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FAST EVALUATION OF THE GAUNT COEFFICIENTS

YU-LIN XU

Abstract. Addition theorems for vector spherical harmonics require the de-
termination of the Gaunt coefficients that appear in a linearization expansion
of the product of two associated Legendre functions. This paper presents an
algorithm for the efficient calculation of these coefficients through solving the
most appropriate (lower triangular) linear system and derives all relevant re-
currence relations needed in the calculation. This algorithm is also applicable
to the calculation of the Clebsch-Gordan coefficients that are closely related to
the Gaunt coefficients and are frequently encountered in the quantum theory
of angular momentum. The new method described in this paper reduces the
computing time to ∼ 1%, compared to the existing formulation that is widely
used. This new method can be applied to the calculation of both low- and
high-degree coefficients, while the existing formulation works well only for low
degrees.

1. Introduction

Theoretical study of electromagnetic scattering by interacting spheres has been
an active area during the last few decades [2, 3, 4, 5, 6, 10, 11, 12, 13, 15, 16, 17,
18, 19, 20, 21, 23, 26, 27, 28, 29, 31, 33]. The problem requires the use of addition
theorems to relocate the vector spherical wave functions from one coordinate system
centered on a scatterer to other reference systems centered on other scatterers. In
the derivation of such addition theorems [7, 9, 24] there occurs a product of two
associated Legendre functions, which can be expressed in terms of the linearization
expansion

Pmn (cos θ)Pµν (cos θ) =
n+ν∑

p=|n−ν|
a(m,n, µ, ν, p)Pm+µ

p (cos θ),(1)

where a(m,n, µ, ν, p) is the so-called Gaunt coefficient [14]. Gaunt coefficients are
closely related to the Clebsch-Gordan coefficients [1, 22] that are extensively used
in the quantum theory of angular momentum and play an important role in the
decomposition of reducible representations of a rotation group into irreducible rep-
resentations. Clebsch-Gordan coefficients are usually expressed in terms of the
Winger 3jm symbols [8, 30, 34]. Cruzan [7] provided a similar expression for the
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Gaunt coefficient:

a(m,n, µ, ν, p) = (−1)m+µ(2p+ 1)

[
(n+m)! (ν + µ)! (p−m− µ)!

(n−m)! (ν − µ)! (p+m+ µ)!

]1/2

×
(
n ν p
0 0 0

)(
n ν p
m µ −m− µ

)
,

(2)

where the Winger 3jm symbol is defined by [25](
j1 j2 j3
m1 m2 m3

)
= δm1+m2+m3,0(−1)j1−j2−m3

×
[

(j3 + j1 − j2)! (j3 − j1 + j2)! (j1 + j2 − j3)! (j3 −m3)! (j3 +m3)!

(j1 + j2 + j3 + 1)! (j1 −m1)! (j1 +m1)! (j2 −m2)! (j2 +m2)!

]1/2

(3)

×
∑
k

(−1)k+j2+m2(j2 + j3 −m1 − k)! (j1 −m1 + k)!

k! (j3 − j1 + j2 − k)! (j3 −m3 − k)! (k + j1 − j2 +m3)!
.

The summation over k is over all integers for which the factorials are nonnegative.
In quantum mechanics, the product of two Winger 3jm symbols is associated with
the coupling of two angular momentum vectors. Some tables of the values of the
Clebsch-Gordan coefficients exist. These tabulated values are, however, limited
to only low degrees and hardly suffice for any practical use in the study of the
multisphere scattering problems. Even if one were able to tabulate all the necessary
values, any practical computation involving the addition theorems, except for the
lowest degrees, would require a prohibitively large computer memory. Furthermore,
using the 3jm formulation for the calculation of the addition coefficients that occur
in the addition theorems requires a rather cumbersome summation of multitudinous
factorials. One can appreciate the complexity in trying to compute even a single
Gaunt coefficient, not to mention the huge number of these coefficients that are
required in practical problems. Significant efforts have been made towards the
calculation of high-degree coefficients and the reduction of the computing time
and computer memory usage. Bruning [5] and Fuller [11] derived some three-term
recursion relations for the Gaunt coefficients. In his research on the multisphere
scattering problem, Mackowski [21] developed a technique for implementing the
addition theorems that completely avoids the evaluation of the Gaunt coefficients.

