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Abstract. In several crypt,ographic systems, a fixed elcment g of a group 
(generally z/qz) is repeatedly raised to many different powers. In this 
paper we present a practical method of speeding u p  such systems. using 
precomputed values to reduce the number of multiplications needed. In 
practice this provides a substantial improvement over the level of per- 
formance that can be obtained using addition chains ,  and allows the  
computation of g" for n < N in O(1og Nlloglog N )  group multiplica- 
tions. We also show how these methods can he parallelized. t o  c o m p u t e  
powers in O(1og log iV) group multiplications with o(1og iV/ log log .V )  
processors. 

1 Introduction 

The  problem of efficiently evaluating powers h a s  been studied by many pe~p lc :  
(see [6, Sect. 4.6.41 for an extensive survey). One standard method is to define 
an addition chain. Let l ( n )  denote the length of the shortest addit,ion chxin  
for an  exponent n (and the smallest number of multiplications possible bx this 
approach). Then it is known that 

(1 ,  

where logs are to base 2 and v(n) is the number of ones in the binary reprrseri- 
tat ion of R. 

Addition chains can be used to great advantage when the exponent n is 
fixed (as in the RSA cryptosystem), and the goal is to quickly compute I" for 
r a n d o m l y  chosen bases z. We shall consider a slightly different problem in this 
paper. For many cryptosystems (e.g. [3],[4],[8],[1]), the dominating computation 
is to compute for a fixed base g the power g" for a randomly chosen exponent 
n. For this problem, we achieve a substantial improvement over addition chains 
by storing a set of precomputed values.  
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We will assume that g is an element of a group such as Z / q Z ,  where q is a 
large integer (say 512 bits). We address the problem of repeatedly calculating 
powers of g up to g N ,  where N is also large. In the Schnorr scheme [8], N is 
about 140 bits, the DSS scheme uses N of 160 bits, and the Brickell-McCurley 
scheme [4] uses N of 512 bits. Our results will apply to any group, 50 that the 
speedups work as well in an elliptic curve group as for modular exponentiation. 
Specialized results can also be derived from this approach for the special case of 
GF(#) ,  but we will defer these to the full paper. We will assume that operations 
other than multiplications in the group will use negligible time. 

As an example of the practicality of the schemes that we present, consider the 
exponentiation required for Diffie-Hellman key exchange using a 512-bit prime 
and 512-bit random exponent. Using the square-and-multiply scheme (see [S], 
page 442), we would expect to perform 765 + 3/2'12 modular multiplications 
on average and 1022 multiplications in the worst case, using storage of at least 
64 bytes. Results in [2] report that addition chains of length around 608 can 
be computed, resulting in a 21% improvement over the average number for the 
binary method. It follows from (1) that addition chains cannot do better than 
512 multiplicationsfor a 512 bit exponent. For one of the schemes that we present 
here, we expect to perform fewer than 105 modular multiplications on average 
and 106 in the worst case, using storage of 23168 bytes. This gives better tliaii 
a seven-fold speedup on average, and about a ten-fold speedup in the worst case 
over the square and multiply method. Even very small amounts of storage can 
produce dramatic speedups. 

For the rest of this paper, it will be assumed that g is fixed, and n is uniformly 
distributed on (0,. . . , N - 1). 

2 Basic strategies 

Using the square-and-multiply method, g" may be computed using at most 
2 Fog N ]  - 2 multiplications, and on average 5 3 pog N 1 / 2  multiplicat,ions. By 
storing a set of precomputed values, we want to  reduce the number of multipli- 
cations to  compute gn. 

One simple method (see [5]) is to precompute the set {g2 ' l i  = 1, . . . , [log N1- 
1). Then g" may be computed in v(n) - 1 .multiplications, using pog N1 storage, 
by multiplying together the powers corresponding to nonzero digits in the binary 
representation of n. 

