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We study the problem of minimizing the maximum latency of flows in networks with congestion. We show that this problem
is NP-hard, even when all arc latency functions are linear and there is a single source and sink. Still, an optimal flow and
an equilibrium flow share a desirable property in this situation: All flow-carrying paths have the same length, i.e., these
solutions are “fair,” which is in general not true for optimal flows in networks with nonlinear latency functions. In addition,
the maximum latency of the Nash equilibrium, which can be computed efficiently, is within a constant factor of that of an
optimal solution. That is, the so-called price of anarchy is bounded. In contrast, we present a family of instances with
multiple sources and a single sink for which the price of anarchy is unbounded, even in networks with linear latencies.
Furthermore, we show that an s-t-flow that is optimal with respect to the average latency objective is near-optimal for
the maximum latency objective, and it is close to being fair. Conversely, the average latency of a flow minimizing the
maximum latency is also within a constant factor of that of a flow minimizing the average latency.
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1. Introduction
We study static network flow problems in which each arc
possesses a latency function that describes the common
delay experienced by the flow on that arc as a function
of the flow rate. Load-dependent arc costs have a variety
of applications in situations in which one wants to model
congestion effects, which are bound to appear, e.g., in com-
munication networks, vehicular traffic, supply chain man-
agement, or evacuation planning. In this context, a unit of
flow frequently stands for a huge number of “users” (or
“agents”), which might represent data packages in the Inter-
net, drivers on a highway system, product components in
a supply chain, or individuals fleeing from an area struck
by disaster. Depending on the concrete circumstances, the
operators or overseeing authorities of these networks can
pursue a variety of system objectives. For instance, they
might elect to minimize the average latency, they might
aim at minimizing the maximum latency, or they might try
to ensure that users having the same origin and destination
experience essentially the same latency. In fact, an ideal
solution might be simultaneously optimal or near-optimal
with respect to all three objectives. We establish the exis-
tence of such flows.

The Model. We consider a directed graph G= !N "A#
together with a set of source-sink pairs K ⊆ N × N . For

each terminal pair k= !sk" tk# ∈K, let !k be the set of di-
rected (simple) paths in G from sk to tk, and let dk > 0 be
the demand rate associated with commodity k. Let ! $=
⋃

k∈K !k be the set of all paths between terminal pairs, and
let d $= ∑

k∈K dk be the total demand. A feasible flow f
assigns a nonnegative and possibly fractional value fP to
every path P ∈! such that

∑

P∈!k
fP = dk for all k ∈K. In

the context of single-source single-sink instances, we will
drop the subindex k and talk about s-t-flows. Each arc a
has a load-dependent latency function la!·#. We generally
assume that the functions la$ "!0 →"!0 are nondecreasing
and continuous; at times, it will be convenient to assume
that they are differentiable as well, which we will point out
in each case. We define the latency of a path P ∈! under a
given flow f as lP !f # $=

∑

a∈P la!
∑

Q∈!$Q&a fQ#. The max-
imum latency L!f # of a feasible flow f is defined as

L!f # $=max%lP !f #$ P ∈!" fP > 0&'

We call a feasible flow that minimizes the maximum
latency a min-max flow and denote it by fMM. The maxi-
mum latency problem consists of finding a min-max flow.
The average latency of a feasible flow f is defined as

C!f # $= 1
d

∑

P∈!
lP !f #fP '
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We refer to an optimal solution with respect to this objec-
tive function as a system optimum and denote it by f SO.

We also consider a noncooperative network game of
infinitely many players where every player controls an in-
finitesimal amount of flow (Wardrop 1952). A feasible flow
f NE is at Nash equilibrium (is a user equilibrium) if for
every k ∈ K and any two paths P1"P2 ∈ !k with f NE

P1
> 0,

lP1!f
NE#" lP2!f

NE#. In other words, all flow-carrying sk-tk-
paths have equal (and actually minimal) latency. In partic-
ular, equilibrium flows are “fair,” i.e., they have unfairness
one, where the unfairness of a feasible flow f is defined as

U !f # $=max
{

lP1!f #

lP2!f #
$ P1"P2 ∈!k" fP1" fP2 > 0" k ∈K

}

'

Main Results. For linear latency functions and a single
source and sink, we prove in §4 the existence of a min-
max flow that is fair; i.e., its unfairness is one. Moreover,
the average latency of any min-max flow is within a fac-
tor of 4/3 of that of an optimum. As attractive as such a
flow might be, we also show in §3 that computing a min-
max flow is NP-hard. Furthermore, we exhibit a surprising
difference between linear and nonlinear latency functions:
While min-max flows remain near-optimal with respect to
the average latency, their unfairness is in general greater
than one.
It is well known that system optima are, in general,

unfair. We establish a tight bound that quantifies the sever-
ity of this effect. Namely, we show in §5 that the latency of
any one user is within a constant factor of that of any other
user. In particular, for single-source single-sink networks,
the maximum latency of the system optimum is within the
same constant factor of that of a min-max flow. This con-
stant factor depends only on the class of allowable latency
functions. For instance, its value is two for the case of lin-
ear latencies.
Linear latencies are sufficient for certain congestion phe-

nomena to occur. One interesting example is Braess’ para-
dox (1968), which refers to the fact that the addition of
an arc to a network can actually increase the latency of all
users if they act selfishly and independently. While the inef-
ficiency of user equilibria and hence the severity of Braess’
paradox had previously been bounded in terms of the aver-
age latency (Roughgarden and Tardos 2002), it turns out
that it is also bounded with respect to the maximum latency.
A user equilibrium therefore serves as another flow that is
optimal or close to optimal for the three objectives intro-
duced above.
Most of our bounds hold for more general classes of

latency functions. In particular, there exist s-t-flows that
are simultaneously optimal or near optimal with respect
to all three criteria: maximum latency, average latency,
and unfairness. In fact, this property is shared by system
optima, Nash equilibria, and—to some extent—min-max
flows, albeit with different bounds. Table 1 presents the
bounds in the single-source single-sink case with linear

Table 1. Summary of results for single-source single-
sink networks with linear latency functions.

