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Abstract

We present a numerical method for suspensions of spheroids of arbitrary aspect ratio
which sediment under gravity. The method is based on a periodized boundary integral
formulation using the Stokes double layer potential. The resulting discrete system is
solved iteratively using GMRES accelerated by the spectral Ewald (SE) method, which
reduces the computational complexity to O(N logN), where N is the number of points
used to discretize the particle surfaces. We develop predictive error estimates, which can
be used to optimize the choice of parameters in the Ewald summation. Numerical tests
show that the method is well conditioned and provides good accuracy when validated
against reference solutions.

1 Introduction

The behavior of particles as they sediment in a suspension is a problem which is simple to for-
mulate, yet surprisingly hard to understand and accurately describe [20]. Particle suspensions
are however widely occurring both in natural and industrial processes, so the interest in them
is more than just academic. A large body of work has been directed towards understanding
the properties of suspensions of spherical particles, where both analytical and numerical re-
sults are available [2, 6, 9, 42, 44, 50]. Suspensions of non-spherical particles display more
complex behavior and are harder to model, since the flow depends on both the position and
orientation of the particles, as compared to only the position in the case of spherical particles.
Using a slender-body approximation, suspensions of elongated particles (rigid fibers) have
been successfully studied in the last decade, see for example [8, 22, 41]. For a recent review
on the dynamics of sedimentation, we refer to Guazzelli et al. [21]. They identify that one of
the current challenges lie in studying systems that are more complex than just spheres and
fibers, such as suspensions of platelets and deformable particles.

Periodic boundary conditions are often used in simulations of suspensions to approximate
the behavior of an infinite suspension, where there are no wall effects present. The simulation
is then carried out in a box called the primary cell, which in the computations is replicated
infinitely in all spatial directions.

The flow in a suspension can often be modeled as Stokes flow, due to the low Reynolds
number of the fluid surrounding the sedimenting particles. This allows the flow in the fluid
between the particles to be described using boundary integrals on the particles’ surfaces.
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Compared to a grid-based method, such as the finite element method (FEM) or the finite
difference method (FDM), the dimensionality of the domain which has to be discretized (using
a set of N points) is then reduced from three to two, which is attractive from a computational
point of view. An additional benefit of using a boundary integral method is that movement
of the particles is easily handled by translations and rotations of the surfaces, whereas a
grid-based method has to either continuously fit the volume grid to the particles, or apply an
alternative scheme to enforce the boundary conditions, see [24] and the references therein.

However, the benefits of reduced dimensionality come at an expense, since the long-range
hydrodynamic interactions between particles then requires the contributions from all particles
to be computed at every evaluation point, an operation which is expensive and has O

(
N2
)

complexity. These long-range interactions can however be efficiently computed using fast
methods with reduced complexity, and for the free-space problem the fast multipole method
(FMM) is a well-establised method which gives O (N) complexity [19, 45]. For the periodic
problem there is an additional level of difficulty, since the long-range interactions are not only
from all particles, but from all periodic images of all particles. These long-range periodic
interactions can however be efficiently computed using Ewald summation methods, which are
among the standard tools when computing long-range electrostatic interactions in molecular
simulations (see the survey by Deserno & Holm [11]), though they have also been used to
some extent in hydrodynamics [41, 44, 49]. The key element in these methods is that the long-
range interactions are evaluated on a grid in reciprocal space (k-space) using a fast Fourier
transform (FFT), dramatically accelerating the computations and reducing the complexity to
O (N logN). A recent contribution to the class of fast Ewald methods is the spectral Ewald
(SE) method by Lindbo & Tornberg [32, 33], developed both for the electrostatic potential
and for the stokeslet potential. In the spectral Ewald method the grid operations are carried
out with spectral accuracy, allowing a minimal grid to be used in the FFT and reducing the
memory and computation requirements of the method.

In this work we develop a mobility-based boundary integral method for periodic particle
suspensions, using the double layer potential for Stokes flow and the spectral Ewald method
to accelerate the computations. The boundary integral formulation is based on the completed
double layer formulation by Power & Miranda [37], and is similar to the traction-based for-
mulation for periodic suspensions by Fan et al. [13], which uses direct Ewald summation.
The double layer formulation has the benefit that the condition number of the system is
bounded [16], and furthermore that the singularity of the integral operator can be treated
at a negligible cost using the method of singularity subtraction. Here we give a formulation
for the periodic double layer potential which gives a zero mean flow in the domain, and also
develop accurate error estimates for the Ewald summation. We apply the method to suspen-
sions of spheroids of varying aspect ratio, and validate our results against available reference
solutions.

2 Periodic Stokes flow

We are in this work concerned with three-periodic Stokes flow, where we have a primary
cell of dimensions L1 × L2 × L3 and volume V = L1L2L3, which is replicated infinitely in
all directions. Inside the primary cell we have Np rigid bodies (particles) with surface Γα,

volume Θ(α), center of mass x
(α)
c and density ρ(α), α = 1, ..., Np. The surface of each particle

has an outward pointing unit normal n̂ and is assumed Lyapunov smooth. In the domain De
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exterior to the particles we have a liquid of viscosity µ and density ρe which is governed by
the Stokes equation,

−∇P + µ∆u+ f = 0,

and the continuity equation,

∇ · u = 0,

where u is velocity, P pressure and f body force. We require the velocity field u to be
periodic with respect to the primary cell, which we express as u(x) = u(x + τ (p)), where
τ (p) = (p1L1, p2L2, p3L3), p ∈ Z

3, is the periodic shift.

2.1 Boundary integral formulation

We are interested in systems of sedimenting particles, so we therefore consider a case where
each particle is subject to a gravitational force f (α) = (ρ(α)− ρe)Θ(α)g, where g is the gravity
vector, but no external torque. The flow in the domain De can then be represented by the
completed double layer formulation [37, 16], which we sum over all periodic images of all
bodies in the primary cell,

uj(x) =

Np∑

α=1

(
Wj [Γα,q](x) + Vj [Γα, f

(α)](x)
)
, (1)

where W is the Stokes double layer potential with density q,

Wj [Γ,q](x) =
∑

p∈Z3

∫

Γ
ql(y)Tjlm(x,y + τ (p))n̂m(y)dS(y), (2)

and V is the completion flow required to ensure that the representation is complete. The
completion flow must be chosen such that the net torque and force on the body is correct,
since the double layer potential is unable to represent either. Here we have chosen the
completion flow equal to that from a point force f acting at the body center of mass xc,

Vj [Γ, f ](x) =
∑

p∈Z3

1

8πµ
Gjm(x,xc + τ (p))fm. (3)

There is a slight abuse of notation in (2) and (3) since the periodic sums over p are only
conditionally convergent, but we shall defer the discussion of periodic properties to section 3.
The tensors T and G are the stresslet and stokeslet fundamental singularities,

Tijk(x,y) = −6
rirjrk
r5

,

Gij(x,y) =
δij
r

+
rirj
r3

,

where r = x − y and r = |r|. They can equivalently be formulated as operators acting on r
[39, 13],

Gij = (δij∇2 −∇i∇j)r,

Tijk =

[
(δij∇k + δjk∇i + δki∇j)∇2 − 2∇i∇j∇k

]
r =: Kijk r. (4)
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Note that the sums over all periodic images in (2) and (3) are only conditionally convergent;
we will discuss their evaluation in sections 3 and 4.

On the surface Γα of each particle we set a no-slip boundary condition. For a rigid body

with center of mass x
(α)
c and translational and rotational velocities V(α) and Ω(α), this implies

that

u(x) = U(α)(x) := V(α) +Ω(α) × (x− x(α)
c ), x ∈ Γα. (5)

The double layer potential contains a jump as x → Γ from the external domain,

lim
x→Γ
x∈De

Wj [Γ,q](x) = −4πqj(x) +Wj [Γ,q](x),

such that (1) gives us a second-kind Fredholm integral equation for the unknown density q
when we let x ∈ De go to the surface of one of the bodies,

−4πqj(x) +

Np∑

α=1

(
Wj [Γα,q](x) + Vj [Γα, f

(α)](x)
)
= U

(β)
j (x), x ∈ Γβ , β = 1, ..., Np. (6)

The system is closed by adding the constitutive equations relating q to V(α) and Ω(α) [38],

V(α) = − 4π

SΓα

∫

Γα

q(y)dS(y), (7)

Ω(α) = −4π

3∑

n=1

ω
(α,n)

A
(α)
n

(
ω

(α,n) ·
∫

Γα

(y − x(α)
c )× q(y)dS(y)

)
, (8)

where SΓα
is the surface area of Γα and

A(α)
n =

∫

Γα

[
ω

(α,n) × (y − x(α)
c )
]
·
[
ω

(α,n) × (y − x(α)
c )
]
dS(y).

The vectors ω(α,n), n = 1, 2, 3, are independent unit vectors, which must satisfy

1√
A

(α)
n A

(α)
m

∫

Γα

[
ω

(α,m) × (y − x(α)
c )
]
·
[
ω

(α,n) × (y − x(α)
c )
]
dS(y) = δmn.

They can be quickly computed using the modified Gram-Schmidt (MGS) algorithm [10, p.
107].

