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Abstract—A new unique class of foldable distance transforms of digital images (DT) is introduced, baptized: Fast exact euclidean

distance (FEED) transforms. FEED class algorithms calculate the DT startingdirectly from the definition or rather its inverse. The

principle of FEED class algorithms is introduced, followed by strategies for their efficient implementation. It is shown that FEED class

algorithms unite properties of ordered propagation, raster scanning, and independent scanning DT. Moreover, FEED class algorithms

shown to have a unique property: they can be tailored to the images under investigation. Benchmarks are conducted on both the Fabbri

et al. data set and on a newly developed data set. Three baseline, three approximate, and three state-of-the-art DT algorithms were

included, in addition to two implementations of FEED class algorithms. It illustrates that FEED class algorithms i) provide truly exact

Euclidean DT; ii) do no suffer from disconnected Voronoi tiles, which is a unique feature for non-parallel but fast DT; iii) outperform any

other approximate and exact Euclidean DT with its time complexity OðNÞ, even after their optimization; and iv) are unequaled in that

they can be adapted to the characteristics of the image class at hand.

Index Terms—Fast exact euclidean distance (FEED), distance transform, distance transformation, Voronoi, computational complexity,

adaptive, benchmark

Ç

1 INTRODUCTION

UNTIL today, throughout almost half a century since the
pioneering work of Rosenfeld and Pfaltz [1], [2],

research on distance transformation (DT) has remained chal-
lenging and continuously new methods and algorithms are
being proposed (cf. [3]). In parallel with research on the fun-
daments of DT, a still continuing avalanche of applications
emerged, which emphasizes the ever remaining importance
of DT, also in current image processing. DT can be applied
in a range of settings, either on their own or as an important
intermediate or auxiliary method in many applications [4],
[5], [6], applied by both academics and industry [7]. DT
have been applied for (robot) navigation and trajectory plan-
ning [4], [8], sensor networks [9], tracking [10], and, in par-
ticular, biomedical image analysis [4], [11], [12].

A DT [1] calculates an image, also called a distance map
(DM). Distance is a fundamental notion with such functions.
Therefore, we first define the Lp distance metric:

dpðx;yÞ ¼
�Xn

i¼1

jxi � yijp
�1=p

; (1)

where x and y are n-tuples, i is used to denote their n coor-
dinates (or dimensions), and 1 � p � 1 [13], [22], [24]. The

Lp distance metric can be defined in an n-dimensional space
(see (1)). With DT often a two-dimensional (2D) [27] or
three-dimensional (3D) space is required [28], [29], as most
digital images are 2D or 3D. Moreover, most applications
that use DT run on sequential architectures (cf. [30]). There-
fore, we limit this paper to 2D DT on sequential architec-
tures. The value of each pixel p is its distance (D; i.e.,
according to a given distance metric, see (1)) to a given set
of pixels O in the original binary image:

DMðpÞ ¼ minfDðp; qÞ; q 2 Og: (2)

The set pixels here is called here O because it often consists
of the pixels of objects. However, it might as well consist of
either background pixels or data points in a certain feature
space. Although (2) is straightforward it is hard to develop
an algorithm with a low time complexity [5], [31], [32]. The
number of operations depends on the image content in
addition to the image size and results to a time complexity

up to OðN2Þ [5], with N ¼ n�m, n and m being the size of
the two dimensions of a 2D image.

DT algorithms can be classified in three broad classes,
similar to mathematical morphology algorithms. This tax-
onomy is adopted from Fabbri et al. [5]. Its classification of
DT algorithms is determined by the order in which they
process pixels:

1) Ordered propagation (P). Computation of the minimal
distance starting from the object pixels and progres-
sively determining new distance values to back-
ground pixels in order of increasing distance.

2) Raster scanning (R). 2D masks are used to process
pixels line by line, top to bottom and, subsequently,
in reversed order.

3) Independent scanning (S). Each rowof the image is proc-
essed independently of each other. Subsequently, each
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column of that image is processed independently of
the other columns, to produce the final DT. Note that
the values of the intermediate image cannot be
regarded as distances.

For an exhaustive survey on 2D DT, we refer to Fabbri et al.
[5] or, alternatively, for a concise definition of DT and their
main properties, we refer to Section 2 of Maurer et al.[6].
For reasons of brevity, we will refrain from repeating this
work. In contrast, this paper introduces an alternative
approach for euclidean distance transform (EDT), as was
introduced by Schouten and Van den Broek [26]: the fast
exact euclidean distance (FEED) transformation. As we will
explain in this paper, this EDT cannot be assigned to one of
these three classes of DT and, as such, FEED launches a new
class of DT.

To enable a proper positioning of the work presented in
this paper, we will denote the field’s origin and introduce
some of its baseline DT, which are still used frequently
and, par excellence, are examples of raster scanning (R).
Next, we will briefly touch the less frequently investigated

ordered propagation algorithms (P). Last, we will discuss
three state-of-the-art independent scanning algorithms (S),
as were presented in the last decade. For complete struc-
tured overviews of the work on DT, we refer to recent sur-
veys such as that of Fabbri et al. [5] and, for an industrial
perspective, that of Van den Broek and Schouten [7]. For
an overview of the DT employed in the current paper, we
refer to Table 1.

Rosenfeld and Pfaltz [1] introduced the first fast algo-
rithms for the city-block and chessboard distance metrics in
1966. Two decades later, Borgefors [14] extended them to
Chamfer DT, which provide better approximations to the L2

metric. These three metrics have in common that they all use
raster scans over the image to propagate distance using local
information only. However, as the tiles of the Voronoi dia-
gram are not always connected sets on a discrete lattice [33],
[34], the (exact) euclidean distance transform cannot be
obtained by raster scans. Therefore, more complex propaga-
tionmethods have been developed to obtain the golden stan-
dard: the EDT (e.g., [4], [17]). The euclidean metric (dE) is

TABLE 1
Ten Distance Transforms (DT), Including i) Three Baseline DT (b) that Are Well Known Baseline Algorithms, ii) Three Approximate

Euclidean DT (EDT) (a), and iii) Four Exact EDT (�), Including the FEED Class Algorithms

reference T C code description and notes

[1], [2] 1966, 1968 Rosenfeld and Pfaltz b R CH11 One of the first DT, which marked the start of a new
field of research. It provides a crude but fast approxi-
mation of the ED. See also Section 1.

[15] 1980 Danielsson a R 4SED A vector value is used during both initialization and the
two scans over the image. The norm of the vector
denotes its distance. The two scans both require three
passes over each row. Danielsson himself showed that
in the worst case his algorithm only results in an error,
which is a fraction of the grid constant.

