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Abstract. The paper presents results on factorization by similarity of
fuzzy concept lattices with hedges. Factorization of fuzzy concept lattices
including a fast way to compute the factor lattice was presented in our
earlier papers. The basic idea is to have, instead of a whole fuzzy concept
lattice, its factor lattice. The factor lattice results by factorizing the
original fuzzy concept lattice by a similarity relation which is specified by
a user by a single parameter (similarity threshold). The main purpose is
to have a smaller lattice which can be seen as a reasonable approximation
of the original, possibly large, fuzzy concept lattice. In this paper, we
extend the existing results to the case of fuzzy concept lattices with
hedges, i.e. with parameters controlling the size of a fuzzy concept lattice.

1 Introduction and motivation

The present paper is a continuation of our previous papers on formal concept
analysis (FCA) of data with fuzzy attributes. In particular, it is a continuation
of two ways to reduce the size of fuzzy concept lattices.

The first way, see [2, 8, 9], consists in considering, instead of a possibly large
fuzzy concept lattice B(X,Y, I) associated to the input data 〈X,Y, I〉, a factor
lattice B(X, Y, I)/a≈. Note that here, 〈X,Y, I〉 (sometimes called a formal fuzzy
context) consists of a finite set X of objects, a finite set Y of attributes, and a
fuzzy relation I between X and Y indicating for each x ∈ X and y ∈ Y a degree
to which object x has attribute y. In addition to that, B(X,Y, I) is a fuzzy
concept lattice in the sense of [3, 24]. Finally, B(X, Y, I)/a≈ is a factor lattice
of B(X, Y, I) by a compatible tolerance relation a≈ on B(X, Y, I) (see e.g. [18]
for the notion of a factor lattice by a tolerance). The relation a≈ results as an
a-cut of ≈ where a is a user-specified threshold (a particular truth degree, e.g.
a = 0.5) and ≈ is a naturally defined fuzzy equivalence relation on B(X, Y, I)
(see later). In [8, 9], two methods to compute the factor lattice B(X,Y, I)/a≈
directly from data, i.e. without the need to compute the whole B(X, Y, I) first,
have been described.

⋆ Supported by grant No. 1ET101370417 of GA AV ČR, by grant No. 201/05/0079
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The second way, see e.g. [10, 11, 13], consists in introducing two additional
parameters into FCA of data with fuzzy attributes. These parameters, called
hedges, are particular unary functions ∗X and ∗Y on the scale of truth degrees.
The hedges are used to modify the basic operators associated to 〈X,Y, I〉, i.e.,
the extent and intent forming operators ⇑ and ⇓. Then, instead of B(X, Y, I),
one considers B(X∗X , Y ∗Y , I) which is defined to be the set of fixed points of
the modified operators. The basic idea is that stronger hedges lead to smaller
B(X∗X , Y ∗Y , I). An interesting point here is that the approach via hedges sub-
sumes some of the earlier approaches to FCA of data with fuzzy attributes.
First, if both ∗X and ∗Y are identities, B(X,Y, I) coincides with B(X∗X , Y ∗Y , I).
Second, if one of the hedges is identity and the other one is globalization (see
later), the resulting B(X∗X , Y ∗Y , I) is in fact the fuzzy concept lattice consid-
ered independently in [12, 15, 23]. Note also that, as shown in [11], the approach
using hedges subsumes the approach using thresholds as presented in [17] and
also [16].

The main aim of this paper is to look to what extent the idea of factorization
by similarity given by a user-specified threshold can be applied to fuzzy concept
lattices with hedges. We present some preliminary results and illustrative exam-
ples. Due to lack of space, we present only sketches of proofs and postpone full
proofs to a full version of this paper. Section 2 presents preliminaries. Section 3
presents the results. An illustrative example is contained in Section 4. Section 5
presents a summary and outline of a future research.

