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The surface code is one of the most promising candidates for combating errors in large scale fault-tolerant

quantum computation. A fault-tolerant decoder is a vital part of the error correction process—it is the algorithm

which computes the operations needed to correct or compensate for the errors according to the measured

syndrome, even when the measurement itself is error prone. Previously decoders based on minimum-weight

perfect matching have been studied. However, these are not immediately generalizable from qubit to qudit codes.

In this work, we develop a fault-tolerant decoder for the surface code, capable of efficient operation for qubits

and qudits of any dimension, generalizing the decoder first introduced by Bravyi and Haah [Phys. Rev. Lett. 111,

200501 (2013)]. We study its performance when both the physical qudits and the syndromes measurements are

subject to generalized uncorrelated bit-flip noise (and the higher-dimensional equivalent). We show that, with

appropriate enhancements to the decoder and a high enough qudit dimension, a threshold at an error rate of more

than 8% can be achieved.

DOI: 10.1103/PhysRevA.92.032309 PACS number(s): 03.67.Pp, 03.67.Lx, 05.10.Cc

I. OVERVIEW

Topological quantum codes built from qubits [two-

dimensional (2D) quantum systems] play a central role in

architectures for fault-tolerant quantum computing at the

forefront of current research [1–4]. The surface code [5] and

the related toric code [6,7] are prominent examples of such

codes. Compared with other quantum error correcting codes,

they posses the key experimental benefit of requiring only

local interactions and yet, under realistic noise models, they

have been shown to achieve the highest reported fault-tolerant

thresholds [8,9].

Recent developments have shown that employing d-

dimensional quantum systems, or qudits, as the building

blocks for fault-tolerant schemes may offer some important

advantages. For example, an integral part of many fault-

tolerant schemes is the distillation of magic states [10]—a

procedure necessary to achieve universal computation—where

generalization to higher dimensions has resulted in improved

distillation thresholds and lower overheads in the number of

qudit magic states [11–13]. Moreover, threshold investigations

of the qudit toric code with noise-free syndrome measurements

have shown that, for a standard independent noise model,

the error correction threshold increases significantly with

increasing qudit dimension [14–16], although we caution that

it is difficult to fairly compare noise rates between systems

of different dimensions. Although it is more challenging to

realize qudit quantum systems experimentally, recent work

has demonstrated the ability to coherently control and perform

operations in single 16-dimensional atomic systems with

high fidelity [17,18], with the implementation of high-fidelity

multiqudit interactions still to be achieved.

A surface code is a stabilizer code with local stabilizer

generators. Qudits are associated with the edges of a 2D

square lattice. In order to store the encoded information for
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an arbitrary length of time, active error detection must be

performed periodically in order to prevent the errors from

accumulating beyond the capability of the code to correct them

(see Fig. 1). In every round of error correction all the stabilizer

generators are measured to obtain the syndrome. The syndrome

is then processed by the decoder—the classical algorithm that

outputs a correction operator. In a realistic environment both

the physical systems and the stabilizer measurements are prone

to errors, and hence the decoder must be able to take both of

these types of errors into account [7,19].

Decoders are often developed for the simpler case where

measurement error is neglected. However, there is a well-

established and elegant method for generalizing measurement-

noise-free decoders for topological codes to the fully fault-

tolerant setting [7]. The noisy syndrome measurements are

repeated, extending the two-dimensional surface representing

the code to a three-dimensional (3D) data structure, where

time represents an extra dimension. Remarkably, the change

from two to three dimensions allows most decoder algorithms

developed for noise-free measurements to be applied largely

unchanged in this more general setting.

The most widely used decoding algorithm for topological

codes remains the minimum-weight perfect matching algo-

rithm (MWPMA). However, this algorithm has a number of

disadvantages. For a distance L surface code, with error-

free measurements, the run time for a basic implementation

of the MWPMA scales with O(L6), and for error-prone

measurements this run time increases to O(L9). A more refined

fault-tolerant implementation for the qubit surface code scales

with O(L2) [20], and under certain assumptions a run time

complexity that is independent of L can be attained [21].

Nevertheless, the main disadvantage of the MWPMA is that

it is not suitable for qudit surface codes with d > 2. For these

reasons, the development of alternative decoding algorithms

is currently a very active research area [14,15,22–27].

In this work, we introduce a fault-tolerant decoding al-

gorithm which overcomes both of the disadvantages of the

MWPMA. The algorithm, which extends the hard-decision
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FIG. 1. (Color online) An illustrative picture of the data structure

obtained in order to perform fault-tolerant error correction. Each layer

represents a single time step where all the stabilizers are measured

(only plaquettes are shown here for clarity—depicted by the meter

with multiple outcomes) to obtain the syndrome. The yellow meters

(dark gray) represent locations where an error has occurred in the

measurement procedure itself. After a specified number of time steps

a full 3D history of the syndromes will have been be collected. If

operating below threshold the decoder then uses this data to infer a

correction operator that returns the code to its original state with high

probability.

renormalization group (HDRG) decoder proposed by Bravyi

and Haah [28], has a fast typical run time of O(L3) and can be

applied to qudit surface codes of any dimension d.

