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Abstract. We propose a fast feature selection method in supervised

learning for multi-valued attributes. The main idea is to rewrite the

multi-valued problem in the space of examples into a boolean problem

in the space of pairwise examples. On basis of this approach, we can

use point correlation coe�cient which is null in the case of conditional

independence, and veri�es a formula connecting partial coe�cients with

marginal coe�cients. This property allows to reduce considerably the

computing times because a single pass over the database is necessary to

compute all coe�cients. We test our algorithm on benchmark databases.

Keywords: feature selection, partial association, marginal association

1 Introduction

Feature selection is a key step in any machine learning process. In supervised
learning, only the relevant variables are selected, reducing the volume of com-
putation and making the classi�er more e�cient in generalization, as shown in a
variety of papers on sensitivity of noisy attribute classi�ers (nearest neighbour
[1], naive bayes classi�er [11]).

With the development of searches in very large databases [7], preselection
-even reduction of- the variables becomes more crucial and more resource con-
suming [4]. Fast feature selection methods that are general enough to deal with
multi-valued categorical variables are thus needed. Typically, there are two kinds
of variable selection methods [17]: stepwise �ltering [16] and wrapper strategies
[12].

Wrapper strategies explicitly use the classi�er to select the subset of pre-
dictive attributes which minimizes the generalization error rate obtained using
cross validation. The main di�culty is choosing between exploring all solutions
and the greedy elementary strategy while maintaining the generalization error
rate and a reasonable computation time. For this very reason, studies have often
relied on so-called rapid learning methods such as decision trees and naive bayes
models [11]. Large volumes of data make this strategy harder to apply.

A �ltering-type method is suggested here; this quicker method takes advan-
tage of a measure of association that allows the derivation of partial association
directly from the marginal pairwise associations. With Boolean variables, we

D.A. Zighed, J. Komorowski, and J. Zytkow (Eds.): PKDD 2000, LNAI 1910, pp. 221−231, 2000.
 Springer-Verlag Berlin Heidelberg 2000



have shown that such a �ltering method can be built on point correlation coef-
�cients [21]. For categorical attributes, we suggest in this paper to reduce them
into boolean attributes, by rewriting the problem in the space spanned by the
co-labels of the original attributes.

In section 2, the principle of our pairwise correlation measure and the linking
formula from marginal coe�cient to partial coe�cient are laid out. The corre-
sponding feature selection algorithm is given in section 3. Results of experiments
on real and arti�cial datasets using a naive bayes classi�er are given in section 4.
Related works are described in Section 5, while a conclusion is given in Section
6.

2 Principles

Let's �rst review stepwise selection using learning set. At the �rst step, the
variable showing the strongest predictive association with the class attribute,
say Y, is selected. At each following step, the variable adding the most to the
quality of the prediction is selected and added to the set of variables already
selected. A stopping rule is needed, and a measure of predictive association in
marginal form (�rst step) or partial form (following steps) that can show the
marginal gain brought about by each of the added remaining variables. Thus,
we seek a measure of (partial) association between X and Y, given Z, with two
important features:

P1 : the partial measure can be written as a function of the marginal measures
between all of the variables taken two at a time (linking formula);

P2 : if X and Y are independent given Z, than the partial measure is null
(conditional independence).

2.1 A linking formula

With a linking formula, the partial coe�cients can be computed gradually from
the mere marginal coe�cients, which represents an important reduction in the
need for computational resources [24].

Pearson's correlation coe�cient, de�ned for continuous attributes, veri�es
such a linking formula:

r(Y ;X/Z) =
r(Y ;X) − r(Y ;Z)r(X ;Z)√
(1 − r2(Y ;Z)) (1 − r2(X ;Z))

(1)

Kendall's rank correlation for ordinal variables veri�es a similar equation.
Conversely, Saporta [24] has proposed a partial coe�cient related to Tschuprow's
coe�cient1 that is formally derived from the linking formula.

1 a Chi-2 coe�cient standardized to account for the sample size and the table dimen-

sions
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2.2 Conditional independence

Conditional independence means that when X and Y are independent, given
Z, then the partial measure is null. This is an important feature for stepwise
procedures, as adding a predictor X, independent of Y given Z, to a predictor Z
will add nothing to the quality of the model.

Using combinatorics, Lerman [15] studied measures of association for cate-
gorical variables, giving, for each type of cross-classi�cation, a formulation for
the null hypothesis and an expression for the partial correlation coe�cient that
guarantees nullity under the null hypothesis. Unfortunately, to our knowledge,
there is no linking formula.