2 Preliminaries

2.1 Fuzzy sets and fuzzy logic

In this section, we recall necessary notions from fuzzy sets and fuzzy logic. We
refer to [3, 21] for further details. The concept of a fuzzy set generalizes that of an
ordinary set in that an element may belong to a fuzzy set in an intermediate truth
degree not necessarily being 0 or 1. As a structure of truth degrees, equipped
with operations for logical connectives, we use complete residuated lattices, i.e.
structures L = 〈L,∧,∨,⊗,→, 0, 1〉, where 〈L,∧,∨, 0, 1〉 is a complete lattice
with 0 and 1 being the least and greatest element of L, respectively; 〈L,⊗, 1〉 is
a commutative monoid (i.e. ⊗ is commutative, associative, and a⊗1 = 1⊗a = a
for each a ∈ L); and ⊗ and → satisfy so-called adjointness property, i.e. a⊗b ≤ c
iff a ≤ b → c for each a, b, c ∈ L. Elements a of L are called truth degrees, ⊗
and → are (truth functions of) “fuzzy conjunction” and “fuzzy implication”.

The most applied set L of truth degrees is the real interval [0, 1]; with a ∧
b = min(a, b), a ∨ b = max(a, b), and with one of the three important pairs of
fuzzy conjunction and fuzzy implication: ÃLukasiewicz (a⊗ b = max(a+ b− 1, 0),
a → b = min(1 − a + b, 1)), minimum (a ⊗ b = min(a, b), a → b = 1 if a ≤ b
and = b else), and product (a ⊗ b = a · b, a → b = 1 if a ≤ b and = b/a
else). In applications, we usually need a finite chain {a0 = 0, a1, . . . , an = 1}
(a0 < · · · < an); with corresponding ÃLukasiewicz (ak ⊗ al = amax(k+l−n,0),
ak → al = amin(n−k+l,n)) or minimum (ak ⊗ al = amin(k,l), ak → al = an for
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ak ≤ al and ak → al = al otherwise) connectives. Note that complete residuated
lattices are basic structures of truth degrees used in fuzzy logic, see [19, 21].
Residuated lattices cover many structures used in applications.

For a complete residuated lattice L, a (truth-stressing) hedge is a unary
function ∗ satisfying (i) 1∗ = 1, (ii) a∗ ≤ a, (iii) (a → b)∗ ≤ a∗ → b∗, (iv) a∗∗ =
a∗, for all a, b ∈ L. A hedge ∗ is a (truth function of) logical connective “very
true” [22]. The largest hedge (by pointwise ordering) is identity (i.e. a∗ = a),
the least hedge is globalization which is defined by a∗ = 1 for a = 1 and a∗ = 0
for a < 1. Note that for L = {0, 1}, there exists exactly one complete residuated
lattice L (the two-element Boolean algebra) and exactly one hedge (the identity
on {0, 1}).

By LU or LU we denote the set of all fuzzy sets (L-sets) in universe U ,
i.e. LU = {A | A is a mapping of U to L}, A(u) being interpreted as a de-
gree to which u belongs to A. If U = {u1, . . . , un} then A is denoted by
A = { a1

/

u1, . . . , an
/

un} meaning that A(ui) equals ai. For brevity, we omit
elements of U whose membership degree is zero. A binary fuzzy relation R be-
tween sets X and Y is a fuzzy set in universe U = X × Y . For A ∈ LU and
a ∈ L, a set aA = {u ∈ U | A(u) ≥ a} is called an a-cut of A (the ordinary
set of elements from U which belong to A to degree at least a); a fuzzy set
a → A in U defined by (a → A)(u) = a → A(u) is called an a-shift of A;
a ⊗ A is defined similarily. Given A, B ∈ LU , we define a subsethood degree
S(A,B) =

∧

u∈U

(

A(u) → B(u)
)

, which generalizes the classical subsethood re-
lation ⊆. S(A,B) represents a degree to which A is a subset of B. In particular,
we write A ⊆ B iff S(A,B) = 1 (A is fully contained in B). As a consequence,
A ⊆ B iff A(u) ≤ B(u) for each u ∈ U .

2.2 Fuzzy concept lattices (with hedges and thresholds)

A data table with fuzzy attributes (formal fuzzy context in terms of FCA) can
be identified with a triplet 〈X, Y, I〉 where X is a non-empty set of objects (table
rows), Y is a non-empty set of attributes (table columns), and I is a (binary)
fuzzy relation between X and Y , i.e. I : X × Y → L. For x ∈ X and y ∈ Y , a
degree I(x, y) ∈ L is interpreted as a degree to which object x has attribute y
(table entry corresponding to row x and column y). For L = {0, 1}, formal fuzzy
contexts can be identified in an obvious way with ordinary formal contexts.