With (6) we now have a complete boundary integral formulation, though there are two
issues that require immediate attention before we can move on. The first issue is that we
cannot compute the single and double layer potentials without first defining how the periodic
sums in p are computed, which we will discuss further in section 3. The second issue is that
the integrand in the double layer potential (2) contains a singularity at (y = x,p = 0) if
x ∈ Γ. The Lyapunov smoothness of the surface ensures that the integral still exists as an
improper integral, since rkn̂k then goes to zero as y → x (see Kim & Karrila [27, p. 24]), but
the singularity must still be addressed before any numerical quadrature can be applied. We
will discuss how this can be done by the method of singularity subtraction in section 2.3.

It is here worth noting that the viscosity µ of the liquid enters the formulation in one place
only: as a scaling factor to the gravitational body force f in the completion flow (3). Scaling
the magnitude of the body force in Stokes flow will only affect the time scale of the flow, not
the dynamics. For this reason we have used µ = 1 for all the computations throughout this
paper.
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2.2 Useful identities

We here state a few integral identities which we shall find useful when working with boundary
integrals for Stokes flow. The first is the stokeslet integral identity

∫

Γ
Gij(x,y)n̂j(y)dS(y) = 0, (9)

independently of x. The second identity is the stresslet integral identity

∫

Γ
Tjlm(x,y)n̂m(y)dS(y) = δjl





0, x outside the domain enclosed by Γ,
4π, x ∈ Γ,
8π, x inside the domain enclosed by Γ.

(10)

It is worth noting that the sign of the right-hand side of (10) changes if the arguments x and
y are swapped, as Tjlm(y,x) = −Tjlm(x,y). The third identity is that for a rigid body with
a double layer density q that satisfies (6), we have (see [38, ch.4])

∫

Γ
qi(y)n̂i(y)dS(y) = 0. (11)

This last identity can be derived from (6), (9) and (10) together with the assumption of rigid
body motion.

2.3 Singularity subtraction

We address the singularity in the double layer potential (2) by the method of singularity
subtraction, which for this case is based on the stresslet identity (10). We add and subtract
q(x) to the integrand in (2) and apply (10), such that for x ∈ Γ we get a contribution from
the case p = 0,

Wj [Γ,q](x) =
∑

p∈Z3

∫

Γ
(ql(y)− ql(x) + ql(x))Tjlm(x,y + τ (p))n̂m(y)dS(y)

=
∑

p∈Z3

∫

Γ
(ql(y)− ql(x))Tjlm(x,y + τ (p))n̂m(y)dS(y) + 4πqj(x)

= Wj [Γ,q− q(x)](x) + 4πqj(x).

(12)

This improves the regularity of the integrand, which is now bounded, hence reducing the error
if omitting the point y = x when applying a numerical quadrature. It does however only help
us when evaluating for points x ∈ Γ. For points x which are very close to (but not on) Γ, the
distance r = |x − y| is very small (but never zero) and the double layer potential exhibits a
nearly singular behavior that can cause numerical errors. This typically occurs when particles
are very close to each other, and will be discussed further in section 9.2.

2.4 Discrete system

We here introduce the discrete form of our boundary integral formulation (6). Consider an
approximation of the surface integrals using a quadrature rule with weights wj (see section
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9.1 for the specific quadrature used in this work), such that for a function g(x)

Np∑

α=1

∫

Γα

g(x)dS(x) ≈
∑

α,j

w
(α)
j g(x

(α)
j ) =

N∑

s=1

wsg(xs), (13)

where the sum s = 1, ..., N goes over all discretization points on all bodies in the primary cell.
We can then express the total contribution from the quadrature of the double layer potential
as

Np∑

α=1

Wh
j [Γα,q](x) :=

N∑

s=1

∑

p∈Z3

Tjlm (x− xs + τ(p)) ql(xs)nm(xs) (14)

where n(xs) = wsn̂(xs) is the discrete form of the vector surface element dS, and Wh is the
discrete form of W. Using the quadrature (14) together with singularity subtraction (12), we
can formulate our discrete system for q(xt), t = 1, ..., N , by applying the Nyström method,

Np∑

α=1

(
Wh

j [Γα,q− q(xt)](xt) + Vj [Γα, f
(α)](xt)

)
= Uh

j (xt), t = 1, ..., N, (15)

where Uh(xt) is computed from q using the same quadrature rule as Wh. This system is non
symmetric and well-conditioned, and therefore suitable for iterative solution using GMRES
[40]. The computation of the double layer potential and surface velocities is then viewed as
a matrix-vector product (q being the vector), which is computed in every GMRES iteration.

3 Periodic properties of singularities

We have formulated our boundary integral equation in (6), and introduced singularity sub-
traction (12) to make it available for numerical solution (15). However, the sums over all
periodic images (p) are only conditionally convergent and not suitable for evaluation by di-
rect summation. To compute the sums we will apply the technique of Ewald summation,
which makes the sums converge rapidly. Before we go into that, however, we shall investigate
the properties of the stokeslet and stresslet singularities in a periodic setting. Specifically,
we shall see that the stresslet, unlike the stokeslet, produces a mean flow when summed
periodically, unless balanced by a constant term.

3.1 Periodic stresslet

We begin by considering the flow ϕ(x) from a single stresslet singularity with strength Slm,
located at the point y in the primary cell,

ϕj(x) =
∑

p∈Z3

Tjlm(x− y + τ (p))Slm. (16)

This sum is only conditionally convergent, so the summation order affects the result. In
section 4 we will introduce Ewald summation, which accelerates convergence and makes the
sum absolutely convergent by computing it in a spherical order. Here we will look at a Fourier
representation of the sum to determine its mean value, which we later will need when deriving
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the Ewald sum. Using Poisson’s summation formula, we take the summation over periodic
images to k-space,

ϕj(x) =
Slm
V

∑

k 6=0

T̂jlm(k)eik·r +
Slm
V

T̂
(0)
jlm(y), (17)

where T̂ is the Fourier transform of T , ki ∈ {2πn/Li : n ∈ Z} and r = x − y. The second
term is the k = 0 component of the k-space sum, which we shall discuss shortly.

Beginning with k 6= 0, we first take the definition of the operator K from (4) and introduce

K̂jlm(k) = −i
[
(δjlkm + δlmkj + δmjkl)k

2 − 2kjklkm

]
, k = |k| , (18)

which represents the result of applying K to a Fourier series. Together with the result

r̂(k) = −8π/k4,

this allows us to write the periodic form of the stresslet as

T̂jlm(k) = K̂jlm(k)r̂(k) = i
8π

k4

[
(δjlkm + δlmkj + δmjkl)k

2 − 2kjklkm

]
, k 6= 0.

Returning to k = 0, the second term of (17) contains the tensor T̂
(0)
jlm(y), which is not

defined so far in this derivation. For our current application we shall derive an expression for
this tensor based on two criteria: (i) we want the mean flow through the primary cell to be
zero, and (ii) we want the identity (10) to be valid also in the periodic setting. If we omit the
k = 0 term, i.e. we set T̂ (0) = 0, then our resulting solutions will have non zero mean flow1

and the stresslet identity (10) will not be satisfied. However, by satisfying the first criterion,
the second criterion will also be satisfied, as we shall see.

3.2 Stresslet mean flow

In our application we are interested in a periodic setup of rigid particles sedimenting through
a quiescent liquid, meaning that we want to fix our frame of reference such that we have zero
net flux through each side of the primary cell. To quantify the flux from the periodic double
layer potential, we begin with the flow ϕ from the single stresslet singularity (16). Without
loss of generality, we now consider the plane surface D3, which is normal to the unit vector
e3. It has dimensions L1 × L2 and surface area A3 = L1L2. The flux F3 through D3 can by
(17) be written

F3 =

∫

D3

ϕ3(x)dS(x)

=
8π

V
Slm

∑

k 6=0

i

k4

[
(δ3lkm + δlmk3 + δm3kl)k

2 − 2k3klkm

] ∫

D3

eik·rdS(x) +A3
Slm
V

T̂
(0)
3lm(y).

1At a glance, one might think that T̂ (0) = 0 gives a zero mean flow, since the integral of (17) over the entire
primary cell vanishes. In our case the flow equations are only valid in the domain outside the particles, so the
integral cannot be taken over the entire cell.
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Since D3 covers exactly one periodic length in the x1 and x2 directions, it follows that the
integral over D3 can be non zero only if k1 = k2 = 0, and then

∫

D3

eik·rdS(x) = eik3r3A3

and k = |k3|. This allows us to write

F3 = −8π

V
SmmA3

∑

k3 6=0

sin(k3r3)

k3
+A3

Slm
V

T̂
(0)
3lm(y).

The sum over k3 can be evaluated using a standard result from Fourier series [17, p. 46] 2,

∑

k3 6=0

sin(k3r3)

k3
=
L3

π

∞∑

m=1

sin(2πmr3/L3)

m
=
L3

2
− r3, 0 < r3 < L3,

=
L3

2
−mod(r3, L3), r3 ∈ R.

We are thus able to write the final expression for the flux through D3 from an arbitrary
periodic stresslet singularity,

F3 = −8π

V
SmmA3

(
L3

2
−mod(r3, L3)

)
+A3

Slm
V

T̂
(0)
3lm(y).

The first term of this expression has the form of a sawtooth wave in r3, with the jump
appearing when r3 = 0, i.e. y lies in the plane D3.

