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[1] We propose an efficient integration path for the fast
evaluation of the three-dimensional spatial-domain Green’s
function for electromagnetic wave propagation in layered
media for the particular case of zero-offset, source-receiver
proximal ground-penetrating radar (GPR) applications.
The integration path is deformed in the complex plane of
the integration variable kr so that the oscillations of the
dominant exponential term in the spectral Green’s function
are minimized. The contour does not need to be closed
back on the real kr axis as the complex integrand rapidly
damps. The accuracy and efficiency of the technique have
been confirmed by comparison with traditional elliptic
integration contours. The proposed algorithm appears to
be promising development for fast, full-wave modeling
and inversion of GPR data. Citation: Lambot, S., E. Slob, and

H. Vereecken (2007), Fast evaluation of zero-offset Green’s function

for layered media with application to ground-penetrating radar,

Geophys. Res. Lett., 34, L21405, doi:10.1029/2007GL031459.

1. Introduction

[2] Modeling electromagnetic wave propagation in three-
dimensional (3-D) layered media is essential in many
application areas such as geophysical prospecting, remote
sensing, monolithic integrated circuits, or microstrip anten-
nas. In particular, it is increasingly used for modeling
ground-penetrating radar (GPR) wave propagation in the
subsurface [Spagnolini, 1997; Gentili and Spagnolini, 2000;
Lambot et al., 2004]. The work on layered media must be
ascribed to Sommerfeld who, as early as 1909, analyzed
radiowave propagation above lossy ground [Sommerfeld,
1909]. Solving Maxwell’s equations for layered media is
now well known [Chew, 1990; Michalski and Mosig, 1997]
and entails the concept of Green’s function, defined as the
fields created by a unit point source embedded in the
layered medium. Given the invariance of the electromag-
netic properties along the two horizontal coordinate direc-
tions, closed form expressions for the Green’s functions can
be found in the spectral domain. The corresponding spatial
domain Green’s functions are subsequently obtained
through Sommerfeld-type integrals over an unbounded
interval. These integrals usually constitute a critical point,
as the integrand is characterized by the presence of singu-
larities, i.e., surface wave poles and branch points, and has a

highly oscillating behavior resulting in slow integration
convergence [Aksun and Dural, 2005].
[3] Extensive research has been devoted to the evaluation

of these integrals through methods such as singularity
extraction techniques [Simsek et al., 2006; Polimeridis et
al., 2007], the fast Hankel transform [Hanson, 2004; Boix et
al., 2007], the steepest descent path [Cui and Chew, 1999;
Tsang et al., 2006], the discrete complex image method
[Chow et al., 1991; Aksun and Mittra, 1992; Yuan et al.,
2006; Zhuang et al., 2007], and acceleration techniques for
unbounded integration of oscillating functions [Michalski,
1998]. In particular, the poles and branch points can be
avoided by deforming the integration path in the complex kr
plane using, for example, rectangular or elliptic contours,
and by applying Cauchy’s integral theorem [GayBalmaz
and Mosig, 1997; Paulus et al., 2000; He et al., 2005;
Simsek et al., 2006]. However, while all these techniques
have proven to be accurate and efficient, they are usually
valid only for particular layered configurations or source-
receiver relative positions. The definition of the integration
contours often remains partly subjective. For instance,
Paulus et al. [2000] and Simsek et al. [2006] considered
an empirical ratio of 10�3 between the semi-minor and
semi-major axes of an elliptic integration path, leaving the
contour in relatively close vicinity to the real axis in order to
avoid significant increase in the Bessels functions.
[4] In relation to the off-ground monostatic GPR model-

ing approach proposed by Lambot et al. [2004], we analyze
the spectral Green’s function behavior for the particular case
of zero-offset source-receiver configuration for wave prop-
agation in general layered media. An optimal integration
path is proposed in order to evaluate the spatial domain
Green’s function accurately and efficiently. Such a proce-
dure is particularly advantageous when performing full-
wave inverse modeling of radar data, which requires a large
number of forward runs, or when dealing with continuously
varying electromagnetic media, for which the computation
of the Green’s function is relatively time-consuming. In-
deed, such media are usually emulated using a large number
of layers that are thin enough to be a minor fraction of the
minimal wavelength [Lambot et al., 2006].