Let ∗X and ∗Y be hedges. For fuzzy sets A ∈ LX and B ∈ LY , we define
fuzzy sets A↑ ∈ LY and B↓ ∈ LX (denoted also A↑I and B↓I to make I explicit)
by

A↑(y) =
∧

x∈X(A∗X (x) → I(x, y)), (1)

B↓(x) =
∧

y∈Y (B∗Y (y) → I(x, y)). (2)

Using basic rules of predicate fuzzy logic, A↑ is a fuzzy set of all attributes
common to all objects (for which it is very true that they are) from A, and B↓

is a fuzzy set of all objects sharing all attributes (for which it is very true that
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they are) from B. The set

B (X∗X , Y ∗Y , I) = {〈A,B〉 | A↑ = B, B↓ = A}

of all fixed points of 〈↑, ↓〉 is called a fuzzy concept lattice (with hedges) of
〈X, Y, I〉; elements 〈A,B〉 ∈ B (X∗X , Y ∗Y , I) will be called formal concepts of
〈X, Y, I〉; A and B are called the extent and intent of 〈A,B〉, respectively.
For the sake of brevity, we will sometimes write also B (X∗, Y ∗, I) instead of
B (X∗X , Y ∗Y , I). Under a partial order ≤ defined on B (X∗X , Y ∗Y , I) by

〈A1, B1〉 ≤ 〈A2, B2〉 iff A1 ⊆ A2,

B (X∗X , Y ∗Y , I) happens to be a complete lattice and we refer to [13] for results
describing the structure of B (X∗X , Y ∗Y , I). Note that B (X∗X , Y ∗Y , I) is the
basic structure used for formal concept analysis of the data table represented by
〈X, Y, I〉.

Remark 1. Operators ↑ and ↓ were introduced in [10, 13] as a parameterization of
operators A⇑(y) =

∧

x∈X(A(x) → I(x, y)) and B⇓(x) =
∧

y∈Y (B(y) → I(x, y))
which were studied before, see [1, 4, 24]. Clearly, if both ∗X are ∗Y are identities
on L, ↑ and ↓ coincide with ⇑ and ⇓, respectively. If ∗X or ∗Y is the identity on L,
we omit ∗X or ∗Y in B (X∗X , Y ∗Y , I), e.g. we write just B (X∗X , Y, I) if ∗Y = idL.

Inspired by the “thresholded approach” of [17] (see also [16]), another param-
eterization of operators ↑ and ↓ was introduced in [11]: For δ, ε ∈ L, fuzzy sets
A ∈ LX and B ∈ LY , consider fuzzy sets A↑I,δ ∈ LY and B↓I,ε ∈ LX defined by

A↑I,δ(y) = δ →
∧

x∈X(A∗X (x) → I(x, y)), (3)

B↓I,ε(x) = ε →
∧

y∈Y (B∗Y (y) → I(x, y)). (4)

A↑I,δ (y) can be thought of as a truth degree of the degree to which y is shared by
all objects from A is at least δ, and similarily for B↓I,δ (x). We will often write
just A↑ and B↓ if I, δ, and ε are obvious, particularly if δ = ε. The set

B (X∗X

δ , Y ∗Y
ε , I) = {〈A,B〉 | A↑ = B, B↓ = A}

of all fixed points of 〈↑, ↓〉 is called a (thresholded) fuzzy concept lattice (with
hedges) of 〈X, Y, I〉. Describing the structure of B (X∗X

δ , Y ∗Y
ε , I) (under a partial

order ≤) is an open problem which remains to be studied.

Remark 2. Since 1 → a = a for each a ∈ L, we have A↑I,1 = A↑I and B↓I,1 = B↓I

and, therefore, B (X∗X

1 , Y ∗Y

1 , I) = B (X∗X , Y ∗Y , I).

For existing results on some basic relationships to earlier approaches we refer
to [11]. In this article we will focus on the case δ = ε only.
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3 Factorization of B (X∗X , Y ∗Y , I) by similarity

3.1 The case of B (X, Y, I)

We need to recall the parametrized method of factorization introduced in [2]
to which we refer for details. Given 〈X, Y, I〉, introduce a binary fuzzy relation
≈Ext on B (X,Y, I) (we will use it for B (X∗X , Y ∗Y , I) later on) by