Maximum Average
latency latency Unfairness

Min-max flow 1 4/3 Thm. 5.6 1∗ Thm. 4.1
System optimum 2 Thm. 5.5 1 2 Thm. 4.2
Nash equilibrium 4/3 Thm. 5.2 4/3 Thm. 5.1 1

Note. In contrast to the other entries in the table, the entry marked
with a “∗” is not a worst-case, but a best-case result; there exists a
min-max flow that is fair.

latencies. With one exception, the first entry in each cell
presents a worst-case bound on the ratio of the value of a
flow associated with the corresponding row to the value of
an optimal flow for the objective function associated with
the corresponding column. The exception is the value of
one for the unfairness of a min-max flow. We only show the
existence of at least one min-max flow that is fair; others
might be unfair. However, we also outline an algorithm that
turns any min-max flow into a fair one. The second entry
refers to the theorem in this paper in which the respective
result is proved. All bounds are tight, as examples provided
after each theorem demonstrate. With the exception of the
following two results, all bounds are new. Roughgarden and
Tardos (2002) first proved the upper bound of 4/3, stated
in Theorem 5.1, on the ratio of the average latency of a
Nash equilibrium to that of a system optimum. (See Cor-
rea et al. 2004b, 2005 for a simpler proof.) Weitz (2001)
observed that this bound carries forward to the maximum
latency objective for the case of a single source and sink;
we present a generalization of this observation to multi-
commodity flows in Theorem 5.2. Proposition 5.3 shows
that in networks with multiple sources and a single sink,
the ratio of the maximum latency of a Nash equilibrium
to that of a min-max flow is in general not bounded by a
constant, even when latency functions are linear.
In §6, we analyze a fourth objective function: minimizing

the maximum latency of all flow-carrying arcs. We show
that optimal solutions with respect to this objective can be
arbitrarily bad for the other three objectives, and vice versa.

Related Work. Minimizing the maximum latency is
common in the network-routing and evacuation literature.
Evacuation problems have been studied as dynamic flow
problems since the seminal work of Ford and Fulkerson
(1958), who proposed to minimize the time by which
the network is cleared. There has recently been increased
activity in analyzing dynamic flows; see, e.g., Hoppe and
Tardos (1994), Fleischer and Skutella (2007), and the sur-
veys by Aronson (1989) and Powell et al. (1995). Par-
ticularly relevant to our work is a paper by Jarvis and
Ratliff (1982), who showed the existence of a dynamic
flow that is simultaneously optimal for three objectives.
A common drawback of these models is the assumption of
constant traversal times, which is oftentimes not realistic.
One notable exception is the work by Köhler and Skutella
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(2005), who considered the quickest-flow problem with
load-dependent transit times.
The maximum latency objective has also been considered

in the context of telecommunication networks. The pro-
posed models are closer in nature to the one considered
here because they are static and include load-dependent
delays. Koutsoupias and Papadimitriou (1999) studied the
maximum latency objective in a static network consisting
of multiple parallel arcs that connect a single source with
a single sink. They introduced a noncooperative game with
finitely many users where a user’s action is to select an
arc, and analyzed the inefficiency of its Nash equilibria.
Papadimitriou (2001) later referred to this inefficiency as
the price of anarchy. Refined results on the same model
were obtained by, among others, Mavronicolas and Spirakis
(2001), Czumaj and Vöcking (2002), and Koutsoupias et al.
(2003). The main conclusion is that, under certain assump-
tions, the maximum latency of an equilibrium is not too
large compared to that of the best-coordinated solution. In
particular, Czumaj et al. (2002) showed that an equilib-
rium minimizes the maximum latency, provided there are
infinitely many players. This is in sharp contrast with the
results of this paper, in which we consider arbitrary net-
work topologies. For more details on the parallel arc model,
we refer the reader to the survey by Czumaj (2004).
Roughgarden and Tardos (2002), Roughgarden (2003b),

Schulz and Stier-Moses (2003), and Correa et al. (2004b,
2005) studied the price of anarchy with respect to the aver-
age travel time in general networks and for different classes
of latency functions. In particular, if # is the set of allow-
able latency functions, the ratio of the average travel time of
a Nash equilibrium to that of a system optimum is bounded
by (!##, where (!## is a constant that only depends
on #. As shown in Table 1, if # only contains linear func-
tions, (!##= 4/3. We will elaborate on and make use of
this bound in §5.
Weitz (2001) observed that these price-of-anarchy results

are also valid for the maximum latency objective, as long as
the considered instance has a single source and sink. He
also showed that Nash equilibria can be arbitrarily bad in
multicommodity networks. In §5, we prove that this is also
true in networks with multiple sources and a single sink.
Roughgarden (2004) gave a tight bound for the single-
source single-sink case that depends on the size of the net-
work.