In our application we are not considering arbitrary stresslet singularities, but rather a
double layer potential distributed on a surface, Slm(y) = ql(y)n̂m(y). We denote the flow
resulting from only the double layer potential u(T )(x), and write

u
(T )
j (x) =

1

V

∑

α

∑

k 6=0

∫

Γα

ql(y)n̂m(y)T̂jlm(k)eik·rdS(y) + u
(T,0)
j ,

where

u
(T,0)
j =

1

V

Np∑

α=1

∫

Γα

ql(y)n̂m(y)T̂
(0)
jlm(y)dS(y).

Now, for periodically replicated bodies we are interested in the mean flow generated by
the double layer potential, defined as the flux through the side Dj of the primary cell divided
by the side area,

〈
u
(T )
j

〉
=

1

Aj

∫

Dj

u
(T )
j (x)dS(x)

= −8π

V

Np∑

α=1

∫

Γα

qm(y)n̂m(y)

(
Lj

2
−mod(xj − yj , Lj)

)
dS(y) + u

(T,0)
j .

2mod(a, b) refers to the operation a modulo b, which returns the remainder of the division of a by b, s.t.
0 ≤ mod(a, b) < b.

8



Here j has a fixed value, and there is no implicit summation over j. We assume that no side
of the primary cell cuts the surface Γα, as this is only a matter of shifting point of reference,
and apply the identity (11), that for the double layer density on the surface of a rigid body
it holds that

∫

Γα

qm(y)n̂m(y)dS(y) = 0.

This allows us to reduce our expression for the mean flow through the primary cell to

〈
u
(T )
j

〉
= −8π

V

Np∑

α=1

∫

Γα

qm(y)n̂m(y)yjdS(y) + u
(T,0)
j .

We now see that we can obtain zero mean flow, < u
(T )
j >= 0, by defining the k = 0 component

of the stresslet as

T̂
(0)
jlm(y) = 8πδlmyj , (19)

such that

u
(T,0)
j =

8π

V

Np∑

α=1

∫

Γα

qm(y)n̂m(y)yjdS(y).

We also find, by numerical experiments, that this choice for T̂ (0) yields that the periodic
stresslet satisfies the identity (10), such that both our requirements are satisfied.

3.3 Periodic stokeslet

For a derivation of the periodic properties of the stokeslet, we refer to Pozrikidis [39]. Here
we just summarize that

Ĝjm(k) =
8π

k4
(
δjmk

2 − kjkm
)

and Ĝjm(k = 0) = 0,

such that the flow due to periodic point force f can be expressed as

ψj(x) =
8π

V
fm
∑

k 6=0

Ĝjm(k)eik·r.

The derivation by Pozrikidis shows that the k = 0 term is zero for the periodic stokeslet, and
that force balance in the domain is maintained by a constant pressure gradient. Hence, the
mean flow is zero,

〈ψ〉 = 0.

4 Ewald summation

The periodic sums (2) and (3) over the stresslet and stokeslet singularities in our formulation
are only conditionally convergent. To resolve this issue and compute them efficiently, we will
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use the Ewald summation technique, invented by P.P. Ewald [12] in 1921 for the electrostatic
potential. In Ewald summation, a slowly converging sum over infinite periodic images is
decomposed into two sums; one over near neighbors which converges rapidly in real space,
and one containing the far-field interactions which converges rapidly in k-space.

To apply the technique, one requires an Ewald decomposition of the potential being
summed. An Ewald decomposition for the stokeslet was first derived by Hasimoto [23],
and later Pozrikidis [39] gave an alternative decomposition following a decomposition method
introduced by Beenakker [3] for the Rotne-Prager tensor. The two decompositions are very
similar, though the one by Pozrikidis appears to have slightly slower convergence, as reported
by Lindbo and Tornberg [31]. For the stresslet an Ewald decomposition was derived by Fan
et al. [13] using Beenakker’s decomposition method. Recently, a second decomposition for
the stresslet was derived by Marin [34, Paper IV], based on the Hasimoto decomposition of
the stokeslet.

4.1 Stresslet decomposition

In the context of Ewald summation it is convenient to consider the discrete sum from the
beginning, so we define u(T ) to be the contribution from the discrete double layer potential
(14),

u
(T )
j (x) :=

Np∑

α=1

Wh
j [Γα,q](x) =

N∑

s=1

∑

p∈Z3

Tjlm (x− xs + τ(p)) ql(xs)nm(xs),

and use this expression as the basis for our derivation. To obtain the Ewald decomposition
by Fan et al., we now apply Beenakker’s method of decomposing r into r erfc(ξr) + r erf(ξr)
in the operator formulation of the stresslet (4). This gives us the decomposition

Tjlm(r) = T
(R)
jlm(r) + T

(F )
jlm(r),

where

T
(R)
jlm(r) = Kjlm(r erfc(ξr)),

T
(F )
jlm(r) = Kjlm(r erf(ξr)),

and a corresponding decomposition u
(T )
j = u

(R)
j + u

(F )
j . This has the property that T (R) is

short-range and converges rapidly in real space, while T (F ) is smooth and converges rapidly
when summed in k-space. The parameter ξ controls the speed with which the two sums
converge.

4.1.1 Real space sum

The real space component is obtained by differentiation,

T
(R)
jlm(r) = Kjlm(r erfc(ξr)) = C(ξ, r)r̂j r̂lr̂m +D(ξ, r)(δjlr̂m + δlmr̂j + δmj r̂l)

=: Ajlm(ξ, r), (20)
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where r̂ = r/r and

C(ξ, r) = −2

r

(
3

r
erfc(ξr) +

2ξ√
π
(3 + 2ξ2r2 − 4ξ4r4)e−ξ2r2

)
,

D(ξ, r) =
8ξ3r√
π
(2− ξ2r2)e−ξ2r2 .

(21)

Using Slm(xs) = ql(xs)nm(xs) for simplicity, we can write the real space sum as

u
(R)
j (x) =

N∑

s=1

∑

p∈Z3

Ajlm(ξ,x− xs + τ(p))Slm(xs). (22)

4.1.2 k-space sum

We write the contribution to u from k-space as

u
(F )
j (x) =

N∑

s=1

∑

p∈Z3

T
(F )
jlm(x− xs + τ(p))Slm(xs).

Again, using Poisson summation we take the sum over all periodic boxes to k-space,

∑

p∈Z3

T
(F )
jlm(x− xs + τ(p)) =

1

V

∑

k 6=0

T̂
(F )
jlm(k)eik·(x−xs) +

1

V
T̂
(F,0)
jlm (xs). (23)

The transform of the k-space part of the stresslet can be expressed as T̂
(F )
jlm = K̂jlmQ̂, where

K̂jlm = −i
[
(δjlkm + δlmkj + δmjkl)k

2 − 2kjklkm

]

is introduced in (18) and Q̂ is the transform of the decomposition factor, derived in plain
terms by Pozrikidis [39] as

Q̂ = F [r erf(ξr)] = −8π

k4

(
1 +

1

4

k2

ξ2
+

1

8

k4

ξ4

)
e−k2/4ξ2 .

This gives us the transform of T (F ),

T̂
(F )
jlm = i

π

k

[
(δjlk̂m + δlmk̂j + δmj k̂l)− 2k̂j k̂lk̂m

](
8 + 2

k2

ξ2
+
k4

ξ4

)
e−k2/4ξ2 .

For k = 0, we note that the properties of mean flow discussed in section 3.2 are independent
of the Ewald decomposition, and so T̂ (F,0) = T̂ (0). For k 6= 0, we are interested in the real
part of the k-space sum in (23), so we define

Bjlm(ξ,k) := −T̂ (F )
jlm(ξ,k)ek

2/4ξ2

and write it as

1

V

∑

k 6=0

T̂
(F )
jlm(k)eik·(x−xs) =

1

V

∑

k 6=0

Bjlm(ξ,k)e−k2/4ξ2e−ik·(x−xs).
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We can now write the k-space part of the Ewald sum as

u
(F )
j (x) = u

(F,k)
j (x) + u

(F,0)
j

:=
1

V

∑

k 6=0

Bjlm(ξ,k)e−k2/4ξ2
N∑

s=1

Slm(xs)e
−ik·(x−xs) + u

(F,0)
j , (24)

with

Bjlm(ξ,k) = −iπ
k

[
(δjlk̂m + δlmk̂j + δmj k̂l)− 2k̂j k̂lk̂m

](
8 + 2

k2

ξ2
+
k4

ξ4

)

and, using (19),

u
(F,0)
j =

1

V

N∑

s=1

T̂
(0)
jlm(xs)Slm(xs).

4.1.3 Self interaction

If the target point x in the original sum (14) is one of the evaluation points, x = xt,
t ∈ {1, ..., N}, then the term corresponding to p = 0 and s = t is excluded, since the
value is singular there (or zero when singularity subtraction is applied). This is in the con-
text of Ewald summation referred to as removing the self interaction, and the same term is
excluded from the real space sum (22). Part of this unwanted self interaction can however
be incorporated into the k-space sum (24) through the decomposition, and in that case a
correction term must be added to remove this contribution. This is the case when doing
Ewald summation of the stokeslet. In this decomposition however, taking the limit r → 0
reveals that limr→0Ajlm(ξ, r) − Tjlm(r) = 0. This means that no unwanted self-interaction
has been included in the k-space sum, and no correction has to be added.