As Lerman [15] points out, partial Tschuprow's coe�cient proposed by Saporta
[24] is not null under conditional independence, except, noted Daudin [5], if the
conditioning variable has only 2 values, which is indeed the case for boolean
attributes !

Coe�cients similar to Proportional Reduction in Error [9] could also be used;
these have been generalized as the Proportional Reduction in Entropy, be it
Daroczy's-type entropy or rank entropy [13],[22]. The partial association coef-
�cient is then de�ned as the weighted mean of the marginal associations given
Z; weights can be the probabilities of Z [9], or better yet, those probabilities
times the conditional entropy of Y given Z [20]. All these coe�cients are null un-
der conditional independence as long as the marginal coe�cients are null under
independence, but they do not yield to a linking formula !

2.3 Boolean attributes

Boolean attributes, whether binary discretized continuous variables or categori-
cal variables rewritten as set of Boolean variables, can be treated using a point
correlation coe�cient, as we have proposed [21]; this coe�cient satis�es P1 and
P2 above. Saporta's [24] partial coe�cient after Tschuprow's, while null for con-
ditionally independent Boolean variables, can be negative for certain 2 × 2 × 2
tables.

Cross tables of Boolean variables show some interesting properties linked to
the fact that those variables can be regarded, without loss of generality, as 0-
1 variables since any other coding can be deduced by a linear transformation.
Let Y and X be two Boolean variables; let the joint proportion of 1 be p11, the
marginal proportions be p1+ and p+1; then the expected value and variance of
X are p+1 and p+1(1 − p+1) respectively; those of Y are p1+ and p1+(1 − p1+)
respectively; and the covariance is p11−p+1p1+ . The linear correlation coe�cient
(in this very case called the point correlation coe�cient), invariant under linear
transformation, is obtained as 2:

r(Y ;X) = ϕ =
p00p11−p01p10√
p0+p1+p+0p+1

(2)

2 In a 2×2 table, all standardizations of the Chi-2 are equivalent : r2, φ2, χ2

n , Cramer's

V, Kendall's tau, Tschuprow, Goodman and Kruskal's tau.

223Fast Feature Selection Using Partial Correlation for Multi-valued Attributes



Examples Y X

1 1 1

2 1 2

3 2 2

4 3 3

Pairwise IY IX
1,1 1 1

1,2 1 0

1,3 0 0

1,4 0 0

2,1 1 0

2,2 1 1

2,3 0 1

2,4 0 0

3,1 0 0

3,2 0 1

3,3 1 1

3,4 0 0

4,1 0 0

4,2 0 0

4,3 0 0

4,4 1 1

Table 1. From original dataset to pairwise co-labeled dataset

There are many advantages to reason with the point correlation coe�cient:
it is naturally signed, it veri�es a linking formula being a special case of Pear-
son's correlation, and it is null under conditional independence. This last point
can be shown easily as any regression on a Boolean regressor is linear. As with
Tschuprow's coe�cient, r(Y ;X/Z) can be null even if X and Y are not indepen-
dent. This is true for all coe�cients verifying the linking equation. Consider a
2×2×2 table for which a new predictor X is uncorrelated with a former predictor
Z and uncorrelated with the class attribute.

2.4 Multi-valued Attributes

For multi-valued attributes, there is no method that satis�es P1 and P2, as stated
above. Categorical attributes can be reduced to Boolean attributes by rewriting
the problem in the space spanned by the co-labels3 of the original attributes, and
thus the selection method described earlier can be applied. Hence, step by step,
co-labels associated with the regressors that explain the best the class attribute
will be selected using the point correlation coe�cient. The n × (p + 1) matrix
of data (n is the number of examples in the learning set, (p + 1) the number of
multi-valued attributes including the class) changes to a n2 × (p + 1) Boolean
matrix (e.g. Table 1).

Formally, we will prefer to de�ne individuals pairs with replacement taking
order into account. Indeed, in this case, one can demonstrate that independence
of categorical variables Y and X implies independence between co-labels associ-
ated with each variable [18] and then the point correlation coe�cient r(IY , IX)
3 A co-label IX associated with an attribute X is set to 1 if both individuals have the

same value for the attribute of interest, 0 otherwise.
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has zero value. If the pairs are without replacement and non ordered, we have

demonstrated that under Y and X independence hypothesis, r(IY , IX) has a

negative value.