Figure 2. A min-max flow, a system-optimal flow, and a Nash flow for the instance in Figure 1 (from left to right).
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Figure 1. An instance with quadratic latency functions.
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In the context of §4, we should point out that there exist
multiple (nonequivalent) definitions of (un)fairness. The de-
finition we use here arises from the competition between
different agents in a network game. Roughgarden (2002)
introduced a less pessimistic version of unfairness, namely,
the ratio of the maximum latency of a system optimum to
the latency of a Nash equilibrium; we later obtain his bound
as a corollary to a more general result. Jahn et al. (2005)
considered the definition of unfairness presented here; they
looked at flows that minimize the total travel time among
those with bounded unfairness.

2. An Example
Before we present our results, we give an example to exhibit
some characteristics of the different objective functions and
their corresponding optimal solutions. The instance, de-
picted in Figure 1, has a single source and sink, and quad-
ratic latency functions. The unit demand has to be shipped
through two equal stages with two parallel arcs each. Fig-
ure 2 shows a min-max flow, a system optimum, and a
Nash equilibrium for this instance.
The min-max flow can be computed by solving a mini-

mization problem with a single variable. Indeed, the “bot-
tom-bottom” path is too long to carry any flow, and, making
use of the symmetry of the instance, the “top-bottom” and
“bottom-top” paths have to carry the same flow x. Assign-
ing 1− 2x units of flow to the path “top-top,” the unique
optimum occurs for x = 2/5. Computing a Nash equilib-
rium analytically is straightforward for this instance: Rout-
ing all flow along the path “top-top” provides no incentive
for users to deviate. As we will see in §4, a system opti-
mum is an equilibrium with respect to modified latencies
that incorporate the externalities. With the modified laten-
cies in hand, we solve a system of quadratic equations and
get that the flow on the top arcs equals 3− 4/

√
3 ≈ 0'69

and that of the bottom arcs equals 4/
√
3− 2≈ 0'31.
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Table 2. Objective values of the three solution concepts
for the instance shown in Figure 1.

Maximum Average
latency latency Unfairness

Min-max flow 1'6 1'424 2'222 ' ' '
System optimum %2'287 ' ' ' "1'620 ' ' '& 1'366 ' ' ' %2'397 ' ' ' "1'698 ' ' '&
Nash equilibrium 2 2 1

Table 2 displays the objective values of the three solu-
tions. Note that Figure 2 shows the Nash equilibrium and
the system optimum as a flow on arcs: Any path decompo-
sition provides a correct solution. However, different flow
decompostions can lead to different unfairness values and
maximum latencies. Where needed, the table indicates two
values arising from the two extreme decompositions. The
min-max flow is instead given as a flow on paths. This is
necessary because presenting a flow on arcs is not enough
to solve the maximum latency problem, as we are going to
show in §3.

3. Computational Complexity
In our model, both a system optimum and a Nash equi-
librium can be computed as solutions to convex programs.
(For the system optimum, this statement is only true if
we assume that C!f # is convex, which is normally the
case in applications. For the Nash equilibrium, monotonic-
ity and continuity suffice; see Beckmann et al. 1956 for
a full treatment.) Convex programming problems can be
solved up to an arbitrarily small additive error in polyno-
mial time; see, e.g., Vavasis (1991), Potra and Ye (1993),
or Grötschel et al. (1993) for details. One cannot hope to
do better because, as the example given in §2 shows, an
optimal solution may need irrational numbers, and so may
an equilibrium.
On the other hand, it follows from the work of Köhler

and Skutella (2005) on the quickest s-t-flow problem with
load-dependent transit times that the maximum latency
problem considered here is NP-hard (although not necessar-
ily in NP) when latencies include arbitrary nonlinear func-
tions or when there are explicit arc capacities. Lemma 3.1
below implies that the maximum latency problem with lin-
ear latencies is in NP, while Theorem 3.3 establishes its
NP-hardness, even in the case of a single source and a sin-
gle sink, and in the absence of arc capacities.
The following observation is key to establishing the

membership of the maximum latency problem in NP. Inter-
estingly, it does not follow from ordinary flow decompo-
sition because it is not clear how to convert a flow on
arcs into a path flow such that the latency of the resulting
paths remains bounded; in fact, it is a consequence of The-
orem 3.3 that this problem is NP-hard.

Lemma 3.1. Let f be a feasible flow for a multicommodity
flow network with load-dependent arc latencies. Then, there
exists another feasible flow f ′ such that L!f ′#" L!f #, and
f ′ uses at most !A! paths for each source-sink pair.