For a given noise model, the error threshold represents

an upper bound on the noise level for which increasing the

code distance increases the probability of successful error

correction. We denote the threshold for a given qudit dimension

by p
(d)
th . A widely studied qubit error model (described below

in more detail) is the simple uncorrelated noise model where

X and Z Pauli errors on individual code qubits and bit-flip

errors on the syndrome measurement outcomes each occur

independently with probability p. For this noise model, the

optimal threshold for the qubit toric code is known to be

3.3% [29] while the threshold obtained with the MWPMA

decoder is 2.9% [9,19,30].

The HDRG decoder we study here attains a threshold of

p
(2)
th = 2.2% for the qubit code and may also be used with qudit

surface codes of any dimension. For the qudit generalization of

the uncorrelated noise model (introduced below), the decoder

achieves a threshold value which increases monotonically with

the qudit dimension d, until it reaches a saturated value of

around 4.2%.

We show that this saturating behavior is due to a syn-

drome percolation effect which upper bounds the achievable

threshold. To overcome the percolation threshold we have

constructed a procedure executed before running the HDRG,

which we call the initialization step [15]. The algorithm im-

plemented in this “pre-decoding” step disrupts the syndrome

percolation and boosts the threshold to 8.3% for sufficiently

high qudit dimension. We call the HDRG decoder when

augmented with the initialization step the enhanced-HDRG

decoder.

The structure of this paper is as follows. We start in

Sec. II by reviewing the properties of the qudit surface

code and fixing our notation. In Sec. III we give a formal

description of the noise model investigated and describe how

our numerical simulations were performed. In Sec. IV we

present our different variations of the HDRG decoder for the

fault-tolerant setting, along with the thresholds we obtain. We

conclude in Sec. V.

II. THE QUDIT SURFACE CODE

The qudit surface code is the natural higher-dimensional

generalization of the qubit code. This generalization is already

present in Kitaev’s seminal paper [6] and has been written

about extensively elsewhere [7,19,31–33]. For completeness,

however, we shall provide an overview of qudit stabilizer codes

and the qudit surface code.

We express the computational basis for a single qudit as the

set of states |α〉 where α ∈ Zd , and where the d-element cyclic

group Zd = {0, . . . ,d − 1} can be conveniently identified with

addition over integers modulo d. The conventional single qubit

Pauli operators have natural generalizations:

X =
∑

j∈Zd

|j ⊕ 1〉 〈j | , Z =
∑

j∈Zd

ωj |j 〉 〈j | , (1)

where ω = e2πi/d and the addition ⊕ is taken to be modulo d.

Notice that these unitary operators are no longer Hermitian

when d > 2, but they posses orthogonal eigenspaces with

eigenvalues of the form ωj , for some j . Hence, we can

still interpret them as physical observables with measurement

outputs labeled by their complex eigenvalues. As a shorthand

we will often abbreviate an outcome ωj simply by its

exponent j .

The qudit Pauli operators obey the commutation relation

XjZk = ω−jkZkXj for arbitrary j,k ∈ Zd . They generate the

single qudit Pauli group Pd = 〈X,Z〉 up to a global phase.

The n-qudit Pauli group Pn
d is the n-fold tensor product of the

single qudit Pauli group P
⊗n
d . The code space of a stabilizer

code is defined as the “+1” eigenspace of an Abelian subgroup

S ∈ Pn
d , such that ωj

1 �∈ S for nonzero j . The elements of S

are called the stabilizers of the code. A set of generators of S is

identified as the syndrome measurement operators for the code.

In a surface code qudits are identified with the edges of an

L × L lattice with boundaries as shown in Fig. 2. The surface

code is a stabilizer code with two types of stabilizer generators

S = 〈As,Bp〉 defined on the lattice as

As = Xe ⊗ X−1
e ⊗ X−1

e ⊗ Xe ∀ e ∈ V, (2)

Bp = Ze ⊗ Ze ⊗ Z−1
e ⊗ Z−1

e ∀ e ∈ P, (3)

where e ∈ V are the edges surrounding a vertex V of the lattice

and e ∈ P are the edges surrounding a plaquette P . We refer to

As as the vertex operators, and to Bp as the plaquette operators.

An example of each is shown in Figs. 2(a) and 2(b). Note that

the two boundary different types (“rough” and “smooth”) of the

lattice lead to deformations of plaquette and vertex operators

at the boundary, respectively.
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FIG. 2. (Color online) An example of a distance 5 surface code.