In this paper, we present an efficient approach to computing the Gaunt coeffi-
cients through solving a lower triangular linear system. We also derive the relevant
recurrence formulae from which all elements of the coefficient matrix and the con-
stant vector in the linear system can be easily obtained.

2. Expansion of the associated Legendre function of the first kind

We recall that the associated Legendre function of the first kind is defined by

Pmn (x) =
1

2nn!
(1− x2)

m
2
dn+m

dxn+m
[(x2 − 1)n].(4)

The right-hand side of Eq. (4) is well defined for all integers m satisfying −n ≤
m ≤ n. When |m| > n, necessarily Pmn (x) = 0. An alternative definition of the
associated Legendre function differs from the definition (4) by a factor of (−1)m.
Any one of the two definitions serves equally well for the purpose of this paper.
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Considering the binomial series

(x2 − 1)n =
n∑
k=0

(−1)k
(
n

k

)
x2n−2k(5)

and noting that

dn+m

dxn+m
(x2n−2k) =

{
(2n−2k)!

(n−m−2k)!x
n−m−2k, 2k ≤ n−m,

0, 2k > n−m,
(6)

we infer

dn+m

dxn+m
[(x2 − 1)n] =

n∑
k=0

(−1)k
(
n

k

)
(2n− 2k)!

(n−m− 2k)!
xn−m−2k,(7)

from which it follows that

Pmn (x) =
2−n(n+ 1)n

(n−m)!
(1− x2)

m
2 xn−mFmn,(8)

where

Fmn = F

(
m− n

2
,
m− n+ 1

2
;

1− 2n

2
;

1

x2

)
(9)

is a truncated hypergeometric function and takes only the leading n−m
2 + 1 terms.

3. The Gaunt coefficient

The Gaunt coefficient a(m,n, µ, ν, p) is defined by

a(m,n, µ, ν, p) =
(2p+ 1)

2

(p−m− µ)!

(p+m+ µ)!

∫ 1

−1

Pmn (x)Pµν (x)Pm+µ
p (x) dx.(10)

Such integrals were first given by Gaunt in 1929 in his study of the triplets of
helium. But the formulas that he gave for their evaluation are of little use in the
extended cases such as in the multisphere scattering problems when many such
integrals need to be evaluated simultaneously.

An alternative definition, equivalent to Eq. (10), has been given above in Eq.
(1). It is obvious that p on the right-hand side of Eq. (1) should be increased in
steps of 2 because the power of x in the expansion (8) has an increment of −2.
Thus, the Gaunt coefficients must vanish whenever p = n + ν − 1, n + ν − 3, . . . ,
etc. For convenience in practical applications, we reformulate the definition (1) and
thus write

Pmn (x)Pµν (x) =

qmax∑
q=0

aqP
m+µ
n+ν−2q(x),(11)

where aq is an abbreviated notation for the Gaunt coefficient a(m,n, µ, ν, n+ν−2q),
and qmax is given by

qmax = min

(
n, ν,

n+ ν − |m+ µ|
2

)
.(12)

While q takes the values of successive natural numbers, i.e., q = 0, 1, 2, . . . , qmax,
the values of (n+ ν − 2q) change now in steps of −2.
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4. An expression of the Gaunt coefficients

for practical calculation

By applying Eq. (8) to Pµν (x) and Pm+µ
n+ν−2q(x), we have

Pµν (x) =
2−ν(ν + 1)ν

(ν − µ)!
(1− x2)