There is no reason that powers of 2 have to be stored. Suppose we instead 
precompute and store gzo,. . . , g r m - l  for some integers 2 0 , .  . . , ~ ~ - 1 .  If we are 
then able to find a decomposition 



202 

where 0 5 ai 5 h for 0 5 z < m, then we can compute 

h 

d= 1 

where Cd = nTn,=d gx'. 
, h ,  t he  tntal 

number of multiplications to  compute gn would be about rn + O ( h  log h) .  HOW- 
ever, (3) can be computed much more efficiently. as the following result shows. 

Theoreml. Suppose n = c,";' u,x,, where 0 5 u, 5 h. If gzz is precomputed 
for each 0 5 i < rn, a n d  zf m + h 2 2.  then gn can be computed w t h  m + h - 2 
muliaplacataons. 

Proof. The following is an algorithm to compute gn. 

If (3) were computed using optimal addition chains for 1 , 2 ,  

b + l  
a t 1  
f o r  d = h to 1 by -1 

f o r  each i such t h a t  a, = d 

a - a + b .  
b - b z yr' 

r e t u r n  a .  

It is easy to  prove by induction that,  after going through the loop i times, we 
have b = C h c h - 1  . . . c h - i + l  and a = c\c;;_11 . . . C h - l + l .  After traversing the loop 
h times, it follows that u = ni=, c j .  

It remains t o  count the number of multiplications performed by the algo- 
rithm. We shall count only those multiplications where both multiplicands are 
unequal to  1, since the others can be accomplished simply by assignments. We 
may assume n # 0. There are rn digits, so the b - b * gzs line gets executed at 
most 711 times. The  a +- a * b line gets executed h times. Finally, at  least two of 

Embodied in the algorithm is a method for computing the product n;=, c$ i n  
at  most 2h-2  multiplications. We can argue t.hat, in the absence of any relations 
between the Q'S, this is optimal. Notice that if we take any algorithm to compute 
n d = l  c j  and remove multiplications involving c t ,  we have computed ndZ1 cd, 
which takes 2k - 4  multiplications by our induction hypothesis. There cannot be 
only one multiplication by c k ,  since then ck would be raised to the same power 
as whatever it was multiplied by. Therefore at least two extra multiplications 
are needed. 

The most obvious use for (3) is to  represent the exponent in base b ,  using a t  
most 7n = pogb N1 digits to  do so, and precompute g b k ,  for k = 1, . . , peg, N1- 
1. Using this algorithm with a base b representation for n, Theorem 1 shows that 
9" can be computed in a t  most Pogb N ]  + b - 3 multiplications. For a randomly 
chosen exponent n, we expect that a digit will be zero about l / b  of the time, SO 

these multiplications are free since u and b are initially 1. 

k k-1 d 
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tha t  on average we expect the b - b * g x *  line to be executed ?Fogb N ]  times, 
giving an expected number of multiplications that is a t  most Fog6 N1+ 6 - 3.  
For a 512-bit exponcnt, the optimal value of 6 is 26. This method requires at 
most 127.8 multiplications on average, 132 multiplications in the worst case, and 
requires 109 stored values. 

Note that some minimal effort may be required to convert the exponent 
from binary to base b,  but this is probably negligible compared to the modular 
multiplications (certainly this is the case for exponentiation in Z j q Z ) .  Even if 
this is not the case, then we can simply use base 32, which allows us to compute 
the digits for the exponent by extracting 5 bits at  a time. Using this choice; the 
scheme will require at  most 128.8 multiplications on average, 132 multiplications 
in the worst case, and I09 stored values. 

3 Other number systems 

The  major problem with the general approach described in the previous section 
is that  we must be able to compute a representation of the form (2 ) .  Subject to 
this constraint, the goal is to choose the parameters to optimize the riecessarq' 
number of multiplications for a given amount of storage. In this section w e  shall 
explore some approaches to this problem. 