Qudits are shown as black dots, arranged on the edges of a lattice

with two types of boundary: rough and smooth. For clarity, when

an arbitrary Xj or Zk Pauli operator acts on a physical qudit, we

only include the exponents j and k on the edges of the figure. We

use red for Xj errors and vertex operators, and blue for Zk errors or

plaquette operators. (a) and (b) An example of a single plaquette and

vertex operator, respectively. (c) An example of a deformed rough

edge plaquette operator (three-body operator). Note that the vertex

operators are deformed at smooth edges. (d) and (e) An example of a

pair of anticommuting logical operators.

The surface code supports one logical qudit. The logical

operators for the qudit are defined by stringlike X (or Z)

operators. The logical X̄ operators connect the two opposing

smooth edges, whereas the logical Z̄ operators connect the

two rough edges. An example of each is shown in Figs. 2(d)

and 2(e). These operators, together with the stabilizer group,

generate the group of Pauli operators which map the code

space to itself. We denote this group of logical operators L.

We denote the set of logical operators which do not leave the

code space invariant as L − S. The distance of a topological

code corresponds to the length of shortest possible logical

operator, i.e., the distance is L.

Errors that occur on the qudits are detected by measuring

the neighboring stabilizers, with X-type and Z-type errors

detected independently by the plaquette and the vertex oper-

ators, respectively. This allows us to restrict the discussion to

X-type errors since results for Z-type errors will be analogous.

A single X-type error is detected by two adjacent plaquettes,

except when it occurs on a smooth boundary [see Fig. 3(a)].

In general, a string of X-type errors is detected by plaquettes

contiguously along the path of the string, as shown by the

example in Fig. 3(b). This is in contrast to the qubit case

(d = 2) where only the end points of the string give rise to

nontrivial plaquette measurements, a situation that can also

arise for general d when the errors along the string possess

identical errors. This observation suggests that in higher d the

syndrome reveals more information about the path of the errors

on the lattice. Indeed it is this information that, if exploited

(a)

b

c

(b)

−a

a ⊕−b b ⊕−c

c

a−a

a

a−a

(c)

a

a

−a

FIG. 3. (Color online) Examples of X-type errors and the syn-

drome transportation rule. (a) A single boundary error is only detected

by one plaquette. (b) An arbitrary string of three errors and the

corresponding intermediate plaquette measurement outcomes. (c) An

example of how to transport the plaquette with outcome a in any

of the indicated directions by applying the relevant X-type operator

shown in green.

correctly by the decoder, can lead to improved error correction

performance, as shown by their higher threshold values, as d

increases.

We also introduce the concept of syndrome transportation:

a syndrome can be transported in any direction by applying the

appropriate operator as illustrated by the example in Fig. 3(c).

Moreover, by transporting one syndrome to the location of a

second, they are fused into a single syndrome such that their

charges are added (modulo d). These concepts will be useful

in Sec. IV when describing our decoder.

Generally speaking, the aim of the decoder is to use the

information given by the syndrome to return a correction

operator that restores the code to its original state. More

formally, let us denote an arbitrary configuration of X-

type errors on the 2D surface code by the set e, and the

corresponding plaquette measurement outcomes by the set

s = {sx,y}, where sx,y ∈ Zd is the outcome of the measurement

and the subscripts x and y are the coordinates of the plaquettes,

so that 1 � x � L and 1 � y � (L − 1). We will often refer

to the outcome sx,y as the charge of the measurement. Then

we say that a decoder D takes in the syndrome s and returns a

correction configuration f. We denote this map by D(s) → f.

The decoder succeeds if e ⊗ f ∈ S and fails if e ⊗ f ∈ L − S.

In the next section we will give a formal description of

the noise model and describe the method for the fault-tolerant

simulation.

III. THE NOISE MODEL AND SIMULATION METHODS

In the literature it is common to test fault-tolerant decoders

with a simple error model described by a single parameter p.

For ease of comparison, we shall follow this convention and

use the same error model here. Although this model is not

likely to be particularly close to the noise which occurs in

032309-3



FERN H. E. WATSON, HUSSAIN ANWAR, AND DAN E. BROWNE PHYSICAL REVIEW A 92, 032309 (2015)

physical systems, it has the advantage that it allows X- and Z-

type errors and their correction to be modeled independently.

It is thus the standard noise model used to benchmark new

decoders.

Between each round of syndrome measurements we assume

that each physical qudit is independently subject to an error

channel which applies error operator Xk such that 1 � k �

(d − 1) with equal probability p/(d − 1), followed by an error

channel which applies error operator Zk such that 1 � k �

(d − 1) with equal probability p/(d − 1). We then assume

that the outcome of each syndrome measurement j undergoes

an error which maps j to j ⊕ k for 1 � k � (d − 1) with equal

probability p/(d − 1). Since X-type errors, Z-type errors, and

measurement errors are uncorrelated this is often called the

uncorrelated noise model.

We estimate the threshold via a Monte Carlo simulation.

We shall study a distance L code for a variety of values of L.

This corresponds to an L × L surface code grid. For simplicity,

we shall let the number of time steps in our simulation also

equal L.