Proof. The proof is based on that of Carathéodory’s Theo-
rem (see, e.g., Schrijver 1998, p. 94). Consider an arbitrary
commodity k ∈ K. Let P1" ' ' ' "Pr be sk-tk-paths such that
fPi > 0 for i = 1" ' ' ' " r , and

∑r
i=1 fPi = dk. Slightly over-

loading notation, we let P1" ' ' ' "Pr also denote the arc inci-
dence vectors of these paths. Let us assume that r > !A!.
(Otherwise we are done.) Hence, the vectors P1" ' ' ' "Pr

are linearly dependent and
∑r

i=1 )iPi = 0 has a nonzero
solution. Without loss of generality, )r ,= 0. We define a
new flow f ′′ (not necessarily feasible) by setting f ′′

Pi
$=

fPi − !)i/)r#fPr for i= 1" ' ' ' " r , and f ′′
P $= fP for all other

paths P . Note that under f ′′, the flow on arcs does not
change:

r
∑

i=1

Pif
′′
Pi
=

r−1
∑

i=1

PifPi −
r−1
∑

i=1

)i

)r

PifPr =
r
∑

i=1

PifPi '

Here, we used the linear dependency for the last equality.
In particular, L!f ′′#" L!f #. Let us consider a convex com-
bination f ′ of f and f ′′ that is nonnegative and uses fewer
paths than f . Note that such a flow always exists because
f ′′
Pr

= 0, and the flow on some other paths P1" ' ' ' "Pr−1

might be negative. Moreover, L!f ′#" L!f #, too. If f ′ still
uses more than !A! paths between sk and tk, we can iterate
this process so long as is necessary to prove the claim. #

We remind the reader that the decision problem of a min-
imization problem has a “yes” or “no” answer. Its input
consists of an instance of the associated minimization prob-
lem together with some threshold value *, and the ques-
tion is whether there exists a feasible solution of value of
at most *.

Corollary 3.2. The decision version of the maximum
latency problem with linear latency functions is in NP.

Proof. Lemma 3.1 shows the existence of a succinct cer-
tificate. Indeed, for any flow f with maximum latency
L!f #, there is another flow f ′ of smaller or equal maximum
latency that uses at most !K! · !A! paths. Moreover, it suf-
fices to list the paths with positive flow because the flow
values can be recovered by solving a linear program similar
to the one in (1) below. #

We will now prove that the maximum latency problem is
in fact NP-hard. We present a reduction from Partition:

Given: A set of n positive integers q1" ' ' ' "qn.
Question: Is there a subset I ⊂ %1" ' ' ' "n& such that

∑

i∈I qi =
∑

i.I qi?

Theorem 3.3. The decision version of the maximum latency
problem is NP-complete, even when all latencies are linear
functions and the network has a single source-sink pair.

Proof. Given an instance of Partition, we define an
instance of the maximum latency problem as depicted in
Figure 3. The network consists of nodes 0"1" ' ' ' "n. There
is a unit demand between the source node 0 and the sink
node n. For i= 1" ' ' ' "n, the nodes i−1 and i are connected
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Figure 3. Instance used in the reduction from Partition.
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with two arcs, namely, ai with latency lai!fai#= qi fai and
ãi with latency lãi!fãi#= qi.
Let L $= !3/4#

∑n
i=1 qi. Note that any system optimum

f SO has cost L, and f SO
a = 1/2 for all a ∈A. We claim that

the given instance of Partition is a Yes-instance if and
only if there is a solution to the maximum latency problem
of maximum latency equal to L. Indeed, if there is a par-
tition I , the solution that routes half a unit of flow along
the 0-n-path composed of arcs ai, i ∈ I , and ãi, i . I , and
the other half along the complementary path has maximum
latency L.
To prove the other direction, assume that we have a fea-

sible flow f of maximum latency equal to L. Therefore,
C!f # " L, which implies C!f # = L because f cannot be
better than the system optimum. Because the system opti-
mum of this instance is unique (as a flow on arcs), fa = 1/2
for all a ∈ A. Take any path P such that fP > 0 and par-
tition its arcs such that I contains the indices of the arcs
ai ∈ P . Then,

3
4

n
∑

i=1

qi = L= lP !f #=
∑

i∈I

qi
2
+
∑

i.I
qi"

and subtracting the left-hand side from the right-hand side
yields

∑

i∈I qi/4=
∑

i.I qi/4. #

The following corollary states that it is difficult to com-
pute a flow decomposition so that the lengths of the result-
ing paths are small.

Corollary 3.4. Let f be a flow in an s-t-network with
linear latencies. Let !fa#a∈A be the associated flow on arcs.
Given just !fa#a∈A and L!f #, it is NP-hard to compute a
path decomposition of this arc flow into a flow f ′ such
that L!f ′# " L!f #. In particular, it is NP-hard to recover
a min-max flow even though its arc values are given.

Note that Corollary 3.4 neither holds for the system opti-
mum nor the Nash equilibrium. In both cases, any flow
derived from an ordinary flow decomposition is indeed an
optimal flow or an equilibrium flow, respectively. Neverthe-
less, an arbitrary decomposition of a system-optimal flow
need not be good with respect to the maximum latency
objective. To see that, consider the instance described
in the proof of Theorem 3.3. The flow that routes 1/2
along the path a1"a2" ' ' ' "an and 1/2 along the path
ã1" ã2" ' ' ' " ãn is indeed a system optimum, but its maxi-
mum latency is

∑n
i=1 qi, whereas the optimal solution has

value !3/4#
∑n

i=1 qi. In §5, we prove a tight worst-case
bound for the maximum latency of a system optimum.
Let us finally mention that Theorem 4.3 in Köhler and

Skutella (2005) implies that the maximum latency prob-
lem is APX-hard when latencies can be arbitrary nonlinear
functions or when there are explicit arc capacities.

4. Fairness
Nash equilibria are fair by definition. Indeed, all flow-car-
rying paths between the same source and sink have equal
latency. The next result establishes a similar property for
min-max s-t-flows in the case of linear latencies: A fair
min-max flow always exists. The difference between a Nash
equilibrium and a fair min-max flow is that the latter may
leave paths unused that are shorter than the ones carrying
flow, which cannot happen in equilibrium. The following
result is not true for nonlinear latencies, as we shall see
later.