µ
2 xν−µFµν(13)

and

Pm+µ
n+ν−2q(x) =

22q−n−ν(n+ ν − 2q + 1)n+ν−2q

(n4 − 2q)!
(1− x2)

m+µ
2 xn4−2qF q,(14)

where n4 = n + ν −m − µ, Fµν and F q are also truncated hypergeometric series
given by

Fµν = F

(
µ− ν

2
,
µ− ν + 1

2
;

1− 2ν

2
;

1

x2

)
(15)

and

F q = F

(
−n4 + 2q

2
,
−n4 + 2q + 1

2
;

4q + 1− 2n− 2ν

2
;

1

x2

)
.(16)

The number of terms in Fµν and F q is ν−µ
2 + 1 and n4−2q

2 + 1, respectively. With
the use of Eqs. (8), (13) and (14), Eq. (11) gives rise to

(n+ 1)n(ν + 1)ν
(n−m)! (ν − µ)!

FmnFµν =

qmax∑
q=0

aq
4q(n+ ν − 2q + 1)n+ν−2q

(n4 − 2q)!
x−2qF q.(17)

Matching the coefficients of like terms on both sides of Eq. (17), we obtain a general
expression containing the Gaunt coefficients (a0, a1, . . . , aq):

(n+ 1)n(ν + 1)ν
(n−m)! (ν − µ)!

q∑
k=0

cmnk+1c
µν
q−k+1 =

q∑
k=0

ak
4k(n+ ν − 2k + 1)n+ν−2k

(n4 − 2k)!
ckq−k+1,(18)

where cmnk+1 stands for the coefficient of the power x−2k in the (k+ 1)st term of the

hypergeometric series Fmn, and similarly for cµνq−k+1 and ckq−k+1. Explicitly, these
three coefficients are given by

cmnk+1 = 4−k
(m− n)2k

k! (−n+ 1/2)k
, 1 ≤ k ≤ n−m

2
,(19)

cµνq−k+1 = 4k−q
(µ− ν)2q−2k

(q − k)! (−ν + 1/2)q−k
, 1 ≤ q − k ≤ ν − µ

2
,(20)

ckq−k+1 = 4k−q
(2k − n4)2q−2k

(q − k)! (−n− ν + 2k + 1/2)q−k
, 1 ≤ k ≤ q − 1,(21)

respectively, and by definition (9)

cmn1 = cµν1 = ck1 ≡ 1.(22)
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5. New approach to evaluating the Gaunt coefficients

From Eqs. (18) and (22) we find immediately

a0 =
(n+ 1)n(ν + 1)ν
(n+ ν + 1)n+ν

(n+ ν −m− µ)!

(n−m)! (ν − µ)!
.(23)

We now define “normalized” Gaunt coefficients by

ãk =
ak
a0
.(24)

In terms of these, Eq. (18) becomes

q∑
k=0

cmnk+1c
µν
q−k+1 =

q∑
k=0

ãk
4k(n+ ν − 2k + 1)n+ν−2k(n4)!

(n+ ν + 1)n+ν(n4 − 2k)!
ckq−k+1.(25)

Using the notations

Aqk =
4k(n+ ν − 2k + 1)n+ν−2k(n4)!

(n+ ν + 1)n+ν(n4 − 2k)!
ckq−k+1(26)

and

Bq =

q∑
k=0

bqk,(27)

where

bqk = cmnk+1c
µν
q−k+1,(28)

we can rewrite Eq. (25) in the form

q∑
k=0

Aqkãk = Bq, 0 ≤ q ≤ qmax,(29)

which is equivalent to a linear system containing all qmax + 1 nonzero Gaunt coeffi-
cients for an integer group (m,n, µ, ν). This linear system can be written in matrix
form as

Aã = B,(30)

where A = (Aij) is lower triangular, ã = (ãi) and B = (Bj); the order of the
system is q + 1.