The simulation proceeds by first generating a 3D data

structure of L time steps of the accumulated history of

the physical qudit errors and the measurement errors. The

corresponding syndrome measurement outcomes, taking into

account both of these error sources, are then computed.

In order to achieve the close analogy for the relationship

between errors and syndromes in the 2D measurement-error-

free and 3D general case, Dennis et al. [7] showed that it

is most convenient to represent the history of the syndrome

outcomes as a 3D grid of syndrome changes.

Let us denote st as the set of syndrome outcomes at the

t th time step. The set of syndrome changes s′
t at time step t

is then defined as the elementwise difference, modulo d, of

st and st−1, i.e., s′
t = st ⊖ st−1, where ⊖ denotes subtraction

modulo d and we assume that s′
1 = s1. Each set of syndrome

changes corresponds to a 2D grid of integers, and we combine

these grids into a 3D cubic structure with t = 1 at the bottom

and t = L at the top. We call this grid the syndrome changes

history and denote it S′. It is convenient to introduce a Cartesian

coordinate system to refer to the elements of S′, i.e., st,x,y

corresponds to the syndrome change at grid point (x,y) at

time step t .

The input to the decoder is the 3D syndrome changes

history S′ = {s1,s2 ⊖ s1, . . . ,sL ⊖ sL−1}. The decoder takes

the syndrome changes history and returns a 3D correction

operator F = {f1,f2, . . . ,fL}. To convert this to a physical

correction operator that can be applied in two dimensions

we ignore timelike edges and combine the two-dimensional

layers corresponding to each time step, to form a 2D correction

operator f̃ that corrects the accumulated errors at the last time

step of the surface code.

In other words, the resultant correction operator, f̃, is the

sum (modulo d) of the correction at each qudit location at each

time step, i.e., f̃ = ⊗t ft . We say the decoder has succeeded

when the product of the accumulated errors on the qudits and

the returned correction operator is within the stabilizer of the

code.

If we are operating below threshold then following the 3D

decoding we expect almost all of the errors to have been

corrected. There is a finite probability, however, that some

small number of errors will remain after the fault-tolerant

decoding has been performed. In a realistic setting the error

correction would proceed in this way, eliminating all but a

small number of errors in each block of L time steps. At the

point when the state is read out, these small errors can be

accounted for by taking a majority vote on the measurements

of the logical operators.

For the purposes of the simulation, however, we need to

determine whether the fault-tolerant decoder has introduced a

logical error. The conventional way to overcome this problem

is to perform an additional round of error correction in two

dimensions with noise-free syndrome measurements, after

which we can be certain that all the errors are corrected and a

parity check will reveal whether any logical errors have been

introduced.

IV. HDRG DECODER WITH NOISY SYNDROMES

The HDRG decoder has a simple motivation behind its

construction: when the error rate is sufficiently low we expect

any errors arising on the surface code lattice to be sparse.

This in turn means that syndromes are likely to occur in

small, well-separated clusters. The HDRG decoder aims to

identify clusters of syndromes generated by such local errors

and correct them locally within each cluster. If these clusters

have been correctly identified, and the clusters are each small

enough that they do not span the lattice, then this strategy

results in the decoder computing a correction operator that will

correct all errors with high probability. In this section we shall

give a formal definition of these concepts in the fault-tolerant

setting.

A. Decoder construction

The main concept required for the description of the HDRG

decoder is that of a metric—a geometric distance function

between any pair of elements of a set. In our case, we wish to

associate a metric between pairs of syndromes in the set S′.

The metric we use is the Manhattan distance, denoted here by

δ, which maps two syndromes as follows:

δ(st,x,y,st ′,x ′,y ′ ) = |t ′ − t | + |x ′ − x| + |y ′ − y|. (4)

See Fig. 4 for an illustration for how the region defined by this

metric grows.

We say that two syndromes are δ-connected if the distance

between them is less than or equal to δ. For a given metric

value δ, we define a cluster C to be the set nontrivial syndromes

t − 1t − 2 t t + 1 t + 2

FIG. 4. (Color online) An illustration of the Manhattan distance

metric. The figure shows five time steps from the syndrome changes

history. The green (light gray) plaquettes are 1-connected to the

central red plaquette (central plaquette at time step t , medium gray).

Blue (dark gray) and green plaquettes are 2-connected to the central

plaquette.
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such that every syndrome within the cluster is δ-connected to

at least one other syndrome within that cluster. It is easy to

see that for a fixed δ the syndrome changes history S′ can

always be partitioned into a set of disjoint clusters such that

S′ = C1 ∪ C2 ∪ · · · ∪ Cn, for some integer n.

Associated to every cluster is a total charge ⊕C st,x,y , where

the summation is performed modulo d. If this charge is zero,

we call the cluster neutral. Such a cluster can be annihilated

by fusing all of the syndromes contained in the cluster locally,

meaning that the Pauli correction operator will have support

only within the cluster. If the charge is nonzero but the

cluster is δ-connected to any of the three smooth boundaries

(two spatial and one time) then we call the cluster boundary

neutral. Clusters of this type can be annihilated by fusing the

syndromes locally and then connecting the remaining charge

to the boundary it overlaps.