[13], [14] 1984 1986 Borgefors b R CH34 An instance of a well known class of non-exact DT,
which has proved to be very fast. It can be optimized on
the application at hand and the trade off between
computational complexity and accuracy. Consequently,
this class is still among the most often used DT [7].

[16] 1988 Ye a R 4SEDþ Implementation improvement of Danielsson’s 4SED
[15], which saves the squared integers that are needed
for the minimum operator in a separate matrix.

[17] 1998 Coiras, Santamaria,
and Miravet

b P HexaD A combination of city-block (CH11) and chessboard
growth (cf. [1], [2]). It provided an algorithm for the
empirical hexadecagonal growth presented in [18]. It
approximates the EDT better than the Chamfer 5, 7, 11
model [14].

[6], [11] 2003 Maurer, Jr., Qi and Raghavan � S Maurer See Section 1 for its description. All speed optimaliza-
tions proposed in [6] have been implemented.

[19], [20] 2004 Shih and Wu a R EDT-2 Uses 2 scans with a 3� 3 neighborhood over the image.
During the scans it saves squares of intermediate EDs
for each pixel. The authors claimed that their algorithm
provided exact EDT; however, Van den Broek et al. [7],
[21] showed that their can algorithm can provide errors.

[22] 2007 Coeurjolly and Montanvert � S SEDT See Section 1 for its description. Originally indepen-
dently developed by Hirata [23] and Meijster et al. [24].

[25] 2009 Lucet � S LLT� See Section 1 for its description. Optimized implemen-
tation; that is, the division by 2 is replaced by multipli-
cation elsewhere; consequently, all the calculations
could be done in integer arithmetic.

[26] 2004 Schouten and Van den Broek � ! FEED New class of 2D EDT briefly introduced in [26] and
properly introduced in the current article.

CH11 and CH34 denote respectively the city block (or Chamfer 1,1 Distance) and the Chamfer 3,4 Distance [13], [14] A brief introduction to them is provided
including their reference, the author(s), type (T), class (C) code (name), a brief description, and notes. The DT classesR, P, and S denote respectively: raster
scanning, ordered propagation, and independent scanning (see also Section 1).
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directly derived from (1) with p ¼ 2. Finding the DT with
respect to the euclideanmetric is, even in 2D, rather time con-
suming (cf. [31], [32]). However, throughout the last decade
several algorithms have been introduced that provided the
EDT in reasonable time (e.g., see Table 1 and [5], [7]).

In 2003, Maurer, Qi and Raghavan [6], [11] obtained an
exact EDT, based on dimensionality reduction and partial
Voronoi diagram construction (cf. [35]). Their work improved
on similar work published eight and five years before [36],
[37], [38]. In 2007, Coeurjolly and Montanvert [22] presented
algorithms to solve the reverse EDT, again similar to the work
just mentioned. More recently, in 2009, Lucet [25] presented
several sequential exact EDT algorithms, based on fundamen-
tal transforms of convex analysis (e.g., the LLT algorithm).
These approaches all use dimensional decomposition, that is
they start by processing each row independently of the other
rows. Hence, these recent algorithms all belong to the class of
independent scanningDT.

This paper continues the work on FEED [26] in Sections 2,
3, 4, and 5 and, as such, introduces a new class of DT. First, in
Section 2, we will introduce the principle of FEED. Next, in
Section 3, several strategies for the implementation of FEED
class algorithms will be introduced. Section 4 will introduce
the generic FEED class of algorithms followed by Section 5
that will show how FEED class algorithms can be adapted to
the set of images at hand. With execution time / complexity
and precision being the core features of EDT, both are
assessed in an exhaustive benchmark, which is presented in
Section 6. This benchmark includes the most important DT
claimed to be both fast and exact and compares themwith the
two FEED class algorithms introduced in the previous section.
Wewill end this paper in Section 10with a concise discussion.

2 PRINCIPLE OF FEED CLASS ALGORITHMS

Let us define a binary f0; 1g matrix IðpÞ with p 2 f1; . . . ;
ng � f1; . . . ;mg, O ¼ fp j IðpÞ ¼ 0g being the set of object
pixels, and B ¼ fp j IðpÞ ¼ 1g being the set of background

pixels. Then, according to (2), the squared ED map (EDM2)
of I is the n�mmatrix

EDM2ðpÞ ¼ min
q
fjjp� qjj2 j q 2 Og: (3)

In the FEED class, this is achieved by letting each object
pixel feed its ED2 to all pixels in the image and letting each
pixel in the image take the minimum of all the received val-
ues. Its naive implementation is as follows:

init : EDM2ðpÞ ¼ if p 2 O then 0 else n2 þm2;
feed : for each q 2 O;
receive : for each p 2 I;

EDM2ðpÞ ¼ minðEDM2ðpÞ; kp� qk2Þ:
(4)

This naive algorithm achieves the correct result; but, it is
also very slow. Fortunately, several methods are available
to speed up this naive algorithm considerably. The three
basic methods are the following:

� When all the four four-connected neighbors of a
q 2 O are also object pixels (i.e., 2 O); then, each
background pixel is closer to one of those neighbors

than to q itself. Therefore, one can restrict the feeding
pixels in (4) to the border pixels of O, denoted by
BðOÞ (i.e., those object pixels that have at least one of
their four-connected neighbors in the background).

� Further consider a b 2 BðOÞ and let q 2 O be any
other object pixel, then the receiving pixels p in (4)

can be restricted to those with property jjp� bjj2 �
jjp� qjj2. Those pixels p are on or on one side of a
straight line: the bisection line between b and q,
which is illustrated in Fig. 1a. By taking other
object pixels q into account, the pixels p to which b
has to feed can be restricted to those that lie within
a certain area Ab, see Fig. 1b for a graphical expla-
nation of this.

� In principle, each area Ab can be minimized, contain-
ing solely the background pixels, which have smaller
or equal distance to the considered b 2 BðOÞ than to
any other object pixel. However, in general, the time
needed to locate these areas will be larger than the
time gained by having to feed fewer pixels, because
each feed requires only a small number of opera-
tions. Therefore, the process of taking more and
more qs into account to minimize an area has to be
stopped when the area is small enough. That is,
when a further reduction does not decrease the exe-
cution time. Moreover, the order in which the qs are
considered is important for the execution time, the
ones closer to the minimal area give larger size
reductions of Ab.