As seen above, there are qmax+1 Gaunt coefficients for given integers (m,n, µ, ν),
where qmax is given by Eq. (12). To calculate the normalized Gaunt coefficients, one
must first set up the matrix A and the vector B. Some useful recurrence formulas
can be derived for the determination of the elements of A and B. Eqs. (21), (22)
and (26) show that

Ai0 = c0i+1,(31)

where

c0i+1 =
4−i(−n4)2i

i! (−n− ν + 1/2)i
.(32)

This leads to a recurrence relation

Ai0 = Ai−1,0
−(n4 − 2i+ 2)(n4 − 2i+ 1)

2i(2n+ 2ν − 2i+ 1)
.(33)
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Also, from the definition (26), together with Eq. (21), we have

Aij =
4j(n+ ν − 2j + 1)n+ν−2j(n4)!

(n+ ν + 1)n+ν(n4 − 2j)!
cji−j+1,(34)

and

cj+1
i−(j+1)+1 = cji−j+1

−2(i− j)(2n+ 2ν − 4j − 1)(2n+ 2ν − 4j − 3)

(n4 − 2j)(n4 − 2j − 1)(2n+ 2ν − 2i− 2j − 1)
,(35)

whence

Aij = Aij−1
2(j − i− 1)

(2n+ 2ν − 2i− 2j + 1)
, j ≥ 1.(36)

Similarly, from the expression

bij = cmnj+1c
µν
i−j+1 =

4−i(m− n)2j(µ− ν)2i−2j

j! (i− j)! (−n+ 1/2)j(−ν + 1/2)i−j
(37)

we easily find that

bij = bi−1j
−(ν − µ− 2i+ 2j + 2)(ν − µ− 2i+ 2j + 1)

2(i− j)(2ν − 2i+ 2j + 1)
, j < i,(38)

and

bii = bi−1i−1
−(n−m− 2i+ 2)(n−m− 2i+ 1)

2i(2n− 2i+ 1)
.(39)

These four recurrence relations (33), (36), (38) and (39) are very useful for the
efficient calculation of the Gaunt coefficients. With all bqk (k = 0, 1, 2, . . . , q) for a
given q known, Bq, the (q+ 1)st element of the column vector B, can be calculated
by employing Eq. (27) but can be written as

Bq =
kmax∑
k=kmin

bqk,(40)

where

kmin = max

(
0, q − ν − µ

2

)
, kmax = min

(
q,
n−m

2

)
,(41)

by noticing that when q > ν−µ
2 and q − k > ν−µ

2 , or k > n−m
2 (for any q),

bqk ≡ 0.(42)

6. Summary of the new algorithm

All qmax + 1 nonzero Gaunt coefficients (a0, a1, a2, . . . , aqmax) for a given integer
group (m,n, µ, ν) can be evaluated one by one as follows.

(i) The first coefficient a0 is obtained directly from Eq. (23).
(ii) The normalized Gaunt coefficients [see Eq. (24)] are therefore

ãq =
aq
a0

=
a(m,n, µ, ν, n+ ν − 2q)

a(m,n, µ, ν, n+ ν)
.

Obviously, ã0 ≡ 1.
(iii) Starting from

A00 = b00 = B0 = ã0 = 1,
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we obtain the normalized Gaunt coefficients (ã1, ã2, . . . , ãqmax) by successively solv-
ing the linear equations

ãq =
1

Aqq

(
Bq −

q−1∑
k=0

Aqkãk

)
, q = 1, 2, . . . , qmax.(43)

All coefficients Aqk (k = 0, 1, . . . , q) in the linear equation for ãq can be calculated
from the known value of Aq−1,0 using the two-term recurrence relations (33) and
(36). The constant term Bq is computed from Eq. (40) with kmin and kmax deter-
mined by Eqs. (41), and all bqk (k = kmin, . . . , kmax) can be computed from the
known values of bq−1,k by using the two-term recurrence relation (38) [or (39) with
k = q]. For example, with the initial values ã0 = 1 and A00 = b00 = B0 = 1, ã1 is
given by