Theorem 4.1. Every instance of the single-source single-
sink maximum latency problem with linear latency func-
tions has an optimal solution that is fair.

Proof. Consider an instance with demand d and latency
functions la!fa# = qafa + ra for a ∈ A. Among all min-
max flows, let fMM be one that uses the smallest number
of paths. Let P1"P2" ' ' ' "Pu be these paths. Consider the
following linear program:

min z (1a)

s.t.
∑

a∈Pi

(

qa

(

∑

Ph&a
fPh

)

+ ra

)

" z for i= 1" ' ' ' "u" (1b)

u
∑

i=1

fPi = d" (1c)

fPi ! 0 for i= 1" ' ' ' "u' (1d)

Note that this linear program has u+ 1 variables. Further-
more, by construction, it has a feasible solution f with z=
L!fMM#, and there is no solution with z < L!fMM#. There-
fore, an optimal basic feasible solution gives a min-max
flow that satisfies with equality u of the 2u inequalities (1b)
and (1d). As fPi > 0 for all i because of the minimality
assumption, all inequalities (1b) have to be tight. #

A by-product of this proof is that an arbitrary flow can
be transformed into a fair one that uses a subset of its
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Figure 4. Instance with nonlinear latencies illustrating
that a fair min-max flow may not exist.

11

xp xp

axp+ b axp+ b

paths without increasing its maximum latency. In fact, just
solve the corresponding linear program. An optimal basic
feasible solution will either be fair or it will use fewer
paths. In the latter case, eliminate all paths with zero flow
and repeat until a fair solution is found.
With nonlinear latency functions, all min-max flows can

be unfair. The instance depicted in Figure 4 features high
unfairness with latencies that are polynomials of degree
p! 2.
When a= !1++#p−1 and b= 2−!!1++#/!2++##p−1−,

for some + > 0 and , > 0 such that b > 1, the unique
min-max flow routes 1/!2 + +# units of flow along the
“top-bottom” and “bottom-top” paths, respectively, and
+/!2+ +# units of flow along the “top-top” path. It is not
hard to see that this flow is optimal. Indeed, the “bottom-
bottom” path is too long to carry any flow. Moreover, by
symmetry, the “top-bottom” and “bottom-top” paths have
to carry the same amount of flow. Letting the variable x
denote the flow on the “top-top” path, the flow on both top
arcs is !1+x#/2, and that of both bottom arcs is !1−x#/2.
Summing along paths, we get that the latency of the “top-
top” path is 2!!1+ x#/2#p, which is always smaller than
that of the other two paths, which is !!1+x#/2#p +a!!1−
x#/2#p + b. Finally, we compute the optimal solution of
min%!!1+ x#/2#p + a!!1− x#/2#p + b$ 0" x < 1& and get
fMM
top-top = +/!2+ +#, as specified before.
Let us compute the unfairness of this solution. The “top-

top” path has latency equal to 2!!1+ +#/!2+ +##p, which
tends to !1/2#p−1 as +→ 0. The latency of the other two
paths used by the optimum is equal to 2−,. Therefore, the
unfairness of this min-max flow is arbitrarily close to 2p.
A typical argument against using the system optimum in

the design of route-guidance devices for traffic assignment
is that, in general, it assigns some drivers to unacceptably
long paths in order to use shorter paths for other drivers;
see, e.g., Beccaria and Bolelli (1992). The following theo-
rem quantifies the severity of this effect by characterizing
the unfairness of the system optimum. It turns out that
there is a relation to earlier work by Roughgarden (2002),
who compared the maximum latency of a system optimum
in a single-sink single-source network to the latency of
a Nash equilibrium. He showed that for a given class #
of latency functions, this ratio is bounded from above by
-!##, where -!## is defined to be the smallest value
that satisfies l∗!x# " -!##l!x# for all l ∈ # and all
x ! 0. Here, l∗!x# $= l!x# + x l′!x# is the function that

Figure 5. Instance showing that the bound in Theorem
4.2 is tight.

d d

l*(d /2)

l(x)

turns a system optimum for the original instance into a
Nash equilibrium of an instance in which the latencies
are replaced by l∗ (Beckmann et al. 1956). For instance,
-!%polynomials of degree p&# = p + 1. We prove that the
unfairness of a system optimum is in fact bounded by the
same constant, even for general instances with multiple
commodities. The same result was independently obtained
by Roughgarden (2003a).

Theorem 4.2. Let # be a family of differentiable and non-
decreasing latency functions. If f SO denotes a system opti-
mum in a multicommodity flow network with arc latency
functions drawn from #, then the unfairness of f SO is
bounded from above by -!##.

Proof. Wewill prove the result for the single-source single-
sink case. The extension to the general case is straightfor-
ward. Because a system optimum is a Nash equilibrium
with respect to latencies l∗, there exists a value L∗ such that
l∗P !f

SO#= L∗ for all paths P ∈ ! with f SO
P > 0. From the

definitions of l∗ and -!##, we have that la!x# " l∗a!x# "
-!##la!x# for all x and a. Let P1"P2 ∈ ! be two arbi-
trary paths with f SO

P1
" f SO

P2
> 0. Hence, lP1!f

SO# " L∗ and
lP2!f

SO# ! L∗/-!L#. It follows that lP1!f
SO#/lP2!f

SO# "
-!L#. #

An immediate corollary is that users in a system optimum
f SO of a network with a single source and a single sink
cannot travel too long compared to any other flow. This
strengthens Roughgarden’s earlier bound which established
that L!f SO#" -!##L!f NE#, where f NE is a Nash equilib-
rium.