With these three speed ups taken into consideration, we
define the basic FEED class:

init : EDM2ðpÞ ¼ if p 2 O then 0 else n2 þm2 ;
feed : for each b 2 BðOÞ;
receive : determine a suitable Ab;
update : for each p 2 Ab;

EDM2ðpÞ ¼ minðEDM2ðpÞ; kp� bk2Þ:

(5)

The determination of a suitable Ab requires the develop-
ment of strategies to search for the object pixels qs that give
the largest reduction of Ab. The gain that can be achieved in
this way depends on the distribution of the object pixels
over the image. The same is valid for the parameters that
determine when to stop reducing the size of Ab. The most
efficient strategy has to be experimentally determined on a
representative sample of the kind of images one wants to
process for a given application. Hence, from the basic FEED
class defined in (5), various distinct FEED class algorithms
can be derived. These tailored FEED class algorithms, all
providing exact EDMs, are adapted to the type of images
such that their execution time is minimized.

3 STRATEGIES FOR FEED CLASS ALGORITHMS

In this section, we will describe a number of strategies for
FEED class algorithms. Both the merit and the implementa-
tion of these strategies will be discussed.

3.1 Bisection Lines

For each border pixel b, a local ðx; yÞ coordinate system is
defined, with the origin in b, the x axis aligned with the
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rows and the center of each pixel being on integer coordi-
nates ði; jÞ. An object pixel q then gives the bisection line
defined by

2qixþ 2qjy ¼ �
q2i þ q2j

�
: (6)

So, a bisection line can simply be presented by the pair
ðqi; qjÞ. For the basic FEED class (5), only the integer coordi-
nates of the pixels are of importance. Further, the pixels on
the bisection line defined by (6) need to be fed by b xor q,
not by both of them. For example, a test on the y coordinate
of q can achieve this. This leads to an adapted equation for
the bisection line:

qixþ qjy ¼ ½int� �q2i þ q2j þ ud
�
= 2;

ud ¼ if qj � 0 then 0 else� 1;
(7)

where ½int� is the truncation to integer values and ud abbre-
viates up-down.

Pixels p that satisfy Dðp; bÞ � Dðp; qÞ need to be fed by b.
Subsequently, they are defined by

qipi þ qjpj � ½int� �q2i þ q2j þ ud
�
=2: (8)

Note that these equations also imply that all calculations for
FEED class algorithms can be done in integer.

3.2 Line Search Strategy

The search for object pixels q is done along search lines start-
ing at b defined by ði; jÞ ¼ k ðmi;mjÞ, withmi andmj being
minimal integers and k the running (integer) index starting
at 1. Then, the equation of the bisection line for an object
pixel q at kðmi;mjÞ becomes:

mixþmjy ¼ ½int��k �
m2

i þm2
j

�þ ud
�
=2: (9)

As soon as an object pixel is found at a certain k, further
searching along the line can be stopped. Additional object
points would result in bisection lines that are parallel to the
first bisection line; hence, they can not decrease Ab further.
As an example, in Fig. 1b the object pixel q is on the search
line ði; jÞ ¼ kð2; 1Þ at k ¼ 4. Note that not all the pixels on a
search line have to be checked for being an object pixel. An
informed search can be employed using certain step size,
depending on the expected size of the objects in the images.

Search lines are usually employed in groups, derived
from a given positive n consisting of the lines kð	n;	mÞ
and kð	m;	nÞ with 0 < m < n and m and n have no com-
mon divisor other than 1. Such a group is further denoted
by kfmg; for example, kf4g consists of the lines kð	4; 	1Þ,
kð	1;	4Þ, kð	4;	3Þ and kð	3;	4Þ.

Searching along some chosen search lines is usually
divided into two steps: i) In a small area around b because
object pixels found there give the largest reduction in Ab

and ii) When the size of Ab is not small enough, possibly
after other searches, the search is further continued along
the chosen search lines.

3.3 Bounding Box

For various reasons, it is efficient to keep a bounding box bb
around (the possibly complex shaped) Ab, instead of using
an exact representation. The area of a bb can be calculated
quickly and can be used to determine whether or not to
stop the process of finding a smaller Ab. As described in the
previous section, searching along a line can be stopped
when it is not possible to further reduce the size of Ab. The
fastest check for this is to use the corner of bb in the same
quadrant around b as where the search line is.

For each new bisection line, its intersections with bb can be
quickly calculated to determine whether or not it reduces the
size of bb. This is graphically illustrated in Fig. 2a, where

Fig. 1. Using the rotational invariance of the ED2 metric. Black circles indicate object pixels, the other circles are background pixels. (a) Only pixels on
and to the left of the bisection line between the border object pixel b and the object pixel q have to be fed by b, they are indicated by gray circles. (b)
Using four additional bisection lines.
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bisection lines b2 and b3 change bb but b1 does not. Note that
after the change of bb by b3, b2 could have been used to
reduce bb further. Also intersections between bisection lines
can be used to reduce bb as is shown in Fig. 2a by the intersec-
tion of b1 and b3. The bb is also used in the receiving and
update steps of (5), as is illustrated in Fig. 2b. For each row,
the intersections with the bisection lines are used to deter-
mine the pixels to be fed by b. Thus, in fact only the pixels
inside the complex shapedAb are filled.Moreover, not all the
bisections lines have to be used, which enables theminimiza-
tion of the total execution time of FEED class algorithms.
When bb is small enough, it is faster not to use the bisection
lines; hence, the whole rectangular shaped bb is filled.

3.4 Border Pixels

Border pixels are located during a single raster scan over the
image. A border pixel b is only processed after a possible
next one in the same row is determined. Then, there is suffi-
cient information available for a first determination of the
horizontal extent of the first bb.

An auxiliary vector can be used to determine the vertical
extent of bb. Then, for each column of this vector, the row
number of the last processed border pixel is remembered.
Together with the status of the pixel directly below the bor-
der pixel this gives a fast determination of the lower side of
bb. For locating the top of bb, a line search in the vertical
direction (kð0; 1Þ), which to be made that can be divided
into two steps.

3.5 Quadrant Search Strategy

For images with a low percentage of object pixels (e.g., ran-
dom dot images) or object images with a low number of
small objects, the line search strategy alone might not be
very efficient. For such images, the quadrant search strategy
can be used effectively.

A search is performed along the horizontal line through b
using increasing distances x from b, for object pixels in the
vertical direction. For finding object pixels below the row
of b, use is made of the auxiliary vector mentioned in the
Section 3.4. Further, an additional auxiliary vector is used to
store a possible found object pixel above a processed b as is
also described in Section 3.4.