(〈A1, B1〉 ≈Ext 〈A2, B2〉) =
∧

x∈X(A1(x) ↔ A2(x)) (5)

for 〈Ai, Bi〉 ∈ B (X, Y, I), i = 1, 2, where
∧

denotes infimum and ↔ is a so-called
biresiduum (truth function of equivalence connective) defined by a ↔ b = (a →
b)∧ (b → a). (〈A1, B1〉 ≈Ext 〈A2, B2〉), called the degree of similarity of 〈A1, B1〉
and 〈A2, B2〉, is just the truth degree of “for each object x: x is covered by A1

iff x is covered by A2”. One can also consider a fuzzy relation ≈Int defined by
(〈A1, B1〉 ≈Int 〈A2, B2〉) =

∧

y∈Y (B1(y) ↔ B2(y)). It can be shown [3] that
measuring similarity of formal concepts via intents Bi coincides with measuring
similarity via extents Ai, corresponding naturally to the duality of extent/intent
view. As a result, we write also just ≈ instead of ≈Ext and ≈Int. Note also that
≈ is a fuzzy equivalence relation on B (X, Y, I).

Given a truth degree a ∈ L (a threshold specified by a user), consider the
thresholded relation a≈ on B (X, Y, I) defined by (〈A1, B1〉, 〈A2, B2〉) ∈ a≈ iff
(〈A1, B1〉 ≈ 〈A2, B2〉) ≥ a. That is, a≈ is the relation “being similar to degree
at least a” and we thereby call it simply similarity (relation). a≈ is reflexive and
symmetric (i.e., a tolerance relation), but need not be transitive (it is transitive
if, e.g., a ⊗ b = a ∧ b holds true in L). A similarity a≈ on B (X, Y, I) is said
to be compatible if it is preserved under arbitrary suprema and infima, i.e. if
cj

a≈c′j , implies both (
∧

j∈J cj)
a≈(

∧

j∈J c′j) and (
∨

j∈J cj)
a≈(

∨

j∈J c′j) for any
cj , c

′
j ∈ B (X, Y, I), j ∈ J . We call ≈ compatible if a≈ is compatible for each

a ∈ L.
Call a subset B of B (X,Y, I) an a≈-block if it is a maximal subset of

B (X, Y, I) such that each two formal concepts from B are similar to degree at
least a (the notion of a a≈-block generalizes that of an equivalence class: if a≈ is
an equivalence relation, a≈-blocks are exactly the equivalence classes). Denote
by B (X,Y, I)/a≈ the collection of all a≈-blocks. It can be shown that, if a≈ is
compatible, then a≈-blocks are special intervals in the concept lattice B (X, Y, I).
For a formal concept 〈A,B〉 ∈ B (X, Y, I), denote 〈A,B〉a and 〈A,B〉

a
the infi-

mum and the supremum of the set of all formal concepts which are similar to
〈A,B〉 to degree at least a. Operators . . .a and . . .a are important in description
of a≈-blocks [18]:

Lemma 1. a≈-blocks are exactly intervals of B (X,Y, I) of the form
[〈A,B〉a, (〈A,B〉a)a], i.e.

B (X,Y, I)/a≈ = {[〈A, B〉a, (〈A,B〉a)a] | 〈A,B〉 ∈ B (X,Y, I)}.

Now, define a partial order ¹ on blocks of B (X, Y, I)/a≈ by [c1, c2] ¹
[d1, d2] iff c1 ≤ d1(iff c2 ≤ d2) where [c1, c2], [d1, d2] ∈ B (X, Y, I)/a≈. Then
we have [2]:
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Theorem 1. B (X, Y, I)/a≈ equipped with ¹ is a partially ordered set which is
a complete lattice, the so-called factor lattice of B (X, Y, I) by similarity ≈ and
threshold a.

Elements of B (X,Y, I)/a≈ can be seen as similarity-based granules of for-
mal concepts/clusters from B (X, Y, I). B (X,Y, I)/a≈ thus provides a granular
view on (the possibly large) B (X,Y, I). For further details and properties of
B (X, Y, I)/a≈ we refer to [2].

3.2 The case of B (X∗X , Y ∗Y , I)

We now turn our attention to factorization by similarity of B (X∗X , Y ∗Y , I).
Note first that one cannot directly apply the approach which works for

B (X, Y, I). Namely, due to employing hedges, some important properties are
no longer available (for instance, the composite mappings ↑↓ and ↓↑ are not
fuzzy closure operators in general). Nevertheless, we propose a feasible approach
to factorization of concept lattices with hedges. In some cases, however, we re-
strict ourselves to the case when one of the hedges is identity and leave the fully
general case to future investigation. Note that in B (X∗X , Y ∗Y , I) corresponding
to both “one-sided” fuzzy concept lattices, see [15] and [23], one of the hedges
is globalization.