Corollary 4.3. Let # be a family of nondecreasing and
differentiable latency functions. If f SO denotes a system
optimum of a single-source single-sink network with arc
latency functions drawn from #, then L!f SO#" -!##L!f #
for any feasible flow f .

Proof. Note that

L!f SO#" -!##min%lP !f
SO#$ P ∈!" f SO

P > 0&

" -!##C!f SO#" -!##C!f #" -!##L!f #"

where the first inequality follows from Theorem 4.2. #

The example shown in Figure 5 proves that the bound
given in Theorem 4.2 is tight. Indeed, it is easy to see that
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the unique system optimum routes half of the demand along
each arc, implying that the unfairness is l∗!d/2#/l!d/2#.
Taking the supremum of that ratio over d ! 0 and l ∈ #
yields -!##.

5. Price of Anarchy Results
Nash equilibria in general and those of network games in
particular are known to be inefficient, as evidenced by
Braess’ paradox (1968). Koutsoupias and Papadimitriou
(1999) suggested measuring this degradation in perfor-
mance, which results from the lack of central coordination,
by the worst-case ratio of the value of an equilibrium to
that of an optimum. This ratio is known as the “price of
anarchy,” a phrase coined by Papadimitriou (2001). It is
quite appealing (especially for evacuation situations) that in
the network game considered here, the price of anarchy is
small, i.e., the selfishness of users actually drives the solu-
tion close to optimality. Recall that the Nash equilibrium
results from everyone choosing a shortest path under the
prevailing conditions.
To derive a bound on the price of anarchy for the max-

imum latency objective, we use a corresponding bound
for the average latency of Nash equilibria, which was first
proved for linear latency functions by Roughgarden and
Tardos (2002) and then extended to different classes of
latency functions by Roughgarden (2003b) and Correa et al.
(2004b, 2005).

Theorem 5.1 (Roughgarden 2003B, Correa et al.
2005). Consider an instance with latency functions drawn
from a family # of nondecreasing and continuous latency
functions. Then, the ratio of the average travel time of
a Nash equilibrium f NE to that of a system optimum
f SO is bounded from above by (!##, i.e., C!f NE# "

(!##C!f SO# " where

(!## $=
(

1− sup
l∈#"0"x"d

{

x!l!d#− l!x##

dl!d#

})−1

'

As mentioned in the introduction, (!##= 4/3 for linear
functions. For polynomials of degree 2 with nonnegative
coefficients, (!## equals 1'626; for those with degree 3,
(!##= 1'896; in general, (!##=.!p/ lnp# for polyno-
mials of degree p.
Weitz (2001) observed that in networks with only one

source and one sink, any upper bound on the price of anar-
chy for the average latency is an upper bound on the price
of anarchy for the maximum latency. We include a multi-
commodity version of this result.

Theorem 5.2. Consider a set # of continuous and non-
decreasing latency functions, and a multicommodity flow
network with latency functions drawn from #. Let f NE be a
Nash equilibrium and fMM a min-max flow. For each com-
modity k ∈K, Lk!f

NE#" !d/dk#(!##L!fMM#, where Lk is
the maximum latency incurred by commodity k, dk is its
demand rate, and d is the total demand.

Figure 6. Instance showing that the bound in Theorem
5.2 is tight for single-commodity networks.

dd

l(x)/2

l(d )/2 l(x)/2

l(d)/2

0

Proof. Let f SO be a system optimum. Then,

dkLk!f
NE#" dC!f NE#" d(!##C!f SO#" d(!##C!fMM#

" d(!##L!fMM#'

Here, the first inequality holds because f NE is a Nash equi-
librium, the second inequality follows from Theorem 5.1,
the third one comes from the optimality of f SO, and the
last one just says that the average latency is less than the
maximum latency. #

The proof of Theorem 5.2 implies that, if for a given
single-source single-sink instance an equilibrium flow f NE

happens to be a system optimum, then f NE is also optimal
for the maximum latency objective. For instance, if all
latency functions are monomials of the same degree, but
with arc-dependent coefficients, it is well known that Nash
equilibria and system optima coincide (Dafermos and Spar-
row 1969). Note that the upper bound given in Theorem 5.2
is tight as shown by the example in Figure 6, which goes
back to Braess (1968). Indeed, the latency of the unique
Nash equilibrium is l!d#, while the maximum latency of
a min-max flow, which coincides with the system opti-
mum, is

l!d#− max
0"x"d

{

x

d
!l!d#− l!x##

}

'

The claim follows by taking the supremum over d! 0 and
l ∈#.
For instances with multiple sources and a single sink,

the maximum latency of a Nash equilibrium is in general
unbounded with respect to that of a min-max flow, even
with linear latencies. In fact, we will show that the price
of anarchy is /!n#, where n is the number of nodes in
the network. Weitz (2001) showed that the price of anar-
chy is unbounded in the case of two commodities, and
Roughgarden (2004) proved that it is at most n−1 if there
is a common source and sink.

Proposition 5.3. The price of anarchy in a single-com-
modity network with multiple sources and a single sink is
/!n#, even if all latencies are linear functions.