4.1.4 Complete stresslet decomposition

The final Ewald sum for the stresslet becomes

u
(T )
j (x) =

N∑

s=1

∑

p∈Z3

Ajlm(ξ,x− xs + τ(p))Slm(xs)

+
1

V

∑

k 6=0

Bjlm(ξ,k)e−k2/4ξ2
N∑

s=1

Slm(xs)e
−ik·(x−xs)

+
1

V

N∑

s=1

T̂
(0)
jlm(xs)Slm(xs),

(25)

where A, B and T̂ (0) are defined in equations (20), (24) and (19). The first sum converges
rapidly in real space, and can therefore be truncated outside a cutoff radius rc. Likewise,
the second sum converges rapidly in k-space, and can be truncated outside a maximum wave
number K.

12



4.2 Stokeslet decomposition

For the periodic stokeslet sum (3), we use the Ewald decomposition by Hasimoto [23, 31],

u
(G)
j (x) :=

Np∑

α=1

Vj [Γα, f
(α)](x)

=
1

8πµ

( ∑

p∈Z3

∑

α

A
(G)
jm (ξ,x− x(α)

c + τ (p))f (α)m

+
1

V

∑

k 6=0

B
(G)
jm (ξ,k)e−k2/4ξ2

Np∑

α=1

f (α)m e−ik·(x−x
(α)
c )

) (26)

where

A
(G)
jm (ξ, r) =

(
2ξe−ξ2r2

√
π

+
erfc(ξr)

r

)
(δjm + r̂j r̂m)− 4ξ√

π
e−ξ2r2δjm,

and

B
(G)
jm (ξ,k) =

π

k2

(
δjm − k̂j k̂m

)(
8 + 2

k2

ξ2

)
.

The self interaction term is given by

u
(G)
self (x

(α)
c ) = lim

x→x
(α)
c

(
A(G)(ξ,x− x(α)

c )−G(x− x(α)
c )
)
f (α) = − 4ξ√

π
f (α).

Here we will never evaluate the stokeslet at the points x
(α)
c , so we need not consider the self

interaction term.

5 Truncation error estimates for Ewald sum

When we compute the Ewald sums for the stresslet (25) and stokeslet (26), we need to truncate
them at some point to avoid adding an infinite number of terms. To make our computations
efficient, we would furthermore like to truncate the sums where the truncation error falls below
a certain tolerance. In the case of Ewald summation of the electrostatic potential, Kolafa &
Perram [28] developed an RMS error estimate for the case of charges randomly distributed
throughout the primary cell. Their estimate, though only a statistical estimate, is very
efficient and highly used in the field of molecular dynamics. For the Hasimoto decomposition
of the stokeslet potential, Lindbo & Tornberg [32] developed a similar estimate, by following
the same procedure as Kolafa & Perram. Here we develop the same kind of estimate for the
stresslet decomposition detailed in section 4.1.

5.1 Real space sum

We want to estimate the pointwise error committed in the real space sum (22) when it
is truncated with a cutoff radius rc, such that the sum only contains interactions between

13
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Figure 1: Left: Real space truncation error (RMS) vs radius rc for 5000 random points in a 23

box. Blue dotted line measured against converged reference solution, red dashed is estimate
(32). Right: Ratio between estimated and measured errors vs ξrc, stays within a few percent
until error hits machine precision.

points within a distance rc from each other. Here we will estimate and measure the error in
RMS (root mean squares),

e
(R)
rms,j :=

√√√√ 1

N

N∑

s=1

(
u
(R)
j (xs)− ũ

(R)
j (xs)

)2
, (27)

where u(R) and ũ(R) are the truncated and exact solutions. Our goal is to produce a predictive
RMS error estimate like the one by Kolafa & Perram [28] for the original Ewald sum.

The truncation error in the real space sum at a point xt can be expressed as

e
(R)
j (xt) =

∑

s∈FLt

Ajlm (ξ,x− xs + τ(p)) ql(xs)nm(xs),

where the far list FLt = {(xs,p) : |xt − xs + τ(p)| > rc} is the set of set of truncated points.
Following the steps taken by Kolafa & Perram, we make the assumption that all the points
are uncorrelated, allowing us to write

(e
(R)
rms,j)

2 ≈ 1

V

N∑

s=1

q2l (xs)n
2
m(xs)

∫

|r|>rc

A2
jlm(ξ, r)dV.

For each component (fixed j) this expression is a sum of 9 components as the implicit sum-
mations over l and m are carried out. The RMS measure should be independent of how the
coordinate system is oriented, so instead of evaluating all 9 components of the integral we
take an average of the integrand first. We thus define

A2
j (ξ, r) :=

1

9

3∑

l=1

3∑

m=1

A2
jlm(ξ, r) (28)

14



and

Q :=

N∑

s=1

3∑

l=1

3∑

m=1

q2l (xs)n
2
m(xs) (29)

such that we can write

(e
(R)
rms,j)

2 ≈ Q

V

∫

|r|>rc

A2
j (ξ, r)dV. (30)

Introducing spherical coordinates, (28) sums to

A2
j (ξ, r) =

1

36

(
C2 + 6CD + 17D2 − (C + 3D)2

(
cos(2θ)− 2 cos(2ϕ) sin2(θ)

))
.

where C = C(ξ, r) and D = D(ξ, r), as defined in (21). Integrating this over one shell (fixed
r), we get

∫ 2π

0

∫ π

0
A2

j (ξ, r) sin(θ)dθdϕ =
4π

27
(C2 + 6CD + 15D2).

We now evaluate the integral over r,

4π

27

∫ ∞

rc

(C2 + 6CD + 15D2)r2dr =
1

108

(
768

√
πξe−ξ2r2c

(
ξ2r2c − 4

)
erfc (ξrc) (31)

+ 2247
√
2πξerfc

(√
2ξrc

)
+

576πerfc (ξrc)
2

rc

+ 4ξ2rce
−2ξ2r2c

(
448ξ6r6c − 1392ξ4r4c + 1588ξ2r2c + 135

)
)
.

Combining (28), (30) and (31) gives us an estimate for the RMS error (27), albeit a rather
complex one. To obtain a more manageable expression, we series expand (31) for large ξrc,
finally arriving at

e
(R)
rms,j ≈ e−ξ2r2c

√
1

27

Q

V
ξ2rc (327 + 1588ξ2r2c − 1392ξ4r4c + 448ξ6r6c ). (32)

To evaluate the validity of (32), we apply it on a test case with N = 5000 points randomly
distributed in a 23 box and q and n randomly drawn from a uniform distribution, q,n ∈
U(−1, 1). The results, shown in Figure 1, indicate that the estimate is accurate to within a
few percent. It is tempting to simplify (32) even further by keeping only the highest order
term, but doing so throws the accuracy of the estimate off by as much as a factor 5.

5.2 k-space sum

Just as the real space sum (22) is truncated beyond a cutoff radius rc, the k-space sum (24)
needs to be truncated at some point. Since k-space is discrete, it is natural to truncate the
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summation outside a box with half-sides K in reciprocal space, such that the error committed
at a point is

e
(F )
j (xt) =

1

V

∑

|ki|>K

Bjlm(ξ,k)e−k2/4ξ2
N∑

s=1

ql(xs)nm(xs)e
−ik·(x−xs).

Similarly to the real space case, we are interested in obtaining an RMS estimate for the
pointwise k-space truncation error as a function of our numerical parameters, which in this
case are K and ξ. Deriving such an estimate by following Kolafa & Perram is however much
more difficult than it was in real space, so we here content ourselves with a heuristic estimate.
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Figure 2: Left: Computed RMS errors versus x = K/ξ after scaling (dots) and final estimate
(solid line). Right: Computed RMS errors after removing exponential decay (dots) and
exponential that matches the remaining behaviour (solid line).

First, we compute the RMS k-space truncation errors (compared to well converged ref-
erence solutions) for a variety of N , {Li}, ξ and K, with the points randomly distributed
in the boxes (both cubic and non-cubic) and q,n ∈ U(−1, 1). Second, after some exper-
imentation we observe that the errors collapse nicely as they decay if we scale them as

g(x) = e
(F )
rms/

√
ξ2LQV −1, where x = K/ξ and L := mini Li, see Figure 2 (left). Observ-

ing that the decay should be dominated by the factor e−K2/4ξ2 = e−x2
for large K/ξ, we plot

g(x)ex
2/4 in a semi-log graph (Figure 2, right). This reveals that all points in the area of

exponential decay (x & 4) seem to fall on or below the straight line which is drawn by ecx,
c ≈ 0.43. This line appears to provide a good limiting value in the region, before round-off
errors start to accumulate at x ≈ 10. With that we have finally reached our heuristic error
estimate,

e(F )
rms ≈ e−K2/4ξ2+0.43K/ξ

√
ξ2L

Q

V
. (33)

This estimate shows good accuracy in all our test cases for K/ξ ≥ 4, usually within 10–20%,
and almost always overestimates the error. Figure 3 shows a test case with 7000 random
points in a 23 box, where the error is well estimated to within 20% except for the case ξ = 5,
in which the error is overestimated by a factor 2. This estimate is judged accurate enough to
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Figure 3: Left: k-space truncation error (RMS) vs K for 7000 random points in a 23 box, ξ
increasing from left to right. Blue dotted line measured against converged reference solution,
red dashed is estimate (33). Right: Ratio between estimated and measured errors, estimate
is consistently conservative and within 20% for ξ ≥ 20.

be of practical use in applications where runtime parameters need to be determined based on
an error tolerance.