Remark 3. If one would define ≈Ext (or ≈Int) by (5), compatibility would be
lost. This is still true even if one of the hedges is identity. Consider e.g. ∗X =
idL. Then, ≈Ext is compatible with

∧

. Namely,
∧

j∈J Aj =
⋂

j∈J Aj for Aj =

A⇑↓
j [13]. However, ≈Ext need not be compatible with

∨

as shown by the following
example. The dual situation applies to ≈Int.

Example 1. Take a ÃLukasiewicz structure on [0, 1], let ∗X be identity and ∗Y be
globalization, and consider the following data table

I y1 y2 y3

x1 1 0.5 0
x2 0 0 1
x3 0.5 1 0

One can check that for A1 = { 0.5
/

x1, 0.5
/

x3}, B1 = { 1
/

y1, 1
/

y2, 0.5
/

y3},

A2 = { 0.5
/

x1, 1
/

x3}, B2 = { 0.5
/

y1, 1
/

y2}, A3 = { 1
/

x1, 0.5
/

x3} and B3 =

{ 1
/

y1, 0.5
/

y2}, 〈Ai, Bi〉 ∈ B (X∗X , Y ∗Y , I), i = 1, 2, 3 and 〈A1, B1〉
a≈〈A2, B2〉,

〈A1, B1〉
a≈〈A3, B3〉, (〈A1, B1〉 ∧ 〈A1, B1〉) = 〈A1, B1〉

a≈〈A1, B1〉 = (〈A2, B2〉 ∧
〈A3, B3〉), but a � (〈A1, B1〉 ∨ 〈A1, B1〉) ≈ (〈A2, B2〉 ∨ 〈A3, B3〉).

In order to propose our way to factorize B (X∗X , Y ∗Y , I), we need the fol-
lowing notion. Let ≈ be a fuzzy relation in B (X∗X , Y ∗Y , I), a ∈ L be a truth
degree, and ∗ be a hedge (particularly, ∗ will be ∗X or ∗Y ). We say that ≈ is
compatible with ∗ and a if for each c1, c2 ∈ B (X∗X , Y ∗Y , I) we have that

if a ≤ (c1 ≈ c2), then a ≤ (c1 ≈ c2)
∗. (6)
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Consider the following fuzzy relations on B (X∗X , Y ∗Y , I): By ≈Ext we denote
the fuzzy relation defined by (5); similarly for ≈Int; by ≈∗X

Ext we denote a fuzzy
relation defined by

(〈A1, B1〉 ≈
∗X

Ext 〈A2, B2〉) =
(
∧

x∈X(A1(x) ↔ A2(x))
)∗X

; (7)

similarly for ≈∗Y

Int. Occasionally, we write also (A1 ≈∗X

Ext A2) instead of
(〈A1, B1〉 ≈

∗X

Ext 〈A2, B2〉), etc.
The following assertion is easy to see.

Lemma 2. (1) If a ∈ L is a fixed point of ∗X , i.e. a∗X = a, then ≈Ext is
compatible with ∗X and a; similarly for ∗Y and ≈Int.
(2) For any a ∈ L, ≈∗X

Ext is compatible with ∗X and a; similarly for ∗Y and ≈∗Y

Int.

We need the following two assertions (here, ≈ is defined by (A1 ≈ A2) =
∧

x∈X(A1(x) ↔ A2(x))).

Lemma 3. Let A1, A2 ∈ LX . Then (A1 ≈ A2)
∗X ≤ (A∗X

1 ≈ A∗X

2 ).

Proof. Denote ∗X by ∗. We have (A1 ≈ A2)
∗ ≤ (A∗

1 ≈ A∗
2) =

∧

x∈X(A1(x)∗ ↔
A2(x)∗) iff (A1 ≈ A2)

∗ ≤ (A1(x)∗ ↔ A2(x)∗) for all x ∈ X. Since (A1 ≈
A2)

∗ ≤ (A1(x) ↔ A2(x))∗ for all x ∈ X it suffices to show (A1(x) ↔ A2(x))∗ ≤
(A1(x)∗ ↔ A2(x)∗), which is true. Indeed, (A1(x) ↔ A2(x))∗ ≤ (A1(x) →
A2(x))∗ ∧ (A2(x) → A1(x))∗ ≤ (A1(x)∗ → A2(x)∗) ∧ (A2(x)∗ → A1(x)∗) =
(A1(x)∗ ↔ A2(x)∗).