For each quadrant around b, the object pixel closest to b is
kept. The search in a quadrant is stopped when a new x can-
not either improve on the current closest object pixel or
reduce the bounding box bb. Subsequently, the intersections
of the (maximal 4) bisection lines found are used to decrease
the size of bb. Last, the receiving and update steps of (5) are
performed. Note that this set of strategies is not exhaustive.
Many other (additional) strategies can be explored. For
example, i) object representation during the initialization
phase can be utilized to minimize bb; ii) for particular
shapes of Ab (e.g., single lines in horizontal or vertical direc-
tion), faster filling methods can be used; and iii) the correla-
tions between border pixels can be exploited.

4 THE FEED CLASS

In Algorithm 1, the general FEED class is presented. Section
3.4 already described both the localization of the border pix-
els (line 2) and the determination of the first bb (line 3). The
latter uses the variant of checking only the first 4 pixels above
the border pixel. Subsequently, a possible single line bb is
handled in lines 5-7, as wasmentioned at the end of Section 3.

In lines 8-10 the search for the top of the bb is continued if
needed. The ”Search kfng” operations are line searches, as
described in Section 3.2, followed by intersections with the bb
in order to (possibly) reduce its size, as described in Section
3.3. Each new bisection line intersects with all existing bisec-
tion lines, to check for further reductions of the bb. The split

Fig. 2. Using the bounding box bb. (a) The large rectangle is the original bb. Bisection line b1 between object pixels b and 1 does not change bb. Bisec-
tion line b2 decreases the size of bb as indicated by the arrow 2: Also b3 changes bb. The intersection between b1 and b3 also decreases the size of bb.
(b) The filling process: for each scanline in bb each bisection line defines a range of pixels where b should feed to. The gray pixels are fed by b.
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in two paths through the algorithm in line 16 ensures a fast
check on the existence of previously found bisection lines.

Algorithm 1. General FEED class algorithm

1: Initialize EDM2

2: for each border found in the raster scan do
3: determine first bb
4: update auxiliary vectors
5: if bb is a vertical or horizontal line then
6: FILL single line continue loop.
7: end if
8: if no top object pixel found for first bb then
9: continue search for top of bb

10: update second auxiliary vector
11: end if
12: if sizeðbbÞ < P1 then
13: FILL bb && continue loop.
14: end if
15: Search kf1g, with k � 4
16: if any object pixel found then
17: if sizeðbbÞ < P2 then
18: FILL bb && continue loop.
19: end if
20: if Ab is diagonal and sizeðbbÞ < P3 then
21: FILL diagonal && continue loop.
22: end if
23: Search kf2gwith k ¼ 1
24: if sizeðbbÞ < P4 then
25: FILL bb && continue loop.
26: end if
27: else
28: Search kf2gwith k ¼ 1
29: if sizeðbbÞ < P5 then
30: FILL bb && continue loop.
31: end if
32: end if
33: Perform quadrant search
34: if sizeðbbÞ < P6 then
35: FILL bb
36: else
37: FILL Ab

38: end if
39: end for

The “quadrant search” operation in line 33 and its auxil-
iary vectors (lines 4 and 10) are described in Section 3.5.
Note that the first auxiliary vector is also used for a fast
determination of the bottom of the first bb as described in
Section 3.4 The FILL operations of a bb, a Ab, a single line, or
a diagonal shaped Ab are described in Section 3.3.

The Pi; i ¼ 1 to 6 in Algorithm 1 are parameters, which
were adjusted to minimize the total execution time. The con-
figuration of Pi of FEED algorithms is best done by exploit-
ing the geometrical properties of the image content at hand
to reduce the 6D search space. In practice, this will often
require a manual procedure of setting all six parameters
sequentially and, subsequently, do the same in the reversed
manner. Alternatively, if needed (or preferred), a brute

force search strategy can be used on a representative sample
of the image set to determine the parameter settings. Obvi-
ously, these strategies can also be combined: The brute force
strategy can be used on top of the manual specification of
the parameters, using a window surrounding the parameter
values already chosen.

5 FEED: A CLASS OF ADAPTIVE DT

The characteristics of object like images can be employed to
developed a specialized and faster FEED class algorithm for
them. The objects have a certain extent and, thus, the line
search strategy, as described in Section 3.2, can be effec-
tively used more than for the general usable FEED class
algorithms. Also the rather time consuming quadrant search
strategy, as described in Section 3.5, can be avoided.

5.1 The General Principle

Object like images often contain a low number of border
pixels. This means that the initialization step in (5) can be
combined with determining the border pixels together with
their first bbs, as described in Section 3.4. This information is
stored in a list of borders, containing for each border its
position and the initial bb size, which requires only a mini-
mum amount of additional memory. Consequently, no scan
in the vertical direction has to be made to locate the top of a
bb (cf. Section 3.4).

An auxiliary vector can be used to store for each column
a reference to the last border in that column in the border
list. Subsequently, the top of the border’s bb is filled in when
the next border in the column is found or when there is
none. Further, it appeared to be time effective to initialize

each background pixel with the ED2 to the closest border

pixel in its row, instead of with the maximal possible ED2 in
the image. In the case of a row with no border pixels, row

pixels are initialized with the maximum ED2. This can still
be achieved with a single raster scan of the input image and

the EDM2 map; hence, with a limited amount of extra time.

5.2 The Algorithm

In Algorithm 2 the FEED class algorithm for object like
images is presented. The FILL operations of a bb, an Ab,
a single line, and a diagonal shaped Ab are described in
Section 3.3. The search operations are line searches, as
described in Section 3.2, followed by intersections with
the bb in order to (possibly) reduce its size, as described in
Section 3.3. To check for further reductions of the bb, each
new bisection line of the form kðmi;mjÞ intersects with all
existing kð	1;	1Þ bisection lines and with all bisection
lines kð	mi;	mjÞ, as described in Section 3.3.