AS our first example of this approach, i f  b > 1, the11 every integer n such that 
5 (b" - 1)/2 may be represented a s  C ' & ' a , b ' ,  where each a, t [ - r i b  - 

1) /21 ,  [(b- 1)/21] (see Theorem 2 below). If th:  powers ~ * ' , g * ~ ,  . . . s Y+iJ"L-: arc' 
precomputed, then we compute 

cd ~ ys ign(a ,  ib' 

ja,l=d 

In this case, rn = Pogb(2;V + I)]! h = [ ( b  - 1) /2] ,  and the worst case number 
of multiplications required is pog,(ZIY + I)] + [ ( b  - 11/21 - 2. Moreover, since 
the probability that a digit is nonzero is again a t  most ( b  - l j / b ,  the average 
number of multiplicatioris required is bounded above by [logb(2N+ I ) ]  [ b -  1)/0+ 
[ ( b  - 1)/2]  - 2 .  ' lhe  storage required is for 2Pogb(2!S + 1)1 values. For a 512-bit 
exponcnt,, a good base is ~15, resulting i n  111.91 multiplications on average and 
114 multiplications in the worst case, using 188 stored values. 

At one extreme, i f  we take h = 1,  we can completely bypass the computatiori 
of nd=l c$ by storing instead all values g d b ' ,  1 5 d < 6, 0 5 i 5 [log, N ]  - 1, and 
perform at most peg, N1 ( h -  1)/6- 1 multiplications on average, and [log, -v1- 1 
multiplications in the worst case. For example, with N = Z5I2 we might take 
b = 256 and h = 1 to derive a method that takes 62.75 multiplications on average, 
and 63 multiplications in the worst case. The  problem with this method is that  
it requires ( b -  l)pogb .VRj] stored values. For this case that is 16320 stored vall~es, 
or 1,044,480 bytes of storage. 

By slightly increasing the value of h .  we can reduce either the storage 01' 
time r r q i i i r ~ t l .  For ins t an ip .  t .akinq h = 2 ,  1c.t .\I: = { d  1 1 5 d < 0 0 

h 

~ ? ( d j  
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(mod 2)}, where u p ( d )  is  the largest power of p that divides d ,  i.e., IC i u p ( d )  
if and only if pk I( d .  I t  suffices to store the values, { g d b ' l d  E M z } .  Then for 
1 5 ui < b ,  galb' = gdb' or g2db' for some d E M 2 .  Using the same base, th i s  only 
increases the time by one multiplication, but reduces the storage substantially. 
For example, with b = 256, we achieve an average of a t  most 63.75 multiplications 
but reduce the storage to 10880 values, or 696,320 bytes. 

Increasing h or decreasing b further increases the time and lowers the storage. 
Continuing this line of reasoning, we can take M3 = { d  1 1 5 d < b ,  W Z ( d )  + 
q ( d )  E 0 (mod 2)) .  For example, if we take a base of b = 123 for a 512 bit 
exponent, then we arrive a t  a method that requires an average of a t  most 74.32 
multiplications, using storage for 5624 values. 

In the remainder of this section we shall describe a method that allows US to 
reduce the amount of Computation without such a huge increase in the amount 
of storage. Call a set of integers D a basic digtt set  for base b if any integer can 
be represented in base b using digits selected from the set D. 

Before we examine t h e  problem of finding basic digit sets for our problerll, 
we should first remark that the difficulty of finding a representation using digits 
from D is almost exactly t h e  same difficulty as finding the  (ordinary) h x .  h 
representation. The algorithm for finding such a representation was piiblisht.[l 
by Matula (71, and a particularly simple description was  later given i n  [6 ,  E X W  
cise 4.1.191. 

In  searching for good basic digit sets, we can make use of the following rcsult 
of Matula [7], which provides a very efficient algorithm for determining i f  a Set 
is basic. 