5.3 Estimates for quadrature points on surfaces

The truncation error estimates for the k-space and real space sums that we have developed
give, as we have seen, very satisfactory results for randomly distributed data. However, for
points derived from quadrature over surfaces (see section 9 for details on quadrature), we find
that our definition (29) gives Q ∼ 1/N when we consider the case where a given geometry is
discretized with an increasing number of points as N increases. At the same time we observe
that in practice the truncation errors appear to be independent of N . Using the quadrature
definition from section 2.4, where the pointwise data is q(xs) and n(xs) = wsn̂(xs), we thus
redefine Q for the quadrature case as

Q :=

3∑

l=1

(
N∑

s=1

wsq
2
l (xs)

)
3∑

m=1

(
N∑

s=1

wsn̂
2
m(xs)

)
≈

3∑

l=1

‖ql‖22
Np∑

α=1

SΓα
, (34)

where we have used the definition (13) and the identity
∑

m n̂
2
m = 1. We have also added the

relationship to the 2-norm of the components of q, with the 2-norm defined as

‖f‖22 :=
Np∑

α=1

∫

Γα

f2(y)dS(y).

The interpretation of this is that the truncation errors related to the Ewald summation are
independent of the discretization used, but rather depend only on the geometry and the
distribution of q on the surfaces.
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Figure 4: Real- and k-space errors, measured in 2-norm (·) and max norm (+), compared to
error estimates (–) on an actual particle setup for ξ = 6, 8, 12, 18. The jump at rc = 0.2 in
the real space sum is due to the maximum particle diameter being 2R = 0.2. These plots are
for N = 4000, but the errors follow the estimates equally well for N = 2000 and N = 1000.

With this alternative definition of Q we still use the estimates (32) and (33). To illustrate
that this works in practice, we set up a system of 4000 quadrature points distributed on 5
particles randomly distributed in a 13 box, with maximum radius R = 0.1 and aspect ratios
between 3:4 and 4:3. We apply a unit downward force to the particles and solve for q. We
then compute the Ewald truncation errors (compared to a fully converged reference result)
when evaluating the double layer potential Wj [Γα,q] at the quadrature points for a range of
ξ,rc,K. The results, shown in Figure 4, indicate that the estimates (32) and (33) together
with the new definition of Q (34) actually seem to give a rather close upper bound on the error
in max norm, while they overestimate the error in 2-norm by roughly one order of magnitude.
This indicates that our estimates, though derived as approximations of a statistical measure,
are of large practical importance.

6 Fast Ewald summation

Now we have the Ewald sums (25) and (26) for the stresslet and stokeslet, together with
useful truncation error estimates related to the cutoffs rc and K and the Ewald parameter ξ.
The sums converge rapidly in terms of rc and K, but not in terms of computational time; the
stresslet sum (25) has O

(
N2
)
complexity and the stokeslet sum (26) has O (NpN) complexity,

both with constants that grow rapidly as we increase the cutoffs. Evidently, a fast method of
computing these sums is required.

6.1 Fast k-space summation: The spectral Ewald method

The spectral Ewald (SE) method was developed for periodic stokeslet potentials by Lindbo
& Tornberg [31], and we compute the stokeslet sum (26) as described by them. We will here
detail how the method can be applied to the stresslet sum (25), essentially by following their
derivation step by step and introducing the higher-rank tensors of the stresslet. We begin by
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introducing an arbitrary parameter η to split the Gaussian in the k-space sum (24),

u
(F,k)
j (x) =

1

V

∑

k 6=0

Bjlm(ξ,k)e−(1−η)k2/4ξ2
N∑

s=1

Slm(xs)e
−ηk2/4ξ2e−ik·(x−xs).

We rewrite this by defining

Ĥlm(k) :=

N∑

s=1

Slm(xs)e
−ηk2/8ξ2e−ik·xs ,

such that

u
(F,k)
j (x) =

1

V

∑

k 6=0

Bjlm(ξ,k)e−k2/4ξ2e−ik·xe−ηk2/8ξ2Ĥlm(−k).

The k-space function Ĥlm is the result of a convolution in real space, with Hlm(x) available
as

Hlm(x) =
N∑

s=1

Slm

(
2ξ2

πη

)3/2

e−2ξ2|x−xs|2∗/η, (35)

where | · |∗ is the shortest distance in the periodic lattice. The function H(x) is now a smooth
function in the domain, created by a superposition of N Gaussians centered at the points xs,
s = 1, ..., N .

We now define

̂̃
Hj(k) := Bjlm(ξ,−k)e−(1−η)k2/4ξ2Ĥlm(k), (36)

which is a tensor product in k-space, such that

u
(F,k)
j (x) =

1

V

∑

k 6=0

̂̃
Hj(−k)e−ηk2/8ξ2e−ik·x.

We have for periodic functions that

∑

k

f̂(−k)ĝ(k) =

∫

Ω
f(x)g(x)dx,

and we identify f̂ =
̂̃
H lm and ĝ = e−ηk2/8ξ2e−ik·x. Just as above, ĝ is the result of a

convolution, so we finally get

u
(F,k)
j (x) =

∫

Ω
H̃j(y)

(
2ξ2

πη

)3/2

e−2ξ2|x−y|2
∗
/ηdy. (37)

The integrand of (37) is smooth and periodic, so a natural choice of quadrature is the trape-
zoidal rule, which has spectral accuracy in such a case [29].

The steps for calculating the k-space sum can be summarized as

I. Spreading: Discretize the primary cell using a uniform grid M (defined below) and
evaluate Hlm(x) on it using (35), essentially spreading Gaussians on a grid.
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II. FFT: Compute Ĥlm using the three-dimensional FFT.

III. Scaling: Compute
̂̃
Hj via (36).

IV. IFFT: Compute H̃j using the inverse FFT.

V. Quadrature: Evaluate (37) with trapezoidal rule to get u
(F,k)
j .

The steps outlined here need to be performed for every element of Hlm and H̃j , so we need
nine identical grids for steps I–II, and three grids for steps IV–V, with step III providing the
mapping in between. The grid M is uniform with Mi = MLi points in each direction and
grid spacing h = 1/M . This implies that the number of modes represented in each direction
is Mi/2 (assuming Mi even), and that the maximum wave number represented (as discussed
in section 5.2) is K = 2π

Li

Mi

2 = πM for i = 1, 2, 3.

Steps I and V involve evaluatingO (N) Gaussians on a regular grid withO
(
M3
)
points. In

a naive implementation this would amount to O
(
NM3

)
exponentials, which is very expensive.

It is however natural to truncate the support of the Gaussians to a cube of P 3 points around
the center point. This support P is tightly related to the free parameter η, which controls
the width of the Gaussians. As detailed by Lindbo & Tornberg [33], writing

η =

(
2wξ

m

)2

,

lets us view the Gaussians as having half-width w and a shape parameter m controlling their
decay rate. Furthermore, the approximation errors of the method arise from the spreading
and quadrature steps, and for m ∼

√
P these errors balance, such that spectral accuracy in

P is obtained, meaning that the approximation error is bounded by Ce−αP (for some C,α).
We have in this paper used m(P ) = 0.9

√
πP throughout, with good results. Our observations

(illustrated in Figure 5) are that P = 16 gives a relative precision around 10−10, while P = 24
is enough for full precision3, though P = 32 reaches full precision faster when increasing the
grid size. The latter is because the approximation errors in that case are completely decoupled
from the spectrum truncation errors.

After truncation of the Gaussians, the complexity of evaluating them is O
(
NP 3

)
, though

the cost is still high since the exponential function has to be evaluated P 3 times per point.
This cost can be dramatically reduced by applying the fast Gaussian gridding (FGG) method
by Greengard & Lee [18]. The regularity of the grid is then exploited in a way that minimizes
the number of exponential function evaluations. We refer to [33] for a complete discussion of
how FGG is implemented in the spectral Ewald method.

Finally, the complexity of the k-space summation using the spectral Ewald method can
be written

O
(
NP 3

)
︸ ︷︷ ︸

Steps I and V.

+O
(
M3 logM3

)
︸ ︷︷ ︸
Steps II and IV.

+O
(
M3
)

︸ ︷︷ ︸
Step III.

. (38)

3The implementation we use is optimized for P being multiples of 8, which is why we compare these specific
supports.
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Figure 5: Relative k-space truncation error (RMS) vs grid size for Gaussian support P =
16, 24, 32, ξ = 11, L = 13. The system is 5000 random points in a unit cube.

6.2 Fast real space summation

When we use GMRES for solving our discrete boundary integral formulation (15), the real
space sum (22) will be computed in every iteration using the same geometry (xs,n(xs)) and
different q(xs). It is then useful to view it as a matrix-vector product, whose coefficients are
calculated once for every geometry and stored for subsequent iterations,

Ajl(xt,xs) =
∑

p∈Z3

Ajlm(ξ,xt − xs + τ(p))nm(xs),

such that

u
(R)
j (xt) =

N∑

s=1

Ajl(xt,xs)ql(xs), t = 1, ..., N. (39)

Evaluating (39) clearly has O
(
N2
)
computational complexity. However, for a given tolerance

ǫ and Ewald parameter ξ there will be a truncation radius rc, such that the interactions
are only calculated for the near neighbors NLt of each point, defined as NLt = {(xs,p) :
|xt − xs + τ(p)| ≤ rc}. If the number of near neighbors of each point, |NLt|, is kept constant
as the system grows, then the complexity of computing the interactions is O (N). Computing
the neighbor lists NLt can also be accomplished at an O (N) cost by first creating a cell list,
as is standard in molecular dynamics (see [14, Appendix F] for details). The total cost for
evaluating the real space sum is therefore O (N), under the assumptions of constant number
of near neighbors. The implication of this scaling on the overall complexity will be discussed
in section 8.2.