Algorithm 2. FEED for object like images

1: Initialization combined with finding borders
2: for all borders in the border list do
3: if bb is a vertical line then
4: FILL single line && continue loop.
5: end if
6: if sizeðbbÞ < P1 then
7: FILL bb && continue loop.
8: end if
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9: Search kf1g, with k � 4
10: if Ab is diagonal and sizeðbbÞ < P2 then
11: FILL diagonal && continue loop.
12: end if
13: if sizeðbbÞ < P3 then
14: FILL bb && continue loop.
15: end if
16: Search kf2gwith k � 2
17: Continue search kf1g, with k ¼ 5 step P4

18: if Ab is diagonal and sizeðbbÞ < P5 then
19: FILL diagonal && continue loop.
20: end if
21: if sizeðbbÞ < P5 then
22: FILL Ab && continue loop.
23: end if
24: Search kf4gwith k ¼ 1
25: Continue search kf2gwith k ¼ 3 step P6

26: if Ab is diagonal and sizeðbbÞ < P7 then
27: FILL diagonal && continue loop.
28: end if
29: if sizeðbbÞ < P7 then
30: FILL Ab && continue loop.
31: end if
32: Continue search kf4gwith k ¼ 2 step P8

33: if Ab is diagonal then
34: FILL diagonal
35: else
36: FILL Ab

37: end if
38: end for

The Pi; i ¼ 1 to 8 in Algorithm 2 are parameters that can
be adjusted to tailor the algorithm to the image class at
hand and, as such, are an important part of the optimization
strategy. The values of Pi can be assessed using either a
knowledge driven approach or a data driven optimization
heuristic. This mainly depends on the images under inves-
tigation. See also Section 4 for a brief explanation of this.

6 BENCHMARKING: GENERIC OPTIMIZATION

STRATEGIES

The importance of EDT for pattern analysis and machine
intelligence is well illustrated by the impressive number of
papers that have appeared on this topic in this journal
throughout the last two decades (e.g., [6], [22], [30], [35],
[36], [38]). The algorithms each coin some important and
unique characteristics (e.g., recently nD [6], [11], time opti-
mization [6], [11], [22], and solving the medial axis extrac-
tion [22]). However, work on EDT is seldom compared with
alternatives (cf. [6], [7], [11], [22]); the work of Fabbri et al.
[5] is an exception on this.

The current paper presents a new class of EDT that is not
only both fast and exact but can also be tailored to image char-
acteristics. We have set up two benchmarks to compare the
proposed FEED class with several alternatives, which will be
introduced in Sections 7, 8, and 9. All algorithms included in
these benchmarks have been implemented according to their
description, including all known optimization strategies.

The three state-of-the-art algorithms (i.e., Maurer [6],
[11], SEDT [22], and LLT* [25]; see Table 1) all use dimen-
sional reduction by first processing one dimension of the
input image and, subsequently, the other dimension of the
resulting intermediate image. For these algorithms, the fast-
est implementation is realized through processing first the
rows and then the columns. Further, note that the order of
processing (i.e., first the rows and then the columns or vice-
versa) does not matter for the correct functionality of the
three state-of-the-art algorithms; however, it can be of influ-
ence on the execution time. To assure the optimal order of
processing for all algorithms, the fastest implementation
was chosen, which appeared to be the row-column order.

The integration of the initialization step with further
processing, resulted in an additional optimization. The
background pixels were initialized to a certain value during
the processing of the rows. This resulted in a speed up, com-
pared to the originally proposed implementations. As such,
this speed up was equivalent to how this is done with the
FEED algorithm, as described in Section 3.4. The average
speed up achieved was about 14 percent.

All optimizations have been generalized over all algo-
rithms, where possible. Consequently, variance in perfor-
mance due to differences in optimization strategies was
prevented. To aid full control of the claims made here and
facilitate the replication of the results reported here, all
source code and test sets are made available as online sup-
plementary material, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPAMI.2014.25/ accompanying this paper.

7 BENCHMARKING: THE FABBRI ET AL. DATA SET

The data sets described by Fabbri et al. [5] have been
adopted and used to compare the exact EDT, as described
in Table 1. These concern state-of-the-art algorithms, which
provide true exact ED and are the fastest currently avail-
able [6], [11], [22], [25]. As such, this replicates the work
reported by Fabbri et al. [5], with FEED added to the set of
exact EDT. These data sets used are partly available on
sourceforge.net.1 The remaining part of the data set can be
easily generated from the description. The results of the
benchmark are presented in Table 2. We will now briefly
discuss these results.

Fabbri et al. [5]’s turning line data set is par excellence
suitable to show the dependence of the execution time on
the angle of the border of an object. We generated line
images with an angle varying from 0 to 180 degrees with a
step of 5 degree. Both FEED implementations show a larger
variation in execution time over the angles than the other
exact EDT. Lines under angles of 0, 45 and 90 degrees are
processed fast by FEED (see Table 2) because each pixel has
two opposite 8-connected object pixels. Thus, Ab (i.e., the
area to be filled; see also Section 2) is reduced to a single
horizontal or vertical line or two lines under 45 degree. For
the other angles, Ab is often a much larger, wedge shaped
area. Further, the searches in FEED for object pixels at a

1. The Fabbri et al. [5] data sets are partly available at http://
distance.sourceforge.net/and partly as supplementary material, avail-
able online, of this paper.
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distance in these kinds of images will be in vain and will
only increase the execution time. Hence, FEEDwill be rather
slow on these images, especially when the image size is
large. This can be seen in Table 2 (cf. the execution times of
the turning line images of size 1;000� 1;000 (i.e., turning
lines 1) and size 2;000� 2;000 (i.e., turning lines 2)).

Table 3 also provides the execution times for the
inverse images. Then, the turning line is the background
for which the EDM have to be determined. With these
inverse line images, both FEED versions are incredibly
fast compared to the other algorithms. This can be attrib-
uted to the fact that FEED is very fast in determining
what object pixels should receive an ED of 0. Par excel-
lence, this illustrates one of the deviating characteristics
of FEED compared to the existing EDT.

Fabbri et al. [5]’s random squares data set combines the
variation in angle of the object borders with the variation in
percentage of object pixels. Here, FEED also shows a larger
variation with both angle and percentage of filling than the
other algorithms. However, with this subset, FEED’s
searches are effective and, consequently, FEED is much
faster than the other algorithms. Note that FEEDo, the ver-
sion optimized for object like images, is approximately 30
percent faster than the general FEED version. The perfor-
mance on the inverse images is about the same, as is shown
in Table 2.

The inscribed circle images as defined by Fabbri et al. [5]
take the circle as background. As expected, FEED is not
very fast and the execution times are increasing with the
increase of image size. This can be explained again by both
the object’s border that contain all possible angles and the
long distances searches that are highly inefficient. In con-
trast, FEED is again very fast on the inverse images, which
contain a high percentage of inner object pixels.

Fabbri et al. [5]’s benchmark data set also contained an
image with Lenna (or Lena)’s edges. The photo of Lenna is
by far the most famous test image for image processing pur-
poses. However, more important is that this is the only

realistic image and, as such, the most interesting one. Table 2
shows that both FEED implementations are fast on the
Lenna image and even faster on the inverse of the Lenna
image. This suggests that FEED is possibly faster than the
other algorithms with (such) realistic object like images,
which contain many objects and have a large variation in
border angles. To research this claim, the next section will
present a second benchmark.