2. Zero-Offset Green’s Function

[5] A general formulation of spatial-domain Green’s
function G(r) in terms of Sommerfeld integral Sn for wave
propagation in layered media can be expressed as:

G rð Þ ¼ Sn ~G
� �

¼
Z þ1

0

Jn krr
� �

~G kr
� �

knþ1
r dkr ð1Þ
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where Jn is the Bessel function of order n, ~G(kr) is a generic
spectral Green’s function, r is the distance between the
source and the receiver, and kr is its spectral domain
counterpart.
[6] In the model configuration considered here, depicted

in Figure 1, the source and the receiver are both situated at
the same point in free-space at some distance above the
layered medium interfaces. This describes the radar antenna
configuration above the soil surface. The Green’s function is
defined as the x-directed component of the reflected electric
field for a unit-strength x-directed electric current source
[Lambot et al., 2004]. The incident field is, therefore,
subtracted from the total field to avoid the singularity at
the source where the total field tends to infinity. As the
distance r between the source and the receiver is zero, the
Bessel’s functions vanish in the Sommerfeld integral, result-
ing in an ordinary infinite integral. The spatial Green’s
function at the source point reduces to:

G ¼
Z þ1

0

~G kr
� �

kr|fflfflfflffl{zfflfflfflffl}
I

dkr ð2Þ

where the spectral Green’s function is found to be:

~G kr
� �

¼ 1

8p
G1R

TM
1

s1 þ |!"1
� |!�1R

TE
1

�1

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

I2

exp �2�1h1ð Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
I1

ð3Þ

In this expression, the subscripts denote layer indexes,
RTM and RTE are, respectively, the transverse magnetic (TM)
and transverse electric (TE) global reflection coefficients
accounting for all reflections and multiples from inferior
interfaces, G is the vertical wavenumber defined as

G =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2r � k2

q
, whilst k2 = w2m(e � |s

w ) with w being the

angular frequency. For the free-space layer 1, we have k1
2 =

(w
c
)2 with c being the free-space wave velocity.
[7] The global TM-mode and TE-mode reflection coef-

ficients at interface n are given by [Slob and Fokkema,
2002]:

RTM
n ¼

rTMn þ RTM
nþ1 expð�2�nþ1hnþ1Þ

1þ rTMn RTM
nþ1 expð�2�nþ1hnþ1Þ

ð4Þ

rTMn ¼ ð�nþ1 þ |!"nþ1Þ�n � ð�n þ |!"nÞ�nþ1

ð�nþ1 þ |!"nþ1Þ�n þ ð�n þ |!"nÞ�nþ1

ð5Þ

RTE
n ¼

rTEn þ RTE
nþ1 exp �2Gnþ1hnþ1ð Þ

1þ rTEn RTE
nþ1 exp �2Gnþ1hnþ1ð Þ ð6Þ

rTEn ¼ mnþ1Gn � mnGnþ1

mnþ1Gn þ mnGnþ1

ð7Þ

where rn
TM and rn

TE denote the Fresnel TM and TE mode
reflection coefficients at interface n (n = 1 � � �N� 1).R1

TM and
R1
TE in equation (3) can be computed recursively from n =N�

1 � � � 1, considering that there are no upgoing waves from the
lower half-space, i.e., RN�1

TM = rN�1
TM and RN�1

TE = rN�1
TE .

[8] The spectral Green’s function (3) contains various
singularities originating from poles and branch points. The
poles are due to vanishing denominators and correspond,
physically, to modes guided by the layered medium (surface
wave poles). Branch points originate from the G dependence
and since G is the square root of a complex number, it is
doubled valued and has branch cuts defined by Im(G) = 0
that intersect the plane of integration. Each branch cut ends
in a branch point at kr = ±k. If the medium is lossless, these
singularities are located on the real kr axis. For lossy media,
they are situated in the negative imaginary kr plane, as the
integration runs from zero to infinity. A branch cut exists for
each layer n [Chew, 1995].
[9] In Figure 2, we illustrate the behavior of the integrand

I (equation (2)) and its major components I1 and I2 (equa-
tion (3)) with respect to the integration variable kr along the
real axis. In this example, the layered medium consists of
N = 4 layers, including the two outermost half-spaces, with
e1� � �4 = e0 � {1, 9, 12, 4} Fm�1, s1� � �4 = {0, 0.001, 0.05,
0.1} Sm�1, and h1� � �4 = {0.25, 0.30, 0.30, 1} m, with e0
being the free-space dielectric permittivity. The frequency
is 1 GHz.
[10] For the exponential term I1, we initially observe a

strong oscillating behavior for kr < k1, due to its complex
valued argument. At kr = k1, the function exhibits a branch
point. For kr > k1, the exponential is real and decays rapidly.
The component I2 is highly oscillating for kr < max(Re(kn))
due to the exponential terms in the global reflection coef-

Figure 1. Three-dimensional N-layered medium with a
point source-receiver at the origin S of the coordinate
system. The medium of the nth layer is characterized by
constant magnetic permeability (mn), dielectric permittivity
en, electric conductivity sn, and thickness hn.
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ficients. A pole can be observed for kr = k1 and the effect of
a branch point is observed for kr = k2 for which the electric
conductivity is relatively small (the branch point is therefore
close to the real kr axis). In Figures 2e and 2f, the full
integrand appears to be dominated essentially by the I1
exponential, oscillating for low kr values and rapidly decay-
ing for high kr values.