Lemma 4. For A1, A2 ∈ LX we have (A1 ≈ A2)
∗X ≤ (A↑

1 ≈ A↑
2).

Proof. Follows directly from Lemmma 3 and (A1 ≈ A2) ≤ (A⇑
1 ≈ A⇑

2 ) [2].

Suppose we have two fuzzy equivalence relations on B (X∗X , Y ∗Y , I), ≈X

and ≈Y such that ≈X is compatible with ∗X and a, and ≈Y is compatible with
∗Y and a. Although, in general, ≈X may be different from ≈Y , the following
theorem shows that their a-cuts coincide.

Theorem 2. Let ≈X and ≈Y be fuzzy equivalence relations on B (X∗X , Y ∗Y , I)
compatible with ∗X and a, and with ∗Y and a, respectively. Then a≈X = a≈Y .

Proof. Using Lemma 4, the proof is similar to the proof of ≈Ext=≈Int in [2].

We can therefore write a≈ instead of a≈X and a≈Y . Note that Theorem 2
applies in particular to the fuzzy relations from Lemma 2. With the above no-
tation, the following theorem shows a way to factorize B (X∗X , Y ∗Y , I).

Theorem 3. a≈ is a compatible tolerance on B (X∗X , Y ∗Y , I).

Proof. Theorem can be proved by applying (6) and Lemma 4 twice at the end
of the proof of compatibility of ≈ on B (X, Y, I) in [2].
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Therefore, we can consider the factor lattice B (X∗X , Y ∗Y , I)/a≈ of lattice
B (X∗X , Y ∗Y , I) by tolerance a≈. In what follows, we present a way to obtain
B (X∗X , Y ∗Y , I)/a≈ directly, without the need to compute B (X∗X , Y ∗Y , I) first
and then to compute the blocks of a≈. Basically, we follow and appropriately
modify the method from [8]. The method from [8] makes use of the fact that for
each fuzzy set A (extent/intent) we have

〈A, a ⊗ A〉 ∈ a≈ and 〈A, a → A〉 ∈ a≈. (8)

If a≈ has this feature, we can proceed also for fast factorization of B (X∗X , Y ∗Y , I)
by a≈. Note that (8) is satisfied, for instance, for a≈Ext if a is a fixed point of
∗X and ∗Y , cf. Lemma 2. In the remainder of the paper we will suppose that
a≈ always satisfies (8). The following assertion shows that 〈A,B〉a (the least
formal concept a≈-similar to 〈A, B〉) and 〈A, B〉

a
(the greatest formal concept

a≈-similar to 〈A,B〉) can be computed from 〈A,B〉 directly.

Lemma 5. For 〈A, B〉 ∈ B (X∗X , Y ∗Y , I), we have
(a) 〈A,B〉a =

〈

(a ⊗ A)↑↓, (a → B)↓↑
〉

and (b) 〈A,B〉
a

=
〈

(a → A)↑↓, (a ⊗ B)↓↑
〉

.

Proof. Due to duality we sketch only the proof of (a). We need to prove, that
(a ⊗ A)↑↓ is an extent of the least formal concept similar to 〈A,B〉 to degree at
least a and (a → B)↓↑ is the corresponding intent. That is (1) (a ⊗ A)↑↓ is an
extent of a formal concept 〈(a ⊗ A)↑↓,D〉 which is similar to 〈A,B〉 to degree at
least a; (2) if 〈C, F 〉 is a formal concept similar to 〈A,B〉 to degree at least a
then 〈(a ⊗ A)↑↓,D〉 ≤ 〈C, F 〉; and similarily for intent (a → B)↓↑. Both (1) and
(2) can be easily proved using (8) and (6), Lemma 4 and adjointness property.

Remark 4. Thus we have (〈A, B〉a)a =
〈

(a → (a ⊗ A)↑↓)↑↓, (a ⊗ (a → B)↓↑)↓↑
〉

.

Another property, analogous to the case of B (X, Y, I), is the following.