The HDRG decoder involves multiple levels of decoding

to fuse together all the elements in S′ and return the resultant

correction operator. Every decoding level ℓ is associated with

a distance determining the connectivity of the disjoint clusters

at that level. For the metric we have defined we will use δ = 2ℓ

starting with ℓ = 0. This means that the cluster connectivity

increases exponentially as we increase the decoding levels. At

each level, only the neutral (and boundary-neutral) clusters

are fused, leaving any charged clusters to be combined to form

neutral clusters at subsequent levels.

The decoding procedure can now be summarized as follows,

starting with ℓ = 0.

(1) Clustering: Identify all the disjoint δ-connected clusters

at level ℓ.

(2) Neutral annihilation: Fuse each neutral and boundary-

neutral cluster locally and return a correction operator.

(3) Renormalize: If there are clusters that are not annihi-

lated, then increment ℓ by 1 and return to step 1.

The decoder stops when there are no nontrivial syndromes

remaining. The crucial feature of this decoder is that part of the

total correction operator is fixed after each level of decoding.

In classical coding theory, decoding algorithms exhibiting

such a feature are referred to as hard-decision decoders. An

explicit example for a small lattice simulation is illustrated in

Appendix A 1.

B. The run time of the HDRG decoder

The dominant parts of our decoder algorithm that contribute

to the run time complexity are the identification of the

δ-connected cluster of syndromes (clustering) and the deter-

mination of the Pauli operator that eliminates the syndrome

(fusion). We shall look at each of these processes in turn and

argue that for lower error rates we expect a run time scaling

of O(L3) and even in the worst case this scaling will be no

greater than O(L6).

Let us first consider the limit in which error rates are low

and the errors are extremely sparse. In the clustering part

of the algorithm at a given level ℓ, the algorithm searches a

constant number of plaquettes O(23ℓ) around every nontrivial

syndrome.

In the case of extremely sparse syndromes the total number

of syndromes is O(L3) and the decoder will only need to run

at the first level ℓ = 1. Thus, in this limit, the dependence of

the run time complexity on L for this part of the algorithm will

be O(L3).

In the worst case scenario we consider the most pessimistic

estimates for the clustering step of the algorithm. In this

case the decoder will run the maximum number of levels

ℓ = O(log2 L). There will be O(L3) syndromes and the

dependence of the run time complexity on L for this part

of the algorithm will thus be

O(log2 L)∑

ℓ=0

23ℓL3 ∼ 23 O(log2 L)L3 ∼ O(L6), (5)

to leading order.

For the fusion part of the algorithm, the syndromes can all

be moved to a single point in the box enclosing the cluster. This

will take a time that scales with the size of the enclosing box,

and the maximum size of the box scales with L3. Note that,

since the time complexity of modular arithmetic is independent

of modulus d, this scaling is independent of d.

C. Thresholds estimation and percolation limitation

To estimate the threshold we simulate the entire process

of generating L time steps of errors and noisy syndromes,

followed by decoding the syndromes. The simulation was done

for N = 104 runs, and repeated for a range of lattice sizes L

and error rates p.

We determine the threshold p
(d)
th using a rescaling

method [19,34]. Selecting data close to the point where the

curves of different L cross (for fixed qudit dimension) we

perform a fit to a function of the form

Psucc(x) = A + Bx + Cx2 + DL−1/μ, (6)

where x = (p − pth)L1/ν , and the final term in the sum

represents a finite-size correction to the fitting.

The success probability of the decoder for the qubit case

is shown in Fig. 5, where we find a threshold value of

p
(2)
th = 0.0215 ± 0.0006. This allows us to directly compare

our decoder with other fault-tolerant qubit decoders; for

example, the soft-decision renormalization-group decoder by

16
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FIG. 5. (Color online) An example for the collected simulation

data used to estimate the threshold for qubits. The inset figure shows

the fitting of the function Psucc(x) = A + Bx + Cx2 + DL−1/μ to the

rescaled data.
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FIG. 6. (Color online) A summary of all qudit thresholds for

different numbers of rounds of the initialization step. We have chosen

the 1000th prime dimension (d = 7919) to represent the asymptotic

limit. Although for small qudit dimensions the initialization step

disrupts the syndrome too much and reduces the threshold, we see

that in the asymptotic limit there is a clear advantage to using this

technique.

Duclos-Cianci and Poulin achieves a threshold of p
(2)
th =

0.019 ± 0.004 [22].