ã1 =
B1 −A10

A11
,

where

A10 =
−n4(n4 − 1)

2(2n+ 2ν − 1)
, A11 = A10

−2

(2n+ 2ν − 3)
,

and B1 = b10 + b11 (taking the general case of kmin = 0 and kmax = 1) with

b10 =
−(ν − µ)(ν − µ− 1)

2(2ν − 1)
, b11 =

−(n−m)(n−m− 1)

2(2n− 1)
.

With ã0 and ã1 known, ã2 can be calculated by

ã2 =
B2 −A20 −A21ã1

A22
,

where A20, A21 and A22 can be calculated from A10 by the use of Eqs. (33) and
(36), and B2 can be computed from b10 and b11 by the use of Eqs. (38), (39), (40),
(41). Generally, with (ã0, ã1, . . . , ãq−1) known, ãq can be easily found by

ãq =
(n+ ν − 2q + 1/2)2q

(−n4)2q

q∑
k=0

(m− n)2k(µ− ν)2q−2k

k! (q − k)! (−n+ 1/2)k(−ν + 1/2)q−k

−
q−1∑
j=0

(−n− ν + q + j + 1/2)q−j
(q − j)! ãj .

(44)

(iv) Then, the Gaunt coefficients are restored by aq = a0ãq. In fact, only normal-
ized Gaunt coefficients are involved in practical multisphere scattering calculations.

7. Timing tests

Extensive timing and numerical tests have been carried out on an IBM RS6000-
340 Workstation. Table I gives some comparison for the computational times (in
seconds) required by our algorithm and Cruzan’s 3jm formulation represented by
Eqs. (2) and (3). In Table I, the first column is the highest degree nmax (νmax)
reached in the computation; the second column is the total number of nonzero
Gaunt coefficients computed, which is the number of all possible nonzero Gaunt
coefficients for all possible combinations of (m,n, µ, ν) from the lowest degree n =
ν = 0 to the highest degree nmax = νmax; the next two columns list the CPU
time spent by the corresponding algorithm. Table I indicates that the required
computing time for our algorithm is only ∼ 1% of that for Cruzan’s algorithm.
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Table I. Timing tests for the calculation of the Gaunt coefficients

nmax(= νmax) Ng
1 CPU (in seconds) on IBM RS6000-340 Workstation

Xu2 Cruzan3

10 69082 1 86
15 440810 8 725
20 1697663 34 3479
25 4903641 97 12631
30 11757744 239 33667

1 total number of nonzero Gaunt coefficients calculated.
2 The calculation used Xu’s algorithm, i.e., the new algorithm presented in this paper.
3 The calculation used Cruzan’s 3jm formulation, i.e., Eqs. (2) and (3).

8. Numerical tests

(i) We performed the first test by comparing the numerical values of the Gaunt
coefficients determined by our algorithm with those converted from the Clebsch-
Gordan coefficients tabulated by Varshalovich et al. [32]. Varshalovich et al. defined
the coefficients by

Cj3m3

j1m1j2m2
= (−1)j1−j2+m3

√
2j3 + 1

(
j1 j2 j3
m1 m2 −m3

)
.(45)

Thus, the Gaunt coefficient can also be computed by

a(m,n, µ, ν, p) =

[
(n+m)! (ν + µ)! (p−m− µ)!

(n−m)! (ν − µ)! (p+m+ µ)!

]1/2

Cp0n0ν0C
pm+µ
nmνµ .(46)

All numerical values of the Gaunt coefficients obtained by these two methods are
identical, note, however, that the tabulated Clebsch-Gordan coefficients are avail-
able for low degrees only.