Proof. Fix a constant +> 0 and consider the instance pre-
sented in Figure 7. Nodes n"n− 1" ' ' ' "1, are the sources
while node 0 is the sink. Nodes i and i− 1 are connected
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Figure 7. Instance showing that Nash equilibria can be arbitrarily bad for the maximum latency objective in networks
with multiple sources and a single sink.
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with two arcs: ai with constant latency equal to one and ãi

with latency equal to x/+i. Let the demand entering node
i > 0 be +i. A Nash equilibrium of this instance routes the
flow along paths of the form ãi"ai−1" ' ' ' "a1 and has max-
imum latency n. (Note that all Nash equilibria have the
same flow values on arcs in this instance; moreover, all
path decompositions have the same maximum latency.) To
show the claim, it suffices to exhibit a good solution. For
instance, for origin i, let its demand flow along the path
ai" ãi−1" ' ' ' " ã1. Under this flow, the load of ãi is equal to
+i+1 + · · · + +n and its traversal time is +1 + · · · + +n−i.
Hence, we can bound the maximum latency from above by
1+ n+/!1− +#, which tends to one when +→ 0. #

In contrast to the authors’ earlier results on the total
latency objective, the previous theorem implies that all
Nash equilibria can be arbitrarily bad with respect to the
maximum latency objective in single-source single-sink
networks with capacities. A Nash equilibrium with capac-
ities is a Nash equilibrium in the same instance without
capacities, but where players experience infinite disutilities
when their actions would result in infeasible solutions (Cor-
rea et al. 2004b).

Corollary 5.4. Consider single-source single-sink net-
works with explicit arc capacities. The worst-case ratio of
the maximum latency of a best Nash equilibrium to that of a
min-max flow is unbounded, even if all latencies are linear
functions.

Proof. We modify the instance from the proof of Proposi-
tion 5.3 by adding a supersource n+ 1 and arcs !n+ 1" i#
for i = n" ' ' ' "1. Arc !n + 1" i# has capacity +i, and all
nodes have supply zero except for n+ 1, whose supply is
+n + · · · + +. The latencies of all arcs !n+ 1" i# are identi-
cally zero for i= n" ' ' ' "1.
Because all feasible flows in the new instance saturate

every arc !n+ 1" i# for i = n" ' ' ' "1, flows in the original
and in the new instances are in one-to-one correspondence.
In particular, the extension of a min-max flow is a min-max
flow in the new instance, and the extension of a Nash equi-
librium is a Nash equilibrium with capacities. The result
follows because the best equilibrium with capacities of the
new instance has the same maximum latency as an arbitrary
equilibrium of the original instance. #

In the single-source single-sink case, Nash equilibria are
not the only good approximations to the maximum latency

problem; an immediate corollary of Theorem 4.2 is that
system optima are also close to optimality with respect to
the maximum latency objective.

Theorem 5.5. Let # be a family of differentiable and non-
decreasing latency functions. For single-source single-sink
instances with latency functions drawn from #, the max-
imum latency of a system optimum is bounded by -!##
times that of a min-max flow.

Proof. The result follows just by using a min-max flow
fMM in Corollary 4.3. #

The bound given in Theorem 5.5 is the best possible. To
see this, consider the instance depicted in Figure 8. The
min-max flow routes the entire demand along the lower arc
for a small enough + > 0. On the other hand, the unique
system optimum has to satisfy l∗!x#= l∗!d#− +, where x
is the flow along the lower arc. Therefore, the upper arc has
positive flow and the maximum latency is l∗!d#− +. The
ratio between the maximum latencies of the two solutions is
arbitrarily close to l∗!d#/l!d#. Taking the supremum over
d ! 0 and l ∈# shows that the bound in Theorem 5.5 is
tight.
To complete Table 1, let us prove that the average latency

of a min-max flow is not too far from that of a system
optimum.

Theorem 5.6. Consider a set # of continuous and nonde-
creasing latency functions. Let fMM be a min-max flow and
let f SO be a system optimum for an instance with a single
source, a single sink, and latencies drawn from #. Then,
C!fMM#" (!##C!f SO#.

Proof. Note that C!fMM#"L!fMM#"L!f NE#=C!f NE#
" (!##C!f SO#, where f NE is a Nash equilibrium of the
instance. #

Figure 8. Instance showing that the bound in
Theorem 5.5 is tight.

d d

l*(d ) – ε

l(x)
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Figure 9. Instance showing that the bound in
Theorem 5.6 is tight.

d d

l(d ) + ε

l(x)

Again, the guarantee given in the previous theorem is
tight. To show this, it is enough to note that the equilib-
rium flow and the min-max flow coincide in the example of
Figure 9, and their average latency is l!d#. Moreover, the
average latency of the system optimum is arbitrarily close
to

l!d#− max
0"x"d

{

x

d
!l!d#− l!x##

}

'

Taking the supremum of the ratio of these two values over
d! 0 and l ∈# completes the argument.