Using the same technique of rescaling and fitting the

function in Eq. (6) we can determine the threshold p
(d)
th for

further qudit dimensions. Although our HDRG decoder works

for arbitrary qudit dimension d we consider the first few prime

dimensions, and in order to determine the asymptotic behavior

we also consider one very high qudit dimension, d = 7919,

the 1000th prime number. The results are shown as the plot

labeled “Initialization levels 0” in Fig. 6. The plot shows that

the threshold achieved by the decoder increases monotonically

with increasing qudit dimension, but quickly saturates to a

maximum value of p
(7919)
th = 0.042 ± 0.09. Previous work

performed on the noiseless syndrome measurement version

of the HDRG in [15] suggests that this saturation is due to a

syndrome percolation effect.

In order to verify this hypothesis, we performed a sim-

ulation of the syndrome percolation threshold. This was

done by generating the qudit noise and noisy syndrome

measurements for each qudit dimension in the same way as for

the decoder simulation. However, once the syndrome changes

were calculated, we performed a check to determine whether

any 1-connected clusters in S′ percolated the lattice in the x or

y directions. The t direction was not checked since we want

to determine whether the percolating cluster is able to support

a logical operator once it is collapsed to f̃, and any stringlike

operators in the t direction are unphysical. This information

is summarized in the plot labeled “Initialization levels 0” in

Fig. 7. The saturated value for the percolation thresholds for

dimension 7919 is around 4.5%, agreeing with our prediction

that the HDRG decoder thresholds are upper-bounded by the

percolation threshold.

In the next section we show how to overcome this syndrome

percolation effect and achieve improved qudit thresholds using

an initialization step. This is an algorithm which is run before

the HDRG to disrupt the percolating clusters.
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FIG. 7. (Color online) A summary of percolation thresholds for

different numbers of rounds of the initialization step. The initializa-

tion step disrupts the percolation for low qudit dimensions, meaning

that in some cases a threshold cannot be identified.

D. Further enhancement

The initialization step is a subroutine that sweeps through

all of the syndromes S′ searching for neutral subclusters in

order to disrupt the percolating clusters. Unlike the HDRG

algorithm, the initialization step does not divide the observed

syndrome into disjoint clusters, but simply identifies and

eliminates neutral subclusters locally.

As with the decoder, the initialization step has “levels”

defined by a metric. However, subclusters are more than δ-

connected plaquettes; they are 1-connected paths of plaquettes,

where the charge of the subcluster is counted along the entire

path. This is because of the fact illustrated in Fig. 3, that a

(a) (b) (c)

t − 1

t − 2

t

t + 1

t + 2

FIG. 8. (Color online) An illustration of the first three initializa-

tion levels. (a) First initialization level. Orange plaquettes (light gray)

are 1-connected to the central red plaquette (central plaquette at time

step t). (b) Second initialization level. Green plaquettes (medium

gray) are 2-connected to the central plaquette and paths between the

central plaquette and any green plaquette have a degeneracy of 2. (c)

Third initialization level. Blue plaquettes (dark gray) are 2-connected

to the central plaquette and paths between the central plaquette and

any blue plaquette have a degeneracy of 1.
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connected path of errors will result in a connected neutral path

of syndromes.

An important idea needed to understand the initialization

levels is that of degeneracy of paths. If there are ±h steps in

the x direction, ±v steps in the y direction, and ±z steps in

the t direction of the path then its degeneracy is given by

D =
(h + v + z)!

h! v! z!
. (7)

The initialization levels are defined sequentially by distance

from the central syndrome and the degeneracy of the paths,

favoring those paths with equal distance but higher degeneracy

as more likely. In Fig. 8 we show the outer syndromes of the

first three initialization levels.

For a given syndrome st,x,y we denote byQ = q1,q2, . . . ,qn

the set of syndromes with the same distance from st,x,y , and

whose paths connecting to st,x,y have the same degeneracy.

Denote by pi a possible path connecting st,x,y to qi and refer

to each path as a subcluster at the initialization level k.

The initialization step Ik of depth k consists of running

all the levels I1,I2, . . . ,Ik where the initialization procedure

Ij consists of the following steps, beginning with the first

nontrivial syndrome.

(1) Neutral subcluster: Search over all the paths pi . If a

neutral path (subcluster) is identified go to step 2. If all the

paths are searched and none of them are neutral, increment the

syndrome index by 1 and repeat step 1.

(2) Subcluster annihilation: Annihilate the neutral subclus-

ter by fusing the syndromes within the subcluster, i.e., along

the path.

We refer to the HDRG decoder when augmented with

initialization at a certain depth as the enhanced-HDRG. It

is clear that the initialization step is not efficient because the

number of paths to search over increases factorially as the

depth increases, but for small numbers of levels the number of

subclusters to search over is still not too high. For example, at

the first level of initialization, in the worst case there will

be six paths to check for each element in the bulk of S′

[corresponding to the six neighboring syndromes (see Fig. 8)].

In general, the initialization step has an overhead of CiL
3

where Ci is the number of paths for each syndrome for the ith

initialization level. Specifically, Ci = 6,24,6, and 48, for the

first four initialization levels, respectively.