3. Optimal Integration Path

[11] To ensure proper and fast convergence of the inte-
gral, the integration path should avoid the integrand singu-
larities and the function oscillations should be minimized.
The poles and the branch points occurring for negative
values of Im(kr) (see definition of G above), it is convenient
to deform the path in the positive part of the complex kr
plane. This avoids, in particular, the need to determine all
singularities, which can be cumbersome. Given the domi-
nating effect of I1 in the spectral Green’s function, the
proposed approach is to follow the path that minimizes its
oscillating behavior. This means that the imaginary part of
the square root in the exponential should be constant
(constant phase) and equal to its value at kr = 0, where
the integration is initiated.

[12] Defining kr as the complex number (x + |y) in
G1, and changing variables so that a = xcw and b = ycw, we
find:

Im G1ð Þ ¼ Im

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ |bð Þ2�1

q� �

¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4 þ 2a2b2 � 2a2 þ b4 þ 2b2 þ 1

p
� 2a2 þ 2b2

q
ð8Þ

For kr = 0, we find Im(G1) = 1. Substituting this value in (8),
we obtain the following relationship for the constant phase
integration path:

y xð Þ ¼ xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xc
w

� �2þ1

q ð9Þ

[13] Figure 3 represents the real and imaginary parts of
the integrand components I1 and I2 and full integrand I in
the complex kr plane for the example above. The proposed
optimal path is also represented and compared to a com-
monly used elliptic path closed on the real axis. We observe
that the decaying exponential term I1 strongly determines
the behavior of the integrand I in the complex plane. As x

Figure 2. Real and imaginary parts of integrand components (a and b) I1 and (c and d) I2 and (e and f) full integrand I
along the real kr axis. The dashed lines correspond to the zeros of the vertical wavenumbers projected on the real axis.
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increases (for x > k1), the integrand I strongly decays for any
y values, and particularly, following the optimal integration
path as defined by (9). Therefore, closing the optimal
integration path on the real axis, as required by Cauchy’s
integral theorem, is not necessary as the residual integrand
becomes negligible for sufficiently high x values. In order to
satisfy a specific accuracy for the evaluation of the integral,
an upper limit xmax of integration can be defined. Given the
negligible contribution of I2 for large x values, the criterion
can be defined using the damping factor of the exponential
component I1 only. For instance, for a damping factor of d =
10�16 in the example above, xmax can be computed as:

xmax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� ln d

2h1

� �2

þ w
c

� �2

s
¼ 124:6 ð10Þ

[14] Following these considerations, and applying
Cauchy’s integral theorem, the spatial domain Green’s
function can be computed as follows:

G ¼
Z xmax

0

~G xþ |y xð Þð Þ � xþ |y xð Þ½ 
 @ xþ |y xð Þð Þ
@x

dx ð11Þ

with

@ xþ |y xð Þð Þ
@x

¼ 1þ |
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xc
w

� �2þ1

q � x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xc
w

� �2þ1
� �3

r c2

w2

0
BB@

1
CCA ð12Þ

Figure 3. Real and imaginary parts of the integrand components (a and b) I1 and (c and d) I2 and (e and f) full integrand I
in the complex kr plane. The black curve represents the optimal integration path. The white curve represents an elliptic path
closed on the real axis. The asterisks correspond to the zeros of the vertical wavenumbers (see also Figure 2).
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This proper integral can be calculated numerically by using
Gaussian quadratures.

4. Results

[15] Figure 4 represents the values of the integrand
following the real kr axis, the optimal path (following
equation (9)), and a series of elliptic paths with different
semi-axis ratios. As expected, we observe that the proposed
path exhibits the smallest oscillations, which is favorable for
an accurate and fast integration. The asymptotic behavior of
the integrand, especially its real part, is different compared
to the real axis path. Yet, this difference strongly decreases
due to the rapid exponential damping. The elliptic path
shows various degrees of oscillations. We have compared
the effect of these oscillations on the computation time for
evaluating the integral (results not presented) and as
expected, a faster integration was obtained for the optimal
path, with a speed-up factor varying between 1.4 and 4.6,
depending on the semi-ellipse. When the elliptic path
follows the optimal path closely (e.g., as in Figure 3), the
gain is minimal. However, such an optimal axis ratio is not
known a priori in practice. The benefit becomes more
significant (>4) for other axis ratios, like, e.g., 10�3 as
adopted by Paulus et al. [2000] and Simsek et al. [2006].

5. Conclusions

[16] In this paper, an optimal integration path for evalu-
ating the zero-offset layered media Green’s function is
presented. Since the integral is calculated numerically with
the desired accuracy, the complete procedure is error con-
trollable. Compared to a traditional elliptic contour, it
significantly reduces the integration time, up to a factor of
5. The proposed algorithm appears to be very promising
potential for the inversion of off-ground GPR data using

full-wave modeling. Future work will focus on the investi-
gation of the validity domain of the technique, particularly
when the radar antenna is closer to soil surface and for other
frequencies.
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