Theorem3. Suppose  tha t  .D i s  a comple te  residue s y s t e m  moduio b Le t  d m , n  = 
min{sls E D }  a n d  d,,, = max{sl* E D }  Then D i s  a bmic dzyil 5et f o r  basr  h 
zf there  are representa t ions  for each i w t h  

using digits from D 

In the method that we consider now WP shall store powers ymh', fur 3 5 
[log, iV1 and m In a set M of multipliers Wt, nerd to choose M a n d  h for n h l L \ l  

is a basic digit set. Given a representation n = Czi' d,b' in terms of this b s l c  
digit set, we can represent d, = m,kr and compute 

Another class of miiltiplirr sets is proviclccl b y  the  following: 
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M h expected time 
{l} 25 127.81 
{H} 22 111.91 

{*l,&Z} 17 104.28 
(*I, f 2 , f 2 3 )  16 98.72 

M3 3 85.66 
M3 3 74.39 
M? 2 63.75 

Theorem3. Ifb is odd, M = {fl ,  *2}, and h = l b / 3 J ,  then D ( M ,  h )  is a basic 
d i g i t  s e t .  

worst-case t i m  
I32 
114 
106 
100 
87 
75 
64 

Tables 1 and 2 summarize the effects of the various methods presented above 
on the storage and complexity of the parameters that might be used for the DSS 
and Brickell-McCurley schemes, namely 160 and 512 bit exponents respectively. 
The larger sets of multipliers were found by a computer search. Large sets of 
good multipliers become harder to  find, and use increasing amounts of storage 
for progressively smaller reductions in computation. 

Table 1. Selected parameters for a 160-bit exponent ( N  = 216'). By comparison, the 
binary method requires about 237 multiplications on average, and 318 multiplications 
in the worst case. 

36 
64 
128 
256 

M 

{fl, * 2 }  
(*I, 9, r t14,  i 1 7 )  

M2 

M3 

1bf9 

lu3 

36.11 
31.14 
36.58 
23.82 

134 
319 

32 620 
27 1134 
24 1748 
'"1 2751 

Table 2. Selected parameters for a 512-bit exponent (S  = 2512). By comparison, the 
binary method requires about 765 multiplications on average and 1022 in the worst 
case. 

[ 122 

- 
,torag< 

109 
188 
362 
512 

3096 
5402 
10880 

- 

- 

For some of the  lines of each table, the expected times are actually upper 
bounds for the expected time. For the others, the expccted times were calculated 
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using the assumption that the probability of a digit being zero for any base b 
basic digit set is l / b .  We have not proven this in general, but it's a reasonable 
heuristic that  matches empirical results. 

For a given N and amount of storage, it seems difficult to prove that a scheme 
is optimal. However, we can show that the above schemes are asymptotically 
optimal. Storing powers grbJ for r in a fixed set of multipliers, the optimal value of 
b is about log N/(log log N ) 2 ,  for which (1 + o( 1)) log N /  log log N multiplications 
and O(1og N /  log log R) stored values are needed. The following theorem shows 
that we cannot do better with a reasonable amount of storage. 

Theorem4. If the number of stored values is less than logk N for k 2 1 ,  then 
the number of multiplications required is at least ( l / k  + o( l))(log N /  log log N ) .  

4 Parallelizing the algorithm 

The first method for computing a power 9" that we presented in Sect. 2 consisted 
of three main steps: 

1. Determine a representation n = a0 + alb + . . . + a m - l b m - ' .  

2. Calculate Cd = J-J gbJ for d = 1 , .  . ., h. 
m-1 

J'o 
a J = d  

h 

3. Calculate g" = J-J c j .  
d=l 

As we mentioned previously, the algorithm of Matula makes the first step 
easy, even with a large set 0f multipliers. Most time is spent in the second and 
third steps. Both of these may be parallelized Suppose we have h processors. 
Then for step 2, each processor can calculate its Cd separately. The time needed 
to calculate cd depends on the number of aj's equal to d. Thus the time for step 
2 will be the d with the largest number of a's equal to it. 