Lemma 6. If ∗X is identity on L and A is an extent then we have a → A =
(a → A)↑↓; similarly for ∗Y and an intent B.

Proof. We sketch the proof for extents. The inequality ⊆ follows directly from
A = A∗X ⊆ A↑↓ and the converse inequality ⊇ can be proved the same way as
the corresponding inequality in analogous lemma in [8], with application of (8),
(6) and Lemma 4 at appropriate places.

One way to obtain the factor lattice directly is based on the following the-
orem. Recall that an L{1}-closure operator in U is a mapping C : LU → LU

satisfying A ⊆ C(A); A1 ⊆ A2 implies C(A1) ⊆ C(A2); C(A) = C(C(A)). A
fixed point of C is any fuzzy set A in U such that A = C(A).

Theorem 4. Let ∗X be identity on L. Then the mapping Ca : A 7→ (a →
(a ⊗ A)↑↓)↑↓ is an L{1}-closure operator in LX such that the fixed points of Ca

are just the extents of suprema of a≈-blocks of B (X∗X , Y ∗Y , I)/a≈.
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Proof. The idea of the proof remains the same as in the proof of analogous
theorem for B (X, Y, I)/a≈ in [8]. Briefly, we need to (a) verify that Ca is an
L{1}-closure operator and (2) prove the equality of the set of fixed points of
Ca and the set of extents of suprema of a≈-blocks. First is a nice exercise on
checking the tree conditions from the definition of L{1}-closure operator and
second is also easy, see full version of the paper.

Now, fixed points of L{1}-closure operators can be efficiently computed by
an extension of Ganter’s NextClosure algorithm, see [6].

Remark 5. Ca : A 7→ a → (a ⊗ A)⇑↓ is an L{1}-closure operator, but not an L-
closure operator in general, since we do not have S(A1, A2) ≤ S(Ca(A1), Ca(A2))
for all A1, A2 ∈ LX as the following example shows.

Example 2. Consider the setting and data table from Example 1. Take A1 =
{ 0.5

/

x1, 1
/

x2, 0.5
/

x3} and A2 = { 1
/

x2}. One can check that given a = 1,

Ca(A1) = A⇑↓
1 = { 1

/

x1, 1
/

x2, 1
/

x3} and Ca(A2) = A⇑↓
2 = { 1

/

x2}, hence
0.5 = S(A1, A2) � S(Ca(A1), Ca(A2)) = 0.

Another way to obtain the factor lattice directly is based on the following.
From [11] we know that A↑I,a = a → A↑I equals A↑a→I = (a ⊗ A∗X )⇑I (easy
to check from the definitions (3) and (4) of ↑I,a and ↓I,a , respectively). Hence
A↑I,a↓I,a = A↑a→I↓a→I = a → (a⊗A∗X )⇑↓. Since we consider ∗X = idL, we have
A↑a→I↓a→I = Ca(A). Then, we obtain the following theorem which is analogous
to (in fact, it is a generalization of) the crucial theorem of [9].

Theorem 5. If ∗X is identity on L then for any 〈X, Y, I〉 and a threshold a ∈ L
we have

B (X∗X , Y ∗Y , I)/a≈ ∼= B (X∗X , Y ∗Y , a → I).

In words, B (X∗X , Y ∗Y , I)/a≈ is isomorphic to B (X∗X , Y ∗Y , a → I). Moreover,
under the isomorphism, [〈A1, B1〉, 〈A2, B2〉] ∈ B (X∗X , Y ∗Y , I)/a≈ corresponds
to 〈A2, B1〉 ∈ B (X∗X , Y ∗Y , a → I).

Proof. We proceed the same way as in the proof of the theorem for B (X,Y, I)/a≈
in [9]. Again, we give only a sketch. First, the operators ↑a and ↓a induced by
a → I are described by terms of operators ↑ (1) and ↓ (2) induced by I. We get

A↑a = a → A↑ and A↑a↓a = a → (a ⊗ A∗X )⇑↓. (9)

The verification of B (X,Y ∗Y , I)/a≈ ∼= B (X,Y ∗Y , a → I) is then easy and we
postpone the proof to full version of the paper.

Remark 6. (1) The blocks of B (X,Y ∗Y , I)/a≈ can be reconstructed from the
formal concepts of B (X, Y ∗Y , a → I):
If 〈A,B〉 ∈ B (X, Y ∗Y , a → I) then [〈B↓, B〉, 〈A, A⇑〉] ∈ B (X, Y ∗Y , I)/a≈.