Please note that neither FEED nor FEEDo have been
tuned for optimal performance on the Fabbri et al. [5] data
set. Tailoring a FEED instance to the specific sets of the
Fabbri et al. collection would significantly increase FEED’s
performance but would significantly decline FEED’s perfor-
mance on realistic images, which we consider to be true
goal. To assess the algorithms’ performance on realistic
images, we have developed a data set with balanced proper-
ties, which reflect the properties of realistic images. This
data set is used with a second, new benchmark, which is
presented next.

For now, we conclude that FEED’s speed increases both
when image’s edges are close to 0, 45, or 90 degrees and
when the image’s object pixels increases. Further, the distri-
bution of the objects over the image area is of influence. In
general, long distance searches without the detection of
object pixels slows down FEED.

8 BENCHMARKING: GENERATION OF A NEW

DATA SET

In the previous section, it was shown that the speed of the
algorithms dependents on the characteristics of the input
images, especially the angle of the borders of objects and
the percentage of object pixels. This section further and
more exhaustively explores characteristics of the EDT under
investigation. Therefore, a new test set is developed, with a
wide distribution of the object’s border angles and the
whole range of percentage of object pixels covered. This
extensive data set provides realistic object like images,

TABLE 2
The Complete Timing Results on the Fabbri et al. [5] Data Set of the Five Exact DT that Were Included in the Benchmark

images specification Timing (in ns/pixel) per algorithm

Maurer LLT* SEDT FEED FEEDo

ave rms ave rms ave rms ave rms ave rms

turning line 1000� 1000 (0
-180
 by 5
) 33.76 6.13 33.28 6.88 35.45 2.22 42.40 17.80 27.25 11.47
turning line, inverse 1000� 1000 (0
-180
 by 5
) 30.35 0.11 41.66 0.16 32.32 0.08 4.24 0.11 3.76 0.10
turning line 2000� 2000 (0
-180
 by 5
) 35.98 6.36 35.46 6.56 37.67 2.72 73.99 33.83 44.66 20.31
turning line, inverse 2000� 2000 (0
-180
 by 5
) 32.34 0.08 44.01 0.05 35.07 0.07 4.95 0.08 3.78 0.07
inscribed circle (range: 500-4000) 40.63 0.95 43.58 2.04 41.09 1.99 95.52 45.96 51.43 20.37
inscribed circle, inverse (range: 500-4000) 34.26 1.48 43.63 2.59 35.68 2.27 9.49 1.30 7.43 0.41
random squares 3000� 3000 37.05 2.33 43.95 1.44 38.50 1.33 15.95 10.26 9.99 5.22
random squares,inverse 3000� 3000 37.63 2.41 43.84 1.55 38.91 1.39 15.84 8.13 10.44 4.65
random points 1000� 1000 (1%-99%) 43.25 6.26 49.81 3.89 43.34 4.84 30.41 12.52 34.40 22.46
point in corner 1000� 1000 (4 images) 21.62 0.01 19.60 0.00 33.19 2.48 4.79 0.02 5.92 0.01
point in corner, inverse 1000� 1000 (4 images) 31.04 0.06 41.60 0.04 31.19 0.03 4.13 0.00 3.75 0.11
half-filled image 1000� 1000 (4 images) 28.99 2.34 34.87 4.24 32.68 0.81 5.67 1.21 6.10 2.29
Lenna (or Lena)’s edges 512� 512 39.28 37.74 38.37 22.89 20.60
Lenna (or Lena)’s edges, inverse 512� 512 28.52 35.74 29.40 9.54 8.62

See Table 1 for a description of the DT algorithms. Numbers indicate the average processing time with their root mean square (rms; between brackets)
in ns per pixel. Abbreviations.ave: average processing time in ns=pixel; rms: root mean square in ns/pixel, which indicates the variance in processing
time. Note. rms is not reported for the Lenna (or Lena)’s edges image as this concerns only one image instead of a set of images.
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covering the range of characteristics that influences the
processing speed.

To develop the FEED versions, we have generated a set of
32 object like images of size 1;036� 1;036, as follows. A
placement grid of 9� 9 cells was placed over an empty
image. A random number from 15 to 81 objects were ran-
domly placed on the centers of the cells. The centers of the
objects were randomly displaced in their cells up to half the
width (and height) of a cell. The objects were randomly cho-
sen from a set of seven objects: a square and its rotations by
30, 45, and 60 degrees, a circle, and two ellipses with elonga-
tions of a factor 2 in the x respectively y directions. Finally,
the sizes of the objects were chosen in ranges such that the
percentage of object pixels varied between about 2 and 94
percent. Four examples of this set are shown in Fig. 3.

For generating the benchmark’s data set, a set of 160
object like images O was generated, as described above.
From this data set, three additional data sets have been

derived using either a roughening (O
0
), an overlap-removal

operator (O�), or both (O
0
�). These additional data sets

were generated to assess the performance of the algorithms
in real world practice, with respect to two dimensions: iÞ
often object borders are not smooth; hence, a roughening
operation was applied and iiÞ objects can show overlap and
occlude each other [4] but objects can also have holes or
enclosed parts of another matter (e.g., gray and white brain
matter [11]). Therefore, an operator to remove object over-
laps was applied. Note that the roughening operation gen-
erates more object border pixels, with fewer neighbors on
average. Examples of these four sets of objects are pre-
sented in Fig. 3.

To evaluate the scaling behavior with regard to the image
size and, hence, the computational complexity of the algo-
rithms, larger images were generated ranging from one to
seven times as large as 1;036� 1;036 (cf. [11]). This was
done for the four sets of images, which makes a total of
4;480 test images. We will denote the combination of these
four sets as Os.

9 BENCHMARKING: RESULTS ON THE NEW

DATA SET

The complete set of 11 algorithms was included, as are
described in Table 1. As such, we aim to provide a concise,
representative, and challenging benchmark for FEED class
algorithms. The benchmark was conducted on a standard
office PC (i.e., Intel Core 2 Duo E6550 2:33 GHz, 2� 32
KBytes L1 and 4;096 KBytes L2 cache, and 2 GBytes main
memory).

The results of the benchmark are presented in Tables 3
and 4. Table 3 provides both the average and the root mean
square value (rms) execution times in ns/pixel for all algo-
rithms on all four data sets as well as on their average.
Additionally, Table 3 provides the errors (both in absolute
and relative sense) of the baseline and approximate euclid-
ean DT. Table 4 provides a one-on-one comparison in the
processing speed of all algorithms included in the
benchmark.