The coefficients matrices Ajl will be sparse for sufficiently small rc, and can therefore
be efficiently stored in memory. The sparsity structure will be identical for all matrices, so
memory usage can be reduced by storing it only once. Additional memory can be saved by
noting that Ajl = Alj , so only 6 out of 9 entries actually need to be stored.
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7 Complete numerical formulation

With the framework for computing fast Ewald sums in place, we are now able to fully formu-
late our numerical method. We reorder our discrete boundary integral equation (15) to make
the RHS independent of q, such that our final discrete equation to be solved becomes

−
Np∑

α=1

Wh
j [Γα,q− q(xt)](xt) + Uj(xt) =

Np∑

α=1

Vj [Γα, f
(α)](xt), t = 1, ..., N. (40)

The surface velocity U(xt) is computed as in (5), using (7), (8) and the definition

U(xt) := U(α)(xt), xt ∈ Γα,

such that the entire LHS depends on q(xt) only. We solve this 3N×3N system for q(xt) using
the implementation of GMRES available in MATLAB [35], letting the LHS be the matrix-
vector product computed in each iteration. The Ewald sums are computed as described in
section 6, using an optimized C implementation called through MATLAB’s MEX interface,
with the k-space sum computed once every iteration and the sparse real space interaction
matrix computed and stored in the first iteration and applied in subsequent iterations. The
fast Fourier transforms are computed using the FFTW library [15], also available in MATLAB.

7.1 Singularity subtraction

The singularity subtraction (12) is efficiently implemented by noting that all of the singular
behaviour is contained in the real space part, such that we can write

W h
j [Γα,q− q(xt)] =

N∑

s=1

∑

p∈Z3

T
(R)
jlm(r) (ql(xs)− ql(xt))nm(xs)

+
N∑

s=1

∑

p∈Z3

T
(F )
jlm(r)ql(xs)nm(xs)− ql(xt)

N∑

s=1

∑

p∈Z3

T
(F )
jlm(r)nm(xs).

(41)

The computational cost from adding the singularity subtraction to the kernel of the real space
sum is negligible, so the only extra cost is from the evaluation of the last term in (41). This
leads to one extra k-space Ewald summation, but since the sum is only dependent on the
geometry (xs,n(xs)) it is enough to compute it in the first GMRES iteration and reuse it in
subsequent iterations.

8 Parameter choice and complexity

We have developed truncation error estimates and complexity statements for the Ewald sum-
mation and detailed how the sums are computed, so we are now able to discuss the issue of
complexity and parameter choice when solving our discrete system (40).

8.1 Parameter choice

When solving the system with GMRES to a tolerance ǫ around 10−10, convergence is typically
obtained in 10-50 iterations for the geometries studied in this work. The condition number
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of the system is mesh independent, and the number of iterations required stays constant
as the discretization is refined. The errors in the fast Ewald summation are composed of
the approximation error and the truncation errors. The approximation error depends on
the Gaussian support P , as discussed in section 6.1. For the truncation errors, we have the
estimates (32) and (33) with Q as defined in (34). Using these estimates, the cutoff radius rc
and grid size M for the Ewald summation can be determined for a given ξ and error tolerance
ǫ. The work balance between real space and k-space is determined by the decomposition
parameter ξ, which can be selected to minimize the total runtime. On a given architecture,
the wall clock times trs and tse for the real space and k-space sums can be tabulated for a
parameter space, and later used for approximating the runtime required for a problem. The
cost of the real space sum with average number of near neighbors 〈|NL|〉 is O (〈|NL|〉N),
and can be tabulated for different 〈|NL|〉. The cost of the k-space sum using the spectral
Ewald method is given in (38), where the cost of each term can be tabulated separately. If
the matrix form of the fast real space summation described in section 6.2 is used, then the
cost of that is incurred only the first time, since subsequent real space computations require
only the computation of a matrix-vector product (at a negligible cost in this context). The
k-space sum, on the other hand, has to be computed once every iteration. The total cost for
a system that converges in Ngm iterations is then

twall = trs + (Ngm + 1) tse, (42)

including the extra SE call required for singularity subtraction, as discussed in section 7.1.
The process for selecting runtime parameters would then be as follows:

1. For a given tolerance ǫ, determine the corresponding rc(ξ) and M(ξ) for a range of ξ.
Also set the Gaussian support P to match ǫ.

2. Estimate trs(ξ) and tse(ξ) from rc and M using tabulated values.

3. Estimate Ngm either by solving a coarsened problem or by experience from similar
problems.

4. Minimize twall(ξ) using (42) and Ngm.

In practice, when running larger test cases on a desktop workstation with 8 GB working
memory, the benefit of having to evaluate the real space sum only once per time step is so
large that it is often useful to set rc to the maximum value such that the matrices Ajl in (39)
fit in memory. Then this rc determines ξ for a given tolerance ǫ.

8.2 Complexity

When considering complexity in N , we must first establish what we mean when we say
that N grows. We here limit ourselves to cases where the physical properties of the system
remain unchanged, which can happen either by the domain growing and the particle and
discretization density staying constant, or by the discretization density increasing for a given
system. In both cases the factor Q/V , central to the Ewald summation truncation errors,
will stay constant.

In the first case, with the domain growing at a constant particle density, N will scale
as L3 (for a cubic domain). The cutoff radius rc can then be kept unchanged, and the real

23



space sum will have O (N) complexity, since the number of near neighbors is constant. The
size M of the FFT grid will have to grow, to maintain a constant K ∼ M/L, so we will
have M ∼ L ∼ N1/3. The cost of the FFT in the k-space sum will then have complexity
O (N logN), which will also be the total asymptotic complexity.

In the second case, where the number of discretization points on a given geometry grows
with N , the cutoff radius rc will have to shrink to maintain a constant number of near
neighbors and an O (N) complexity for the real space sum. We have |NLt| ∼ Nr2c when
considering discretization points on surfaces which are cut by the rc sphere, so rc will be
required to scale as N−1/2. Considering only the exponential term of the real space error
estimate (32), we find that ξrc must stay constant to maintain the same truncation error, so ξ
must scale as N1/2. Looking at the k-space truncation error, and again only considering the
exponential part, we see that we require K/ξ ∼ M/ξ constant, which implies that M must
scale as N1/2. Again the cost of the FFT is what dominates the total asymptotic complexity,
which in this case becomes O

(
N3/2 logN

)
. This is higher than the complexity of the first case

we considered. In practice, however, one would select a per-body discretization which gives
satisfactory accuracy, and scale up the system size to simulate a system with as many particles
as possible, to avoid artifacts of the periodicity assumption. This allows us to consider the
method having an O (N logN) complexity in practice.

9 Spatial and temporal discretization

9.1 Particle geometry and quadrature

Figure 6: Examples of prolate, spherical and oblate spheroids, with respective aspect ratio
(a:c) 2:3, 1:1 and 3:2. The mesh shows the quadrature points, which in this example are
32× 32 using Gauss-Legendre and trapezoidal quadrature.

We have in this work restricted ourselves to spheroidal particles, which are defined by the
surface

x2 + y2

a2
+
z2

c2
= 1,

when viewed in a coordinate system with the origin at x
(α)
c and the z-axis parallel to the axis

of symmetry. They can be classified as being either prolate (a < c), spherical (a = c) or oblate
(a > c), as illustrated in Figure 6. It is natural to parameterize the surface of each spheroid
using spherical coordinates ϕ ∈ [0, 2π] and θ ∈ [0, π], and also to perform the numerical
integration over the surface in those coordinates using a set of m × n quadrature points.
Integration along ϕ is over one whole period of a periodic function, making the trapezoidal
rule a good choice of quadrature in that direction, due to its spectral accuracy in such a case
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[29]. In the θ direction we have applied n-point Gauss-Legendre quadrature [1, ch. 25], so
the overall accuracy should be spectral in m and n for a smooth and well-resolved integrand.

9.2 Nearly singular quadrature

The above quadrature scheme performs well when the integrand is smooth, but loses accuracy
rapidly when the integral is nearly singular. This is the case for the real space part of the
double layer potential when two bodies are close to each other, such that some xt in (40) and
(41) are close to the surface of a neighboring body. One possible way of dealing with this
is to use a floating partition of unity [7, 48], which evaluates the nearly singular part of the
problematic integral using a local polar patch for each xt. Here we have implemented a very
similar approach, using a complete rotated grid instead of a local patch. Using a rotated grid
gives a higher accuracy than a local patch, since there is no partition of unity function that
must be resolved on the grids, but is more expensive, since there is more work involved for
each xt. In this work the rotated grid approach is feasible since there are a limited number
of quadrature points on each particle.