In order to compute the point correlation coe�cient between the co-labels,

it is simpler to use a contingency-type formula based on the original Y and X,

rather than the customary �r� based on IY and IX �ags. Consequently, it is

not necessary to explicitly form the IY and IX co-labels attributes. The com-

putational cost of the point correlation r(IY , IX) remains in O(n), which is an

essential condition of the quickness of the algorithm.

Frequencies of the cross-classi�ed �ags, say gij, i = 0, 1; j = 0, 1, are written
as functions of the frequencies of the cross-classi�ed attributes Y and X, say

nkl, k = 1, 2, ...,K; l = 1, 2..., L.

Y\X 6= (di�erent label on X) = (same label on X)

6= g00 =
∑K

k=1

∑L

l=1
nkl [n− nk+ − n+l + nkl] g01 =

∑K

k=1

∑L

l=1
nkl [n+l − nkl]

= g10 =
∑K

k=1

∑L

l=1
nkl [nk+ − nkl] g11 =

∑K

k=1

∑L

l=1
n2
kl

r(IY , IX) =
g11g00 − g10g01√
g1+g0+g+1g+0

Once the table of the point correlation coe�cients is completed, partial cor-

relations are derived, thus selecting attributes step by step. The transition from

the space of examples to the space of pairs changes the predictions: now, whether

two examples have the same Y-labels given their X-labels are identical or not

is predicted, rather than the Y-label given the X-labels. This Boolean set-up

is particular as the roles of the labels are not interchangeable. Here, �r�, not
�r2�, must be maximized, since a strong negative correlation is a sign that X is

ill-adapted at predicting Y. Similarly, �rpart� and not �r2
part� will be maximized

in the following steps. Let's consider the second step of the procedure, when the

best X is sought, given the Z selected at the �rst step. For a given Z, either all

pairs are concordant in Z or all pairs are discordant in Z; in either case, con-

cordance in X should correspond to the concordance in Y, that is maximizing

�rpart�.
A rigorous stopping rule is still needed. Value zero is not convenient because

we work on a sample. For the time being, we use an empirical stopping rule which

operates when �rpart� is less than
2.5
n . This would correspond approximately to

the upper 0.5% point of the distribution of �r� under independence, namely,

r ∼ N(0, 1
n ). A theoretically sound critical value for �rpart� that accounts for

the number of tests is needed.

3 A Greedy Algorithm for Feature Selection

Building the partial correlations from the marginal correlation without any ad-

ditional passes though the data set is a key feature of our algorithm. Only the

marginal correlations require passing through the data set, a (p + 1) × (p + 1)
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S = ∅, k = 0
Compute marginal coe�cients Tr0(Y,X)

Repeat

Find X∗ = arg max
X

rk(Y,X / S)

If rk(Y,X
∗/ S)> 2.5

n

Then S = S ∪ {X∗}
k = k + 1
Compute Tr

k
(Y,X) from Tr

k−1
(Y,X)

End if

Until �Last add refused�

Return S
Table 2. G3 greedy algorithm for feature selection

table containing the marginal correlations rY,Xj (j = 1, . . . , p) and rXi,Xj (i, j =
1, . . . , p), say Tr(Y,X), being then constructed (p is the number of descriptors on
the data set). As correlations are symmetrical, only the upper triangle of Tr(Y,X)

need be computed.
First, S, the set of selected attributes, is empty. The attribute X∗ the most

correlated with Y , as indicated in Tr(Y,X), is sought. If this search yields a
signi�cant solution, then X∗ is selected and inserted in S, and the table T is
refreshed with the partial correlations r(Y,X/X∗) using the linking formula. In
the next step, X∗∗, the attribute showing the strongest correlation with Y given
X∗, is selected. This goes on until the stopping rule is activated. Thus, with a
very simple greedy algorithm, T is updated each time an attribute is selected.
Pseudo-code for the corresponding algorithm G3 is shown in Table 2.

The one and only pass through the data set is of magnitude O(p2×n), where
n is the number of individuals on the dataset. All other computations can be
derived from the coe�cients computed �rst. The maximum complexity, if all
attributes were selected, is of magnitude O(p2).

4 Experiments

Whether our algorithm indeed selects the �right� attributes, and the impact of
the selection on a classi�er have to be assessed. The naive bayes classi�er will be
used for two reasons: its complexity is easy to compute [O(p×n)] and hence the
reduction of computing time due to the reduction of attributes is easily seen; it is
sensitive to noisy attributes [11], hence eliminating irrelevant attributes should
improve its performances.