(ii) The second test consisted of a direct comparison of both sides of Eq. (11). For
any integer combination (m,n, µ, ν) in a range of degrees from n = ν to nmax =
νmax = 20, we first computed the qmax + 1 nonzero Gaunt coefficients by our
algorithm, the associated Legendre functions Pmn (x), Pµν (x) and Pm+µ

n+ν−2q(x) for all
q, and then performed the summation check to examine if Eq. (11) holds. For all
cases we calculated, the results of this test were satisfactory within the precision
allowed by the computer.

(iii) The numerical values of the Gaunt coefficients calculated by our algorithm
were also systematically compared with those calculated by the 3jm formulation.
This was simultaneously carried out with the timing tests described in §7. This
comparison shows that (a) for low degrees from n = ν = 0 to n = ν = 5, all the
corresponding numerical values obtained by both methods agree with each other,
(b) for intermediate degrees, such as n = ν = 6 to n = ν = 7, both methods
are still in fairly good agreement, and (c) discrepancies on numerical values of
some higher-degree Gaunt coefficients are significant; the higher the degree, the
more severe the discrepancies. To investigate the accuracy of the calculation of
high-degree coefficients, we first tested the numerical values obtained from the 3jm
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formulation by the summation check using Eq. (11), similar to what we had done
for our algorithm in the second test. Usually, these values do not satisfactorily
fulfil Eq. (11), which indicates that the performance of the 3jm formulation is
questionable in the case of high degrees. As a second check, we compared the
numerical values of a0, i.e., a(m,n, µ, ν, n+ ν), obtained from the 3jm formulation
with those accurate values evaluated directly from Eq. (23). Table II gives some
examples for these particular Gaunt coefficients. This check reveals that the high-
degree Gaunt coefficients computed by the 3jm formulation are inaccurate. The
reliability of the 3jm formulation is gradually destroyed as the degree increases.
The error comes from the summation over k [see Eq. (3)]. Table III lists the values
of all nonzero Gaunt coefficients calculated by both our algorithm and the 3jm
formulation for an integer group of (m,n, µ, ν) = (2, 12, 3, 15). In general, when p
is small, the numerical results from both methods still agree, even for high degrees.
Similar to the case of increasing degree, the 3jm formulation gradually loses its
accuracy with increasing p. The reason for this is that the summation (over k)
required by the 3jm formulation involves delicate cancellations between successive
terms that alternate in sign. For high degrees or large values of p, the individual
terms in the summation become much larger than their sum, and all accuracy is
lost.

Table II. Examples for the numerical values of a(m,n, µ, ν, n+ν)
obtained by Eq. (23) and by the 3jm formulation†

m n µ ν
a(m,n, µ, ν, n+ ν)

Eq. (23) 3jm

1 1 −1 1 0.3333333333E+00 0.3333333333E+00
1 2 −1 2 0.3428571429E+00 0.3428571429E+00
1 3 −1 3 0.3246753247E+00 0.3246753247E+00
1 4 −1 4 0.3045843046E+00 0.3045843046E+00
1 5 −1 5 0.2864318344E+00 0.2864318342E+00
1 6 −1 6 0.2706234404E+00 0.2706234323E+00
1 7 −1 7 0.2569085117E+00 0.2569084928E+00
1 8 −1 8 0.2449469363E+00 0.2449475523E+00
1 9 −1 9 0.2344333048E+00 0.2344397483E+00
1 10 −1 10 0.2251171504E+00 0.2253184617E+00
1 11 −1 11 0.2167981587E+00 0.2212355063E+00
1 12 −1 12 0.2093167245E+00 0.2205655817E+00
1 13 −1 13 0.2025451116E+00 −.2678705856E+01
1 14 −1 14 0.1963803001E+00 0.5715411956E+03
1 15 −1 15 0.1907384645E+00 0.3061141117E+06
1 16 −1 16 0.1855507769E+00 0.4108039018E+08
1 17 −1 17 0.1807602223E+00 0.1343926421E+11
1 18 −1 18 0.1763191724E+00 0.1153973986E+14
1 19 −1 19 0.1721875249E+00 −.5749672500E+15
1 20 −1 20 0.1683312636E+00 −.6680238706E+18
† In this table, the highlights (bold style) indicate the discrepancies on
the numerical values obtained from Eq. (23) and the 3jm formulation.
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Table III. The numerical values of the Gaunt coefficients
a(2, 12, 3, 15, p) obtained by Xu’s algorithm and by Cruzan’s 3jm
formulation∗†