First, we will discuss the results of the different algo-
rithms included in the benchmark and relate them to each
other. Second, we will discuss the behavior of the 11 algo-
rithms in relation to the percentage of object pixels present.
Third and last, we will discuss the scaling behavior of the
algorithms and, consequently, present their computational
complexity.

Both FEED and FEEDo require very little processing
time, as is illustrated in Fig. 4. When generic FEED is
compared with CH11 [1], [2] and CH34 [14], it requires
only 2:14� and 1:49� the processing time of CH11 [1], [2]
and CH34 [14] respectively. CH11 is the fastest DT algo-
rithm available; however, it is a crude approximation of
the EDT, see also Table 3. The FEED algorithm optimized
for object images, performs even better and is 1:12� faster
than CH34 [14] and only 1:48� slower than CH11 [1], [2].
Both FEED and FEEDo are faster than all other approxi-
mate algorithms, see both Tables 3 and 4 and Fig. 4.
Taken together, when speed is crucial, CH11 could be a
better choice than a FEED class algorithm; however,

TABLE 3
The Complete Timing and Error Results (Compared to the Euclidean Distance, ED)

of the 11 DT that Were Included in the Benchmark

Algorithm Timing (in ns/pixel) Errors compared to (exact) ED for all O

O O
0 O� O

0
� all O :ED abs. (in pixels) relative (in %)

total rms total rms total rms total rms total rms ave. max. ave. max.

CH11 5.52 1.22 5.84 1.30 5.93 0.68 6.31 0.64 5.90 0.96 55.36 6.20 135.20 13.24 38.59
4SED 29.70 1.13 29.67 1.11 30.21 0.44 30.19 0.49 29.94 0.81 0.17 da 0.32 dr 11.00
CH34 8.79 2.69 9.88 2.97 9.58 1.60 10.85 1.56 9.77 2.21 54.74 0.85 20.41 1.77 5.33
4SEDþ 21.23 3.69 21.72 3.80 22.58 1.80 23.23 1.65 22.19 2.73 0.17 da 0.32 dr 11.00
HexaD 40.42 14.40 41.74 14.98 44.11 9.02 45.57 9.24 42.91 11.91 54.19 0.25 10.06 1.03 38.59
Maurer 32.92 2.33 34.79 2.82 33.86 2.07 34.95 2.34 34.38 2.40 – – – – –
EDT-2 29.09 9.31 29.86 9.56 31.30 6.23 32.03 6.13 30.57 7.81 5.46 0.06 12.19 0.12 7.50
SEDT 33.17 1.51 35.02 2.15 33.87 0.72 36.01 1.15 34.52 1.38 – – – – –
LLT* 39.21 4.14 40.37 4.11 39.50 4.38 40.66 4.53 39.93 4.29 – – – – –
FEED 11.40 2.58 12.42 2.84 12.72 1.19 13.89 1.22 12.61 1.96 – – – – –
FEEDo 7.74 1.85 8.64 2.05 8.72 0.72 9.86 0.97 8.74 1.35 – – – – –

See Table 1 for a description of the DT algorithms. Abbreviations. total: Total processing time in seconds; rms: root mean square, which indicates the
variance in processing time; abs.: absolute; ave.: average; and max.: maximum. Table 1 provides a description for the abbreviations of the algorithms.
Notes. :ED is reported in percent pixels. The exact average errors produced by 4SED [15] and 4SEDþ [16] are da ¼ 0:000113 (absolute) and
dr ¼ 0:002459 (relative). With – is denoted that no (or 0) errors have been generated.
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when precision is also of at least some concern a FEED
class choice is by far the best option.

Both FEED and FEEDo are much faster than the other
exact EDT, see both Tables 3 and 4 and Fig. 4. FEED is
approximately 3� faster than the other three exact EDT (i.e.,
Maurer [6], [11], SEDT [22], and LLT* [25]). FEEDo is even
1:44� faster than FEED and, as such, respectively 3:93�;
3:95�; and 4:57� faster than respectively Maurer [6], [11],
SEDT [22], and LLT* [25]. Note that Maurer [6], [11] and
SEDT [22] do not differ in performance, see also Table 4.
Taken together, when an (approximate) exact EDT is needed,
a FEED class algorithm, even when not optimized, outper-
forms all other state-of-the-art algorithms by far.

Where Tables 3 and 4 present average numbers, Fig. 4
presents the performance of the algorithms in relation to the
percentage of object pixels in the images. This reveals inter-
esting behavior of the algorithms in relation to the number
of object pixels present. HexaD [17] shows a sharp decline
in processing time with the increase of the percentage of

object pixels, as is shown in Fig. 4. Ye’s adaptation [16] of
Danielsson’s algorithm [15] becomes more fruitful with an
increase of object pixels as well. CH11 [1], [2] and CH34 [14]
also show a decline in processing time with an increase of
object pixels, although for these algorithms the influence of
the number of object pixels is limited, see also Fig. 4.

The exact EDT show a different behavior in relation to
the percentage of object pixels than the approximate EDT
and baseline DT, see Fig. 4. All exact EDT algorithms, except
for FEEDo (cf. 4SEDþ [16]), show an increase in processing
time with an increasing percentage of object pixels, up to
approximately 20 percent. Also with more than 20 percent
object pixels, LLT*’s [25] processing time keeps increasing,
where the processing time of Maurer [6], [11], SEDT [22],
and FEED starts to decline from that point on, see Fig. 4.
The behavior of Maurer [6], [11], SEDT [22], and FEED is
similar, although FEED is much faster. FEEDo gradually
consumes slightly less processing time when the percentage
of object pixels increases.

TABLE 4
A One-on-One Comparison between All DT Algorithms on Their Average Processing Time on the Four Image Sets

CH11 4SED CH34 4SEDþ HexaD Maurer EDT-2 SEDT LLT* FEED FEEDo

CH11 5.07 1.66 3.76 7.27 5.83 5.18 5.85 6.77 2.14 1.48
4SED 0.20 0.33 0.74 1.43 1.15 1.02 1.15 1.33 0.42 0.29
CH34 0.60 3.06 2.27 4.39 3.52 3.13 3.53 4.09 1.29 0.89
4SEDþ 0.27 1.35 0.44 1.93 1.55 1.38 1.56 1.80 0.57 0.39
HexaD 0.14 0.70 0.23 0.52 0.80 0.71 0.80 0.93 0.29 0.20
Maurer 0.17 0.87 0.28 0.65 1.25 0.89 1.00 1.16 0.37 0.25
EDT-2 0.19 0.98 0.32 0.73 1.40 1.12 1.13 1.31 0.41 0.29
SEDT 0.17 0.87 0.28 0.64 1.24 1.00 0.89 1.16 0.37 0.25
LLT* 0.15 0.75 0.24 0.56 1.07 0.86 0.77 0.86 0.32 0.22
FEED 0.47 2.37 0.77 1.76 3.40 2.73 2.42 2.74 3.17 0.69
FEEDo 0.68 3.43 1.12 2.54 4.91 3.93 3.50 3.95 4.57 1.44

Note. Table 1 provides a description for the algorithms, denoted with their abbreviations.