When evaluating the double layer potential from a spheroidal particle with surface Γ at
a point x where the integral is nearly singular, we first find the projection xp ∈ Γ of x on
Γ, such that (x − xp)/‖x − xp‖ = n̂(xp) using Newton’s method. We then create a rotated
polar mp × np grid with the north pole at xp on the spheroid, using the same quadrature
rule as on the original grid, but with the θ direction quadrature points clustered closer to
the pole by a sinh transformation [25]. This is to resolve the rapidly varying integrand in
the nearly singular region4. The double layer density q is interpolated from the base grid to
the rotated grid using a global interpolation scheme, with barycentric Lagrange interpolation
[4] in the θ direction and trigonometric interpolation in the ϕ direction. The real space part
of the doubler layer potential at x is then evaluated using the points on the rotated grid
and the corresponding interpolated density values. Interpolating the density to the rotated
grid points and then evaluating the potential at x using those points is quite costly, since it
has to be done for every point x which is close to Γ. The whole operation can however be
precomputed and stored in the real space interaction matrix A described in section 6.2, so
the extra work from the nearly singular points only incurs an extra cost at the first GMRES
iteration.

Our implementation of this scheme allows for a hierarchy of thresholds di, such that the

potential at x is evaluated using an m
(i)
p × n

(i)
p rotated grid if the distance d(x) between Γ

and x satisfies di−1 ≤ d(x) < di. The thresholds and grid sizes must be tuned to the desired
accuracy. As an example, we consider a setup in a unit cube where the Ewald and quadrature
parameters have been tuned to achieve an error of around 10−4, and the particle in question
is an oblate spheroid with (a, c) = (0.05, 0.1) and 162 quadrature points. The thresholds
used are (d0, d1, d2) = (1, 0.5, 10−5) · c, and the corresponding grids are (162, 322, 642). We
measure the error by evaluating the stresslet identity (10) at a large number of random points
distributed in layers around the particle, and graph the largest error observed in each layer
versus the distance between the layer and the surface. The results, shown in Figure 7, show
that the accuracy of the baseline quadrature scheme deteriorates rapidly as one approaches
the particle, but that the errors can be controlled quite well by using rotated grids.

4A similar approach, but using a floating partition of unity instead of a complete rotated grid, was used by
Zhao et al. [49] to resolve close interactions when simulating flowing blood cells.
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Figure 7: Largest observed error when evaluating the stresslet identity (10), which should
evaluate to zero, at a distance d from the particle surface, using both the original grid and
the rotated grid. The particle is an oblate spheroid, (a, c) = (0.05, 0.1), with 162 quadrature
points. The left and right plots contain the same data, but with different scaling on the
x-axis.

9.3 Time stepping

We have so far only discussed how to compute the double layer density q and the rigid body
motion vectors U(α) and Ω(α) for a given geometry of particles. However, to simulate the
sedimentation of particles, we also need to move them forward in time. This is naturally done
using a Lagrangian representation of the rigid body motion of the particles. For each particle

it is then sufficient to keep track of the centroid position x
(α)
c (t) and the coordinate frame

vectors D(α,i)(t), i = 1, 2, 3, describing the angular position of the particle. Their evolution
is described by an ODE,

dx
(α)
c

dt
= U(α)(t),

dD(α,i)

dt
= Ω(α)(t)×D(α,i)(t), i = 1, 2, 3,

where U(α)(t) and Ω(α)(t) are a function of x
(α)
c (t) and D(α,i)(t). This system can readily be

solved using a numerical time stepping method. However, to make the rigid body rotations
preserve the orthonormality of the coordinate frame vectors over time, we choose to formulate
them using unit quaternion operations (described in Appendix A). We then let the unit
quaternion ~ζ(α)(t) represent the rotation of a particle since the initial state, such that

D(α,i)(t) = Z
(
~ζ(α)(t)

)
D(α,i)(0),

where Z(~ζ) is the rotation matrix corresponding to ~ζ. The ODE which we need to integrate
in time is then

dx
(α)
c

dt
= U(α)(t),

d~ζ(α)

dt
=

1

2
[0,Ω(α)(t)] ∗ ~ζ(α)(t),
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where ~ζ(α)(0) = [1,0] and ∗ is the quaternion product. In this work we solve this using
the Bogacki-Shampine 3(2) method [5], which is a third order Runge-Kutta method with an
embedded second order formula used for estimating the local time stepping error. The time
step ∆t is adaptively adjusted to keep the error estimate below a given tolerance.

10 Numerical results

10.1 Validation

Periodic array of spheres

To validate our method, we begin by computing the sedimentation velocity on a simple cubic
(SC) array of spheres (see Figure 8a). The primary cell then contains a single sphere of
radius a, subject to a gravitational force F . The sedimentation velocity U is computed by
solving (40), and the drag coefficient K is then computed as K = F/6πµaU . This is a
well-studied problem, and reference values of K for different concentrations ρ = 4πa3/3V are
available from Zick & Homsy [50] and Sangani & Acrivos [42]. The same problem was used
by Leiderman et al. [30] to validate their regularization method for the periodic single layer
potential, and by Sierou & Brady [44] for their accelerated Stokesian dynamics (ASD).

The system is solved to high precision (ǫ = 10−12 for GMRES and Ewald summation), to
isolate quadrature errors. Furthermore, the directions of the gravitational force and axis of
symmetry of the sphere are randomized (and not parallel), in an attempt to avoid any errors
being hidden by symmetries of the problem. The results are presented in Table 1 together
with the reference values Kref, which are presented in the precision tabulated in the original
sources [42, 50]. We see that we get very close to the reference values when using 64 × 64
points on the sphere, which we take as evidence that our computations are correct. We also
note that the errors increase with the concentration for both quadrature methods, meaning
that the problem gets harder to solve the more tightly packed the spheres are. This was also
observed in [30].

ρ 8× 8 16× 16 32× 32 64× 64 Kref

0.000125 1.0963 1.0963 1.0963 1.0963 1.096

0.001000 1.2121 1.2121 1.2121 1.2121 1.212

0.014137 1.6998 1.6999 1.6999 1.6999 1.7000

0.065450 2.8416 2.8418 2.8420 2.8420 2.8420

0.113097 3.9736 3.9731 3.9737 3.9738 3.9738

0.179594 5.9988 6.0014 6.0037 6.0040 6.004

Table 1: Computed drag coefficientsK for periodic array of spheres at different concentrations
ρ, compared to reference values Kref, for m× n quadrature points.

Spheres in a line

As a second validation test, we consider a test case which was studied in free space by Tran-
Cong & Phan-Thien [46] using the boundary element method and, more recently, by Wilson
[47] using a modification to the method of reflections. Three spheres of radius a are positioned
along a straight line in the xy plane, with center-to-center distances as. They are subject to
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a gravitational force f = −6πaµẑ, which would produce a unit Stokes velocity Us = 1 on an
isolated sphere. The outer spheres sediment with a vertical velocity U1 and rotate with an
angular velocity Ω, while the center sphere sediments with a vertical velocity U0 and does not
rotate.

The results available in the literature for this test problem are for three particles in free
space, while our method computes the flow in periodic particle systems. However, the periodic
results should converge to the free space results as the ratio between the radius a and the
periodic box size L goes to zero. To test this, we set up the case in a periodic box and
compute the velocities for different a and for s = 2.05 and s = 2.10, using 32× 32 quadrature
points on each sphere. In Table 2 we present our results together with the numerical values
reported by both Tran-Cong and Wilson, as tabulated by Wilson. The values presented are
the dimensionless drag Di = Us/Ui and the dimensionless angular velocity Ω = |Ω|/(Us/a).
For the smallest ratio of radius to periodic length all values are equal (in the presented
precision) to those reported by Wilson in the free space case, except for the fourth decimal
in the angular velocity at s = 2.05, which is also the most difficult of the two cases, since
the separation is smaller (only 1/20 of a radius). It is worth noting that the angular velocity
appears to be much less dependent on a/L ratio than the drag coefficients.

s = 2.05 s = 2.10
D0 D1 Ω D0 D1 Ω

a/L = 10−2 0.5837 0.6631 0.1932 0.5891 0.6698 0.1918
a/L = 10−4 0.5564 0.6280 0.1932 0.5613 0.6340 0.1918
a/L = 10−6 0.5561 0.6277 0.1932 0.5610 0.6337 0.1918
a/L = 10−8 0.5561 0.6277 0.1933 0.5610 0.6337 0.1919

Wilson 0.5561 0.6277 0.1934 0.5610 0.6337 0.1919
Tran-Cong 0.557 0.629 0.197 0.562 0.634 0.192

Table 2: Dimensionless drag Di and angular velocities Ω for three spheres of radius a in a
line with center separation as, computed in a periodic box of size L3 and compared to free
space results by Wilson [47] and Tran-Cong [46].

10.2 Convergence

Periodic array of spheres

To quantify our observations from the first validation test, we continue to work with the
SC array of spheres, and measure the order of convergence in the drag coefficient K as the
number of grid points in both directions on the surface is successively doubled. We do this for
m = n = 8, 16, 32, 64 and concentration ρ = 10−p, p = 1, ..., 6, and measure the relative error
as er(n) = |K(n)−K(2n)| /K(2n). The results, graphed in Figure 8b, show a clear third
order convergence in h = 1/n, with an error constant that increases with the concentration
ρ. To explain this one can view the singularity subtraction (12) as only removing the first
term of a series expansion of the source density around the singularity. The remaining leading
order term that will contribute to the quadrature error is then O (h). The average quadrature
weight at a point is O

(
h2
)
, so the final error term will be O

(
h3
)
. To illustrate the interplay

between the polynomial convergence from the singularity and the spectral convergence from
the quadrature of the smooth parts, we redo the computations for m = n = 3, ..., 16 and com-
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pute the error compared to a highly resolved reference value, er(n) = |K(n)−Kref | /Kref .
In Figure 8c one can clearly observe the spectral convergence before the polynomial error
starts to dominate, again with an error that increases with concentration ρ.
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Figure 8: (a) Simple cubic array of spheres, concentration ρ = 0.18. (b) Error in drag
coefficient measured as difference between refinements, compared to h3 reference line. Con-
centration ρ increases by factors of 10 from 10−6 (bottom) to 10−1 (top). (c) Error measured
against reference solution for small n, showing how the polynomial error starts to dominate
over the spectral error at a some point.