This is equivalent to the maximum bucket occupancy problem. given E: + 1 
balls randomly distributed in h buckets, what is the expected maximum bucket 
occupancy? This is discussed in [lo], in connection with analysis of hashing 
algorithms. Taking b and h to be O(logN/loglog N), so (k + l ) / h  = O ( l ) ,  the 
expected value is 

) .  - = o (  log h log log N 
log log log N log log h 

For step 3, each processor can compute c: for one d using a standard addi- 
tion chain method, taking at most 2 log h multiplications. Then the ti's may be 
combined by multiplying them together in pairs repeatedly to form g" (this is 
referred to  as binary fan-in multiplication in [9]). This takes log h time. 

Therefore, taking h = O(1og N /  log log N), we may calculate powers in time 
o(log log N) with O(log N /  log log N )  processors. For example, storing only pow- 
ers of b ,  we may compute powers for a 140-bit exponent in the time necessary 
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for 13 multiplications using 15 processors, taking b = 16 and M = { 1). For a 
512-bit exponent, we can compute powers with 27 processors in the time for 17 
rriultiplications, using b = 28. 

The disadvantage to  this method is that each processor needs access to each 
of the powers gb' ,  so we either need a shared  memory or every power s t o r e d  at 
every processor. An alternative approach allows us to store only one power a t  
each processor 

For this method, we will have k processors, each of which computes one g a r b '  
using a stored value and an  addition chain for a i .  This will take at most 2 log h 
time. Then the processors multiply together their results using binary fan-in 
multiplication to get gn. The total time spent is at most 2 log h + log k ,  which is 
again O(1og log N )  time with O(1og N /  log log N )  processors. 

If the number of processors is not a concern, then the optimal choice of 
base is b = 2,  for which we need log N processors and log log N time. We could 
compute powers for a 512-bit exponent with 512 processors in the time for 9 
multiplications, and for a 140-bit exponent with 140 processors in the time for 
8 multiplications. Taking a larger base reduces the number of processors, but  
increases the time. 

Acknowledgment. We would like to thank Professor Tsutomu Matsumoto of Yo- 
kohama National University for informing us of reference [5], and for providing 
a partial translation. 

References 

1.  A Proposed Federal Information Processing Standard for Digital Signature Stan-  
dard, Federal Register, Volume 56, No. 169, August 31, 1991, pp. 42980-42Y82. 

2 .  J .  Bos and M. Coster, Addition Chain Heuristics, in ddvances in Cryptology - Pro- 
ceedmgs of Crypto '89, Lecture Notes in Computer Science, Volume 435, Springer- 
Verlag, New York, 1990, pp. 400-407. 

3.  W. Diffie and hi. Hellman, New Directions in Cryptography, IEEE Transuctions 
on Information Theory 22 (1976), 472-492. 

4. E.F. Brickell and  K.S. McCurley, An Interactive Identification Scheme Based on 
Discrete Logarithms and Factoring, to  appear in Journal of Cryptology. 

5 .  Ryo Fuji-Hara, Cipher Algorithms and Computational Complexity, Bit 17 (1985), 
954-959 (in Japanese). 

6. D.E. Knuth,  The Art of Computer Programming, Vol. 2 ,  Seminumerical .4lgo- 
rithms, Second Edition, Addison-Wesley, Massachusetts, 1981. 

7. D.W. Matula, Basic digit sets for radix representation, Journal of the ACM, 29 
(1982), pp. 1131-1143. 

8. C.P. Schnorr, Efficient signature generation by smart cards, to  appear in  Journal  
of Cryptology. 

9. D.R. Stinson, Some observations on parallel algorithms for fast exponentialioll in 
GF(2"),  Siam. J .  Comput., 19, (1990), pp. 711-717. 

10. J.S. Vitter and  P. Flajolet, Average-case analysis of algorithms and d a t a  struc- 
tures, in Handbook of Theoretical Computer Science, ed. J .  van Leeuwen, Elsevier, 
Amsterdam, 1990, pp. 431-524. 


	Introduction
	Basic strategies
	Other number systems
	Parallelizing the algorithm
	References