We simulated the enhanced-HDRG decoder in the same

way described in Sec. IV C. The results are summarized in

Fig. 6. We see that the asymptotic threshold achieved for four

levels of the initialization step is around 8.2%.

Although the improved thresholds for high d suggest that

we are successfully able to disrupt the syndrome percolation

using this technique, we still observe some saturation of the

thresholds. To test this, we performed syndrome percolation

simulations using the initialization step prior to the test for

percolation. The results are summarized in Fig. 7. We see

that the percolation threshold still upper-bounds the enhanced-

HDRG thresholds for the corresponding initialization

step.

Despite its success for very high qudit dimensions the

enhanced-HDRG is not useful for low qudit dimensions, where

the initialization step disrupts the syndromes in a way that

results in a lower threshold. This can be understood as a result

of using a decoding strategy that is too local—the neutral

subclusters identified are in fact fragments of larger errors

and the syndromes do not contain enough information to

reconstruct them correctly. This suggests that the syndromes

for very high qudit dimensions contain enough information

to allow many rounds of initialization to keep improving the

threshold. For smaller qudit dimensions, however, we see there

is an optimal number of initialization rounds that should be

performed; for example, for d = 17 we found that the two

initialization levels are optimal.

V. DISCUSSION

We have presented a modified version of the HDRG decoder

that was first introduced by Bravyi and Haah in [28] and

studied its decoding performance for the surface code with

noisy syndrome measurements. The main difference in our

version is the use of a more refined metric which has led to an

improved threshold. We have chosen the Manhattan distance

metric δ, whereas Bravyi and Haah considered the d∞ metric.

In our investigations we discovered that the majority of the

syndromes are cleared at the first level of decoding. This means

that having a more refined metric matters more at ℓ = 0 than

it does at higher decoding levels. The δ metric ensures that the

clusters at the first decoding level are as connected as possible

by allowing a single syndrome to be connected only to its six

nearest-neighbor plaquettes. This refinement of the metric is

the reason for our improved thresholds.

We found that, similarly to the measurement-noise-free set-

ting, for all but the smallest dimension d, syndrome percolation

places an upper bound on the decoder threshold for the HDRG

decoder. We have demonstrated that this can be overcome by

adopting an extra initialization step, which, by scanning for

locally neutral subclusters, breaks up the percolated lattice,

allowing the decoder to succeed above the percolation thresh-

old. This has a particularly stark effect for high dimensions,

increasing the threshold by almost a factor of 2.

The uncorrelated noise model chosen here was adopted

for ease of comparison with other decoders. However, an

uncorrelated noise model is unlikely to be encountered in

experiment. When the dimension is high, in an isotropic

depolarizing noise model, there will be a high correlation

between the presence of X-type and Z-type errors. A decoder

which used this information might achieve significantly higher

thresholds. Nevertheless, we expect the decoder presented

here to possess an error threshold for any noise model acting

independently and identically distributed (i.i.d.) with respect

to individual qudits and also non-i.i.d. noise models where

the correlation between qudit errors is limited. Testing these

possibilities is a pertinent open question.

A remarkable feature of this decoder is the independence of

its run time complexity with respect to qudit dimension. This is

in stark contrast to other known qudit decoders. For example,

the soft-decision renormalization-group decoder in the fault-

tolerant setting [22] has a straightforward implementation in

higher dimensions but comes with a cost of a polynomial

overhead in d which means its applicability is limited to low

dimensions.
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To make our comparisons with other decoding algorithms

more concrete in the qubit case, further research should focus

on a full gate-error simulation of the HDRG in the low-noise

regime. A comparison of success probability versus error rate

in this regime would allow one to compare overheads, the most

relevant figure of merit for judging the relative performance of

these decoders.

Given the excellent performance of the MWPMA, the most

important applications of the methods here will be for codes

where MWPMA is not a suitable decoder. The surface codes

studied in this paper are not the only quantum error correcting

codes for which HDRG type decoders could be beneficial. An

efficient decoding algorithm for the more exotic low density

parity check (LDPC) code, the four-dimensional hyperbolic

code, was introduced by Hastings with similar “greedy local

matching” principles as the HDRG decoder [35]. Other LDPC

codes exist for which efficient decoders have not yet been

identified [36,37]. The development of computationally light

fault-tolerant decoders for these codes is essential if they are to

be practical. HDRG decoders have demonstrated the efficiency

needed to support large scale fault-tolerant error correction

on the surface code and a flexibility which may make them

well suited to unlock the potential of future novel topological

codes.

Note added. Recently, the authors learned of a similar

investigation of the HDRG decoder with nonperfect syndrome

measurements (without the initialization step) [23].
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APPENDIX: EXPLICIT EXAMPLES

In this section we present two explicit examples outlining

all the steps of the 3D fault-tolerant simulation for a single

sample of errors. The reader may find the figures below more

transparent in explaining how the HDRG decoder works in

comparison to the description provided in Sec. IV. In both

examples we choose a lattice of distance 5 and qudit dimension

d = 5.