q∗∗ p k0
min k0

max N0
k kmin kmax Nk

a(2, 12, 3, 15, p) = a(2, 12, 3, 15, 27− 2q)
Xu Cruzan

0 27 3 27 25 8 30 23 0.80142−6613E−02 −:1792613138E+00
1 25 3 25 23 8 28 21 0.5912933102E−02 0.5988949904E−02
2 23 3 23 21 8 26 19 0.6792070512E−02 0.6782201553E−02
3 21 3 21 19 8 24 17 0.9061425784E−02 0.9061981214E−02
4 19 3 19 17 8 22 15 0.1338922267E−01 0.1338916655E−01
5 17 3 17 15 8 20 13 0.2171985247E−01 0.2171985470E−01
6 15 3 15 13 8 18 11 0.3890892009E−01 0.3890891997E−01
7 13 3 13 11 8 16 9 0.7818971201E−01 0.7818971202E−01
8 11 3 11 9 8 14 7 0.1807173136E+00 0.1807173135E+00
9 9 3 9 7 8 12 5 0.4952008739E+00 0.4952008738E+00

10 7 3 7 5 8 10 3 0.1556202544E+01 0.1556202544E+01
11 5 3 5 3 8 8 1 −.9985632990E+01 −.9985632990E+01

∗ In the calculation using Cruzan’s 3jm formulation (Eqs. (2) and (3)), the evaluation
of the first 3jm coefficient, ( n ν p0 0 0 ), takes a summation over k from k0

min to k0
max for a

total of N0
k terms, and the evaluation of the second 3jm coefficient,

( n ν p
m µ −m−µ

)
, takes a

summation over k from kmin to kmax for a total of Nk terms.
† In this table, the highlights (bold style) indicate the discrepancies on the numerical
values obtained by Xu’s algorithm and Cruzan’s 3jm formulation.
∗∗ qmax = 11 when (m,n, µ, ν) = (2, 12, 3, 15).

9. Conclusions and remarks

We have shown that the algorithm presented in this paper greatly reduces the
computing time for the evaluation of the Gaunt coefficients. Furthermore, this
algorithm can be applied to both low and high degrees, so that it is applicable to
the solution of the multisphere scattering problems where both low- and high-degree
coefficients are required. The formulation summarized in §6 has been implemented
in a computer code and successfully used in the practical multisphere scattering
calculations.

It is worth noting here that the term “Gaunt coefficient” is not used consistently
in the literature, and that the closely related Clebsch-Gordan coefficient appears
much more frequently. Because of the various definitions adopted by different au-
thors, a systematic comparison of the Gaunt coefficients with the Clebsch-Gordan
coefficients is cumbersome. Nevertheless, the integral of the triple associated Le-
gendre functions on the right side of the definition (10) is common to all such
coefficients. Thus, simple relations for converting one to the other can be found. In
the preceding section, an example of such a conversion has been shown. As men-
tioned above, the Clebsch-Gordan coefficients are usually expressed in terms of the
Winger 3jm symbols and are often tabulated for some low degrees in practical ap-
plications. The algorithm described in this paper can be analogously applied to the
calculation of the Clebsch-Gordan coefficients and will provide substantial savings
on the computing time. Because the algorithm is highly efficient, the coefficients
needed in the practical applications can be directly computed. Replacing the large
table by direct calculation will significantly reduce computer memory usage.
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