Fig. 3. Top row: Four object like images from set O of size 1;036� 1;036, with respectively 1:82, 5:92, 50:87, and 94:08 percent object pixels. These
serve as the foundation of the newly generated data set. Bottom row: A sample segment from the third image seen from left of the top row and its
three derivatives versions.
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Fig. 4. The average execution time in ns/pixel as function of the percent of object pixels in the images of the four sets of object O images described in
Section 8, and illustrated in Fig. 3.
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Fig. 5 gives the scaling behavior of the algorithms, which
is the average execution time (in ns) per pixel as function of
the size of the images of set Os. As such, Fig. 5 provides the
numerical validation of the time complexity of the algo-
rithms. The processing time of the two baseline DT (i.e.,
CH11 and CH34) and the approximate EDT 4SED and 4SED
+ is a function of the number of pixels (N) in the super set
of Os images, which marks their theoretically optimal OðNÞ
complexity. The HexaD algorithm [17] has a less straight
forward time complexity. Initially a sharp increase in proc-

essing time is present up to an image size of 107 pixels and,
subsequently, a gradual decline in processing time is
shown. The three approximate EDT (i.e., SED, 4SEDþ, and
EDT-2) all show a linear time complexity.

The three state-of-the-art algorithms (i.e., Maurer [6], [11],
SEDT [22], and LLT* [25]), all using dimensional reduction,
as well as the generic FEED class algorithm have the ten-
dency that the execution time increases a bit with increasing
size of the images. Of the three state-of-the-art algorithms it
is proven that the number of integer arithmetic operations is
indeed proportional to the number of pixels. However, with
using modern computing systems this might nevertheless
not translate into linear time. This depends on the efficiency
of the various caches modern computing systems use [39],
[40], [41]. Thesememory effects can be caused by the number
of matrices and vectors the algorithms use and by their sec-
ond phase’s column wise processing. Additionally, some
variance among the algorithms can be explained by charac-
teristics of the computing systems and the varying compiler
optimization parameters that or are not used, such as using
pointers instead of indices.

Factors related to the computing systems’ architectures
and their utilization might even have a larger effect than
the number of arithmetic operations per pixel, which is
up to now considered as the most important characteristic
to minimize when developing algorithms [39], [41]. For
the current benchmark, the curves of all algorithms are
(nevertheless) roughly consistent with an OðNÞ algorith-
mic complexity (see Fig. 5) [11]. The adapted FEED class
algorithm, FEEDo, has a time complexity that mimics that
of CH34 [14] closely. So, also FEEDo has OðNÞ algorithmic
complexity (see Fig. 5).

10 DISCUSSION

DT are a basic operation in computational geometry. In
about 50 years of research on distance transforms (DT) [1],
numerous algorithms have been developed [5], [7]. As such
they are appliedwithin various applications (e.g., [4], [7], [9],
[10], [11], [12], [42]), either by themselves or as intermediate
method. This paper introduced FEED transforms, which
start from the inverse of the DT definition: each object pixel
feeds its distance to all background pixels. The FEED class
cannot be captured in the classification of existing DT algo-
rithms, as was given by Fabbri et al. [5] (see also Section 1).
FEED class algorithms unite features of ordered propaga-
tion, raster scanning, and independent scanning DT. Most
importantly, FEED class algorithms have a unique property:
they can be adapted to specific image characteristics.

Two benchmarks were conducted that enabled a compar-
ison of the FEED class (see Tables 2 and 3). Two data sets
were used: the Fabbri et al. [5] data set and a novel data set
consisting of object images (see Section 8), developed to
reflect characteristics of realistic images. The benchmarks
confirmed that FEED class algorithms i) are a class of truly
exact EDT; ii) outperform any other approximate or exact
EDT (see also [7], [21], [26]) and its algorithmic complexity
is OðNÞ; and iii) can be adapted for any image type.

DTs can result in disconnected Voronoi tiles since the
tiles of the Voronoi diagram on a discrete lattice are not nec-
essarily connected sets [4], [5], [6], [32]. This problem origi-
nates from the definition of DT [1], [2]: a DT makes an
image in which the value of each pixel is its distance to the
set of object pixels O in the original image. In contrast,
FEED is implemented directly from the definition in Eq. (2)
or rather its inverse: each object pixel O FEEDs its distance
to all non-object pixels. Consequently, FEED (and its search
strategies) does not suffer from the problem of disconnected
Voronoi tiles. This indeed can be considered as yet another
advantage of FEED, compared to the majority of other (E)
DTs [5], [6], [32].

The 2D FEED class can be extended to 3D and even
n-dimensional (nD) as was shown by the authors in [43]. In
n dimensions, a border pixel B is defined as an object pixel
with at least one of its neighbors with a ðn� 1Þ hyperplane
in common in the background. So, in 2D a border pixel B is
defined as an object pixel with at least one of its four four-
connected pixels in the background. In 3D this becomes at
least one of the six six-connected voxels and so forth. For
details, please consult [43].

In future research, we will adapt FEED transforms to
make them even faster by loosing some accuracy. This could
be of interest for applications where high speed is prevalent
above truly exact DM. Moreover, with FEED it should be
possible in non metrical Lp distances with 0 < p < 1. To cal-
culate this, [44] needed two local masks, while considering
a minimum. Most likely, with FEED only one mask without
a restriction would be needed since it is directly derived
from Lp. Another way to exploit FEED is to explore several
strategies to parallelize FEED transforms. Parallelization
has already been shown to provide significant speed-ups
with various other DT (e.g., [11]).

Taken together, a unequaled class of DT is introduced:
the FEED class, which is fast, provides true exact EDT, does

Fig. 5. Execution time as function of the number of pixels (N) in the
super set of Os images.
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not suffer from disconnected Voronoi tiles, and can be tai-
lored to the images under investigation. Two exhaustive
benchmarks have been executed, which confirmed these
claims. This quartet of proven properties marks this new
class of DT as promising. l
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