Velocity components

As a final convergence check, we study the components of U(α) and Ω(α), computed by (7)
and (8), for two prolate bodies (aspect ratio 3:4) sedimenting in the primary cell, shown in
Figure 9a. Figure 9b displays the relative error, measured between successive refinements, in
all components as m = n = 8, 16, 32, 64. Results are satisfactory, showing h3 convergence in
all 12 components for n ≥ 16.
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Figure 9: (a) Configuration of sedimenting prolate bodies. (b) Relative error, measured
between refinements, in all six translational (◦) and rotational (·) components of sedimenting
prolate bodies, compared to h3 reference (- -).
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10.3 Sedimentation

Symmetric motion

As a numerical experiment for illustrating sedimentation dynamics, we consider a setup of
eight oblate bodies with axes a = 1/10 and c = 1/20 in a cubic primary cell, L = 1, all subject
to a downward gravitational force f = −6πaµẑ. At time t = 0 the bodies are horizontally
aligned in two layers, separated by a vertical distance of 0.5 and symmetrically oriented
around the vertical line x = y = 0.5, at a distance r = 0.2

√
2 and r = 0.3

√
2 from it (see

Figure 10b). The bodies are discretized using 16×16 points. The resulting system has a total
of 6144 unknowns and is solved to a tolerance ǫ = 10−4, which takes around 20 iterations with
GMRES. The Runge-Kutta scheme, also using a tolerance of ǫ = 10−4, requires three solves
per time step, which takes around 5–10 seconds on a quad-core desktop computer, depending
on how many points are close enough to require evaluation using rotated grids.

This highly symmetrical setup results in a periodic sedimentation behavior, shown in
Figures 10a and 10c. We observe that the symmetries are well preserved by the numerical
method over several periods, as the vertical velocities w(t) and orientations θ(t) of all 8
particles collapse onto the same lines in Figure 10a, and return to their initial values after one
period of length T ≈ 10.24. The motion of the particles is very similar to the tumbling orbits
observed by Jung et al. [26] for sedimenting spheroids in free space, both in experiments and
simulations.
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Figure 10: (a) Vertical velocity w(t) and angle θ between symmetry axis and ẑ(t) during
periodic tumbling. (b) Symmetric initial configuration of 8 particles. (c) Snapshots of
particles’ tumbling motion.

We next break the initial symmetries of the above setup of particles by moving one particle
horizontally to a distance r = 0.25

√
2 from the center line, see Figure 11b. The resulting mo-

tion, shown in Figures 11a and 11c, quickly deviates from the one observed for the completely
symmetric setup and becomes seemingly chaotic. However, the diagonal symmetry which is
still present in the horizontal plane is preserved under the motion, which can be seen in Fig-
ure 11a, where the motions of 8 particles are described by 6 unique velocity and orientation
curves. As the chaotic sedimentation motion develops, the particles start to form a cluster
which sediments faster than the average velocity during the periodic motion. This behavior
is also observed in simulations of sedimenting fibers, see for example Butler & Shaqfeh [8].
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Figure 11: (a) Vertical velocity w(t) and angle θ between symmetry axis and ẑ(t) during
chaotic sedimentation. (b) Initial configuration of 8 particles with broken symmetry. (c)
Snapshots of particles’ motion, which exhibits chaotic behavior.

Chaotic motion

Figure 12: Completely unstructured motion at t = 3 (right) for 64 oblate particles, starting
from perturbed initial positions and random orientations (left).

We extend the above case with sedimenting oblate bodies to a box of dimension (2, 2, 2),
containing 64 bodies with 16 × 16 quadrature points, random initial orientations and initial
positions which are randomly perturbed from an equispaced setup. Using the same computer
and tolerance as above, the solution now takes around 40 seconds per time step and the
number of GMRES iterations per equation solve is the same as for 16 particles, so the scaling
and conditioning are good. In the solution we note that the particles quickly develop a
chaotic, tumbling motion. The tendency of the oblate particles is to form aligned pairs,
which sediment rapidly before breaking up. We also observe a tendency of the particles to
form groups or clusters containing several particles, sedimenting more rapidly than isolated
particles. However, the particles tend to get very close to each other during the process, which
presents a problem to our numerical scheme. As the shortest distance between two colliding
particles becomes very small (O

(
10−5

)
), two things tend to happen: First, the interactions
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get very hard to resolve, even using the rotated grid scheme, causing large variations in the
particle velocities even for small movements. Second, the time stepping algorithm tends to
overstep, causing the particle surfaces to overlap before the step is rejected. These two factors
make the time stepping algorithm adjust the time step ∆t to a very short (O

(
10−5

)
) length,

which in practice causes the computation to stall. This could be improved by developing a
quadrature method that is able to accurately handle the interactions of very close particles,
minimizing the numerical errors that cause the particle velocities to fluctuate as the particles
make only small movements. The numerical time stepping scheme would then be able to better
select a suitable time step. If this remedy is not sufficient, then implicit or semi-implicit time-
stepping strategies must be investigated. This would however incur a substantial extra cost
in each time step.

11 Conclusions

In this paper we have presented a method for simulating sedimentation in periodic particle
suspensions where the long-range particle interactions are computed using a fast O (N logN)
algorithm, given an underlying quadrature scheme. The method is based on a boundary
integral formulation using the double layer (stresslet) potential, which results in a system
that is well-conditioned and converges rapidly under iterative solution using GMRES. We
have discussed the periodic properties of the stresslet, and derived an expression for the
k = 0 component to eliminate the mean flow which arises from the periodic formulation. The
computations of the periodic potential are performed using the spectral Ewald method, which
we have adapted for use with the stresslet. We have developed predictive truncation error
estimates for the Ewald decomposition of the stresslet, and described how these estimates are
used to optimize the efficiency of the computations.

Using a basic quadrature scheme and applying the method to a number of test problems,
we find that the method performs well both in terms of efficiency and accuracy; the method
is well-conditioned and scales well when introducing more particles. The results are also in
accordance with available reference data for a number of test cases. The dominating error of
the method is O

(
h3
)
and comes from the singularity in the double layer potential, which is

treated by singularity subtraction. The singularity subtraction only works for target points
on the surface of the same particle, and not for nearby points on neighboring particles or in
the domain. For this nearly singular case we have implemented a method of rotated grids,
which is able to resolve rather close interactions well, but comes at a high computational cost.
Still, the combination of well-known quadrature and time-stepping algorithms implemented
in this work struggles as particles get very close to each other.

A natural direction of continued work will be to develop efficient quadrature techniques
that can very accurately handle both the singular and nearly singular behavior of the double
layer potential, also for very small separation distances. Together with an adaptive time
stepping procedure, this should enable the method to be used for flows where the particles
cluster close together and nearly collide. The framework presented here is both efficient and
has favorable scaling properties, and with the above mentioned improvements, large scale time
dependent simulations of particle suspensions should be made possible. This will allow the
study of suspension dynamics and its dependence both on concentration and particle shape.
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Appendix A Quaternion operations

A unit quaternion ~q describing a 3D rotation can be written as [43]

~q = [s,v],

where s ∈ R, v ∈ R
3 and

|~q| =
√
s2 + v21 + v22 + v23 = 1.

The corresponding rotation matrix is

Z(~q) =




1− 2v22 − 2v23 2v1v2 − 2sv3 2v1v3 + 2sv2
2v1v2 + 2sv3 1− 2v21 − 2v23 2v2v3 − 2sv1
2v1v3 − 2sv2 2v2v3 − sv1 1− 2v21 − 2v22


 .

When simulating rigid body motion, one can let ~q(t) represent the angular position of a body
with angular velocity ω(t). The time evolution of ~q(t) is then governed by an ODE [36],

d~q

dt
=

1

2
[0,ω(t)] ∗ ~q(t),

~q(0) = [1,0],

which can be integrated in time using an explicit method. The quaternion product (∗) is
defined as

~q3 = ~q1 ∗ ~q2 = [s1s2 − v1 · v2, s1v2 + s2v1 + v1 × v2],

and has the properties that |~q3| = 1 and that ~q3 represents the sequence of rotations,

Z(~q3) = Z(~q1)Z(~q2).

Applying a sequence of orthonormal rotation matrices will in limited precision result in a
matrix that is not orthonormal, and there is no well-defined way of re-orthnormalizing a
rotation matrix. When using quaternions one applies the sequence of rotations as quaternion
products, and computes the rotation matrix using the final result. The rotation matrix is
then guaranteed to be orthonormal. The quaternion product can still drift away from unit in
finite precision, but the re-normalization is then well defined as ~q → ~q/ |~q|.
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