1. Example 1: HDRG decoding

In this example we present the simulation for the HDRG

decoder without any initialization step. We describe the steps

of the simulation in the captions of Figs. 9–14.

2. Example 2: Enhanced-HDRG decoding

with a depth 1 initialization step

In Figs. 15–19 we present the simulation for the HDRG

decoder when augmented with the first level of initialization,

I1. The initialization step is shown in Fig. 16, and all the

remaining steps are similar to those shown in the previous

example.
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FIG. 9. (Color online) Error and syndrome histories. The first step is to generate the full history of errors and noisy syndrome measurements

S for L = 5 time steps. The red circles and squares indicate the location of errors. Notice how the errors accumulate at each time step. The goal

of the decoder is to correct the final error configuration t = 5.
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FIG. 10. (Color online) Syndrome changes history. The second step is to evaluate the syndrome changes history S′ = {e1,e2 ⊖ e1,e3 ⊖

e2,e4 ⊖ e3,e5 ⊖ e4}, where the subtraction is performed modulo d . The changes history is passed to the decoder, which must infer a correction

operator from the information in S′ alone.
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FIG. 11. (Color online) HDRG ℓ = 1. The first level of the HDRG decoder divides the set S′ into disjoint 1-connected clusters (i.e.,

δ = 1). There are three different types of clusters shown: non-neutral, neutral, and boundary-neutral. Specifically, there are two single element

non-neutral clusters shown in blue with the their charge displayed. These clusters cannot be fused at this level. Moreover, there are two neutral

clusters in the bulk (gray and dark green), meaning that their total charge adds to zero (modulo 5). The elements of each neutral cluster are

fused together to the vacuum. Finally, there are five boundary-neutral clusters (yellow, purple, light green, orange, and pink). The total charges

of these clusters do not add up to zero, but since they are 1-connected to one of the boundaries they can be fused with that boundary. When the

cluster is fused with the time boundary, no physical correction is applied. The resultant correction operator from the fusion of the neutral and

boundary-neutral clusters is shown in green.
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FIG. 12. (Color online) HDRG ℓ = 2. The only remaining non-neutral cluster from the previous level is now 2-connected (shown in red).

Its elements are fused together and a local correction is returned.
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FIG. 13. (Color online) Projected correction. (a) The final (physical) error layer at t = 5. (b) Projected correction operator from corrections

identified in Fig. 12, f̃ = f1 ⊗ f2 ⊗ f3 ⊗ f4 ⊗ f5, which is equivalent to summing the exponents of the operators modulo d . (c) The product of

the accumulated error and the projected correction operators. The correction has resulted in a small number of remaining errors.
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FIG. 14. (Color online) Noise-free decoding. To confirm whether the decoder has succeeded or failed, we must perform an additional

round of decoding with noise-free syndrome measurements. (a) The outcomes of the noise-free syndrome measurements. (b) Clustering and

correction operators. (c) Result of noise-free decoding. As we can see in this instance all the errors have been eliminated, no logical error has

been introduced, and the decoding has succeeded.
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FIG. 15. (Color online) First row: The generation of the error and syndrome histories, similar to Fig. 9. Second row: The syndrome changes

history S′, similar to Fig. 10. Notice how S′ contains a percolating cluster of syndromes.
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FIG. 16. (Color online) Initialization I1. At the first level of initialization there are only six subclusters to search around each plaquette.

The search works by searching over every nontrivial syndrome and checking its six neighboring plaquettes sequentially to see if any of them

forms a two-element neutral subcluster. Once a neutral pairing is found, the two plaquettes are fused together and a single correction operator is

returned. Note that in this step we do not pair plaquettes to the physical or the time boundary. In the figure each subcluster is colored differently.
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FIG. 17. (Color online) The initialization step has disrupted the percolating cluster. HDRG decoding. Neutral and boundary-neutral clusters

identified by running two levels of the HDRG decoder with the correction operator returned are shown in green.
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FIG. 18. (Color online) Projected correction. (a) The accumulated layer of errors at t = 5 (see the top row of Fig. 15). (b) The projected

correction operator from running the initialization I1 (see Fig. 16). (c) The projected correction operator obtained from the HDRG decoder

(see Fig. 17). (d) The resultant errors after taking the operator product of the two correction layers and the accumulated layer of errors.

032309-10



FAST FAULT-TOLERANT DECODER FOR QUBIT AND . . . PHYSICAL REVIEW A 92, 032309 (2015)

(f)(e)
4 1

4

4
4

1
11

4

1
4

4

1
4 2 4

1

1

4 4

1

4

4

(g)

FIG. 19. (Color online) Noise-free decoding. (e) Noise-free syndrome measurements. (f) Clustering and correction operators. (g) The

result of noise-free decoding. In this case the resultant operators are all members of the stabilizer group so once again the decoding has been

successful.
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