6. The Bottleneck Objective
In this section, we consider a fourth objective. It arises
from a different interpretation of the problem considered
by Koutsoupias and Papadimitriou (1999). As explained
in the introduction, they considered the maximum latency
in a network in which all paths consist of just a single
arc. Instead of generalizing that objective to the maximum
latency of a path, we could as well consider the problem
of minimizing the maximum latency of the arcs. Given an
arbitrary instance with multiple commodities, a bottleneck
flow is a feasible flow f BN that minimizes the maximum
latency among those arcs with positive flow. This prob-
lem, referred to as the bottleneck problem, is of interest to
telecommunication network service providers because they
typically use routing schemes that minimize arc loads (see,
e.g., Qiu et al. 2006). Indeed, providers seek to have spare
capacity available, so, in the event of an arc failure, it can
be used for rerouting traffic. Another application can be
found in the operation of server farms for which a bot-
tleneck optimum effectively balances the load among the
servers (Czumaj et al. 2002).
If the arc latency functions are convex, a bottleneck flow

can be obtained by solving !A! convex programs; thus, in

Figure 10. Examples for the bottleneck objective.
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contrast to a min-max flow, it can be approximated arbitrar-
ily well in polynomial time. Let us outline an algorithm.
For a ∈ A, let Aa $= %a′ ∈ A$ la′!0# " la!0#& be the set of
arcs that can be used in subproblem a, and dk!sk# $= dk,
dk!tk# $=−dk, and dk!v# $= 0 for all v ∈ V \%sk" tk&, where
k ∈K. Consider the following convex program:

Za =min z (2a)

s.t. la′!fa′#" z" a′ ∈Aa" (2b)
∑

k∈K
f k
a′ = fa′ " a′ ∈Aa" (2c)

∑

a′∈,+!v#∩Aa

f k
a′ −

∑

a′∈,−!v#∩Aa

f k
a′ = dk!v#"

v ∈ V " k ∈K" (2d)

f k
a′ ! 0" a′ ∈Aa" k ∈K" (2e)

where ,+!v# (respectively, ,−!v#) represents the outgoing
(respectively, incoming) arcs from (to) v, and the super-
index k represents the commodity. When the convex pro-
gram is infeasible, we set the corresponding objective
function value to 0.

Theorem 6.1. The value of a bottleneck flow equals Z =
min%Za$ a ∈A& .

Proof. Let f BN be a bottleneck flow, and let v∗ $=
max%la!f BN

a #$ f BN
a > 0 for a ∈ A& be its value. Moreover,

let f a be an optimal solution to the convex program corre-
sponding to the value Za. Clearly, if Za <0, then f a is a
feasible flow in the original network. Therefore, Z! v∗.
To see the other inequality, first note that if v∗ !

la1!0# $= max%la!0#$ a ∈ A&, then v∗ = Za1
! Z. Assume

now that v∗ < la1!0#, and let la2!0# $=max%la!0#$ a ∈A and
la!0# " v∗&. Note that f BN is not using any arc a with
la!0#> v∗; hence, v∗ =Za2

!Z. #

Next, we study the quality of bottleneck flows with re-
spect to the maximum latency objective, the average latency
objective, and their unfairness. We show that bottleneck
flows can be arbitrarily far from optimal for each of these
three objectives. In turn, min-max flows, system-optimal
flows, and Nash flows can be of arbitrarily poor quality
with respect to the bottleneck objective.
To see the first part, consider an instance with unit de-

mand and two nodes connected with two paths as shown
on the left-hand side of Figure 10. The first path consists
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Table 3. Overview of approximation guarantees for
single-source single-sink networks when
latencies belong to a given set #.

Maximum Average
latency latency Unfairness

Min-max flow 1 (!## ?
System optimum -!## 1 -!##
Nash equilibrium (!## (!## 1

Notes. All bounds are tight. The “?” indicates that no upper bound
is known; recall from the example depicted in Figure 4 that 2p is a
lower bound for polynomials of degree p for p! 2.

of a single arc, and the second path is given by a chain
of n arcs. The latency function associated with each arc is
la!x# = x. The unique bottleneck flow has value 1/2 on
all arcs. The system optimum, the Nash equilibrium, and
the min-max flow coincide (and are unique). They all route
1/!n+1# units of flow along the chain and n/!n+1# units
on the path consisting of the single arc.
On the other hand, consider the instance on the right

side of Figure 10. Now, the only bottleneck flow routes
n/!n+ 1# units along the arcs on the chain and 1/!n+ 1#
units on the path consisting of the single arc. The sys-
tem optimum, the Nash equilibrium, and the min-max flow
coincide again; they route 1/2 units of flow on all arcs.

7. Conclusion
We have shown that computing a flow of min-max latency
is NP-hard, even in the single-source single-sink case with
linear latency functions. Still, the problem admits a solu-
tion that is fair. We have proved tight worst-case bounds
between the different solutions and with respect to dif-
ferent objectives. For instance, we have shown that two
standard solutions to network problems give constant-factor
approximations for the maximum latency problem. On the
one hand, the maximum latency of any Nash equilibrium
is within a factor of (!## of that of a min-max flow,
and Nash flows are fair. On the other hand, the ratio of
the maximum latency of any system optimum to that of
a min-max flow is at most -!##, and its unfairness is
also bounded by -!##. Table 3 summarizes the findings
for single-source single-sink networks with latencies drawn
from a given class # of allowable latency functions. We do
not include the bottleneck objective and the bottleneck flow
because we have shown that all interesting entries would
be infinity. Correa et al. (2005) extended our study of the
maximum latency objective to nonatomic congestion games
and gave pseudoapproximation results. Lin et al. (2005)
showed that the maximum latency of an equilibrium of gen-
eral multicommodity instances can be exponentially larger
than that of an optimal solution. Finally, Chakrabarty et al.
(2005) presented results similar to ours for atomic conges-
tion games and a different notion of fairness.
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