(2) Computing B (X, Y ∗Y , a → I) means computing the fuzzy concept lattice
with hedges, where the hedge ∗X is identity. This can be done by an algorithm
of polynomial time delay complexity, see [6].
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First, this shows a way to obtain B (X, Y ∗Y , I)/a≈ directly from input data,
without computing first the whole B (X, Y ∗Y , I) and then computing the simi-
larity blocks. Second,

B (X, Y ∗Y , I)/a≈ ∼= B (X,Y ∗Y , a → I) ∼= B (Xa, Y ∗Y
a , I).

In words, B (X, Y ∗Y , I)/a≈ is isomorphic to B (Xa, Y ∗Y
a , I). This means, if at

least one of the hedges is identity, the factor lattice (by similarity a≈) and
the thresholded lattice (by threshold a) of B (X∗X , Y ∗Y , I) are the same (up to
isomorphism). To sum up, the approaches to reducing the size of a fuzzy concept
lattice (with hedges) via factorization by a similarity a≈ and via thresholded
concept forming operators by a threshold a lead to the same reduction.

4 Illustrative example

size distance
small (s) large (l) far (f) near (n)

Mercury 1 0 0 1
Venus 0.75 0 0 1
Earth 0.75 0 0 0.75
Mars 1 0 0.5 0.75

Jupiter 0 1 0.75 0.5
Saturn 0 1 0.75 0.5
Uranus 0.25 0.5 1 0.25

Neptune 0.25 0.5 1 0
Pluto 1 0 1 0 1

5

32

4

6

7

10
8

11 9

12

Fig. 1. Data table with fuzzy attributes and factor (and thresholded) lattice of corre-
sponding fuzzy concept lattice.

We illustrate the relationship described in preceding section by a simple
example. Take a finite ÃLukasiewicz chain L with L = {0, 0.25, 0.5, 0.75, 1} as a
structure of truth degrees. Consider an input data table 〈X, Y, I〉 depicted in
Fig. 1 (left) which describes properties of planets of our solar system. The set X
of objects consists of objects “Mercury”, “Venus”, . . . , set Y contains four (fuzzy)
attributes: size of the planet (small / large) and distance from Sun (far / near).
Let ∗X be identity and ∗Y be a hedge defined as follows: for a ∈ L, a∗Y = 0.5 if
a = 0.75 and a∗Y = a otherwise. Finally, to measure the similarity of concepts
we can use ≈, since it is compatible with ∗Y and each a ∈ L except a = 0.75
and satisfies (8).

The whole fuzzy concept lattice B (X,Y ∗Y , I) has 94 formal concepts. We
show and compare the factor concept lattices B (X, Y ∗Y , I)/a≈ for thresholds
a = 0.25 and a = 0.5 (note that ≈ is not compatible with ∗Y and a =
0.75 and for thresholds 0 and 1 the concept lattice contains only one concept
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and all 94 concepts, respectively). The factor lattices B (X, Y ∗Y , I)/0.25≈ and
B (X, Y ∗Y , I)/0.5≈ happen to be the same structure of 12 similarity blocks. The
lattice of blocks is depicted in Fig. 1 (right) and is isomorphic to thresholded
lattices B (X0.25, Y

∗Y

0.25, I) and B (X0.5, Y
∗Y

0.5 , I). The greatest concepts (suprema,
∨

-s) of 0.25≈-blocks and 0.5≈-blocks are listed in Table 1, together with con-
cepts of thresholded lattices. We can see from the tables that B (X, Y ∗Y , I)/a≈
is isomorphic to B (Xa, Y ∗Y

a , I). Note that according to Theorem 5, extents of
the corresponding concepts coincide.

5 Conclusions and future research

We presented a method of factorization of fuzzy concept lattices with hedges. If
one of the hedges is identity, the factor lattice can be computed directly from
input data, without first computing the whole fuzzy concept lattice. Further-
more, under the same assumption we concluded that reducing the size of a fuzzy
concept lattice (with hedges) either via factorization or via thresholds leads to
the same (isomorphic) results. Future research will focus on eliminating some
restrictions from the assumptions of our methods (e.g., allowing both hedges to
be different from identity).
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21. Hájek P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht, 1998.
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