of
CRYPT0 ‘82, D. Chaum, R. Rivest, and A. Sherman, Eds. New
York: Plenum, 1983, pp. 3-13.
R. D. Jenks and B. M. Trager, “A language for computational
algebra,” in Proc. SYMSAC ‘81, P. S. Wang, Ed. New York:
ACM, 1981, pp. 6-13.
D. E. Knuth. The Art of Comnuter Prowammiw. Vol. 2. New
York: Addison-Wesley, 1971, pp. 351-35i. “’
-, The Art of Computer Programming, Vol. 3. New York:
Addison-Wesley, 1973, p. 9.
M. Morrison and J. Brillhart, “A method of factoring and the
factorization of 4,” Math. Comp., vol. 29, pp. 183-205, 1975.
A. M. Odlyzko, “Discrete logarithms in finite fields and their
cryptographic significance,” to appear in Proceedings of Eurocrypt
‘84.
W. W. Peterson, Error-Correcting Codes. Cambridge, MA: MIT
1961.
S. C. Pohlig and M. Hellman, “An improved algorithm for comput-
ing logarithms over GF(p) and its cryptographic significance,”
IEEE Trans. Inform. Theory, vol. IT-24, pp. 106-110, 1978.
V. Strassen, “Gaussian elimination is not optimal,” Numer. Math.,
vol. 13, pp. 354-356, 1969.
N. Zierler, “A conversion algorithm for logarithms on GF (2’7),” J.
Pure and Appl. Algebra, vol. 4, pp. 353-356,1974.

Cryptanalytic Attacks on the Multiplicative
Knapsack Cryptosystem and on Shamir’s

Fast Signature Scheme
ANDREW M. ODLYZKO, MEMBER, IEEE

Abstract-The basic Merkfe-Hellman additive trapdoor knapsack pub- I. INTRODUCTION

lit-key cryptosystem was recently shown to be insecure, and attacks have
also been developed on stronger variants of it, such as the Graham-Shamir 0 NE of the best-known public-key cryptosystems, the

system and the iterated knapsack cryptosystem. It is shown that some basic Merkle-Hellman additive trapdoor knapsack
simple variants of another Merkle-Hellman system, the multiplicative system [18], was recently shown by Shamir to be easy to
knapsack cryptosystem, are insecure. It is also shown that the Shamir fast break [25]. Subsequently, Adleman [2] proposed attacks on
signature scheme can be broken quickly. Similar attacks can also be used
to break the Schobi-Massey authentication scheme. These attacks have

the Graham-Shamir scheme and on the multiply iterated

not been rigorously proved to succeed, but heuristic arguments and empiri-
Merkle-Hellman system. Adleman’s attack on the general

cal evidence indicate that they work on systems of practical size. multiply iterated knapsack systems does not seem to suc-
ceed [3], [7], but other attacks on the doubly iterated

Manuscript received April 22, 1983; revised December 11, 1983. This knapsack schemes have been proposed by Adleman and
work was presented at Eurocrypt ‘83, Udine, Italy, March 21-25, 1983, Lagarias (see [7], [14]). Furthermore, Brickell [6] and
and also at the International Symposium on Information Theory, St.
Jovite, PQ, Canada, September 26-30, 1983.

Lagarias and the author [15] have developed attacks on

The author is with AT&T Bell Laboratories, Room 2C-370, Murray low-density knapsack cryptosystems. This paper develops
Hill, NJ 07974. attacks on several other public-key cryptosystems. We show

0018-9448/84/0700-0594$01.00 01984 IEEE

Authorized licensed use limited to: Ecole Polytechnique. Downloaded on January 29, 2009 at 12:37 from IEEE Xplore. Restrictions apply.