Databases extracted from the UCI Irvine [3] server were used. We used a very
diversi�ed set of databases so that the performance of the algorithm could be
assessed in a variety of situations. Some are real-life cases (adult, auto, dermatol-
ogy, heart, iris, lung cancer), some are arti�cial (monks1, monks3, mushroom);
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Base Examples Err. init Naive bayes G3 MIFS

Adult 48842 0.24 14 (0.161) 7 (0.144) 8 (0.146)

Autos 205 0.55 25 (0.248) 12 (0.249) 23 (0.243)

Breast noisy 699 0.345 18 (0.037) 8 (0.036) 9 (0.040)

Dermatology 366 0.70 34 (0.102) 23 (0.085) 34 (0.101)

Heart 270 0.44 13 (0.169) 10 (0.175) 12 (0.174)

Iris 150 0.66 4 (0.060) 2 (0.028) 2 (0.027)

Led noisy 10000 0.90 24 (0.264) 7 (0.264) 24 (0.264)

Lung-cancer 32 0.60 56 (0.742) 3 (0.308) 38 (0.700)

Monks-1 556 0.50 6 (0.254) 1 (0.254) 4 (0.254)

Monks-3 554 0.48 6 (0.036) 2 (0.036) 3 (0.036)

Mushroom 8416 0.47 22 (0.004) 13 (0.007) 7 (0.023)

Segmentation 2310 0.86 11 (0.163) 11 (0.163) 4 (0.080)

Wave noisy 5000 0.67 40 (0.224) 14 (0.219) 30 (0.221)

Table 3. Databases characteristics and results - Number of selected attributes (Error
rate)

the last set are sets to which random noise was added (wave noisy, breast cancer
noisy, led noisy).

Some continuous attributes were discretized using FUSINTER [25]. This is
a supervised discretization method which has the advantage of suggesting parti-
tions maximizing the link of each attribute with the class attribute. Compared to
less sophisticated methods (mainly unsupervised strategies) [6], we could think
that this approach gives the advantage to discretized continuous attributes com-
pared to other categorical one. Experiments show that this undesirable e�ect
does not appear in practice. If we refer to the analogy with decision trees which
we will explain in more details below, doing a global discretization before learn-
ing process is a practicable strategy [8].

Data bases characteristics and results are shown in Table 3; 10 cross-validations
were used to measure the error rate. Results for G3 were compared to results
for MIFS [2], an alternative greedy algorithm that will be reviewed in the next
section. Table 3 shows the number of cases, the default classi�er error rate (the
default classi�er always predicts the class with the highest frequency), the num-
ber of selected attributes and the error rate for the naive bayes algorithm, G3,
and �nally MIFS. Some observations follow:

� where noise was deliberately added (wave noisy, breast cancer noisy, led
noisy), all random attributes were eliminated; thus the method is e�ective
when a large number of attributes are present, not all relevant;

� more interesting yet, for the bases where the �right� attributes were known,
these were among the �rst selected (iris, wave, breast, led); the test error
rate should not be severely a�ected by the reduction of attributes that would
follow the introduction of a more stringent stopping rule;
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� on the other bases, even UCI Irvine's that have been �worked at�, with few
irrelevant attributes [10], the selection almost always drastically reduces the
number of attributes;

� for the monks datasets (monks-1, monks-3 ), where the concepts to learn
are disjunctions of conjunctions, the greedy algorithm failed to select the
right attributes; in both cases, only one set of the disjunction was identi�ed.
This also happens when a strong interaction is present among the variables
(mushroom);.

� error rates are insensitive to reductions in the number of attributes, with
two exceptions (dermatology and especially lung cancer); in the lung cancer
case, curse of dimensionality disturbs, and a reduction of the number of
dimensions improved learning;

� how well MIFS operates depends on how well β, the parameter that rules
how many attributes are to be selected, is set. In practice, it appears that
β varies with the problem at hand; a constant β=1 was used, following [14],
to obtain a stable comparison. In some instances (auto, dermatology, led,
lung cancer, wave) this value seems insu�cient; in other cases (mushroom)
it appears too restrictive; it appears appropriate for iris and segmentation.
From this point of view, G3 is more stable. Tuning G3 is done by adjusting
the stopping rule threshold, and even when it was set to 0, results were
comparable to those displayed in Table 3;

� as regards calculation times, G3 andMIFS are theoretically equivalent since
they have the same computational complexity. However, in our experiments,
we can note that the MIFS method is a little slower, simply because it
selects a greater number of attributes.

5 Related works

In this paper, we are mainly concerned with �ltering feature selection methods.
The basic idea is to identify the most discriminating subset of attributes before
learning starts [17]. Contrary to the wrapper method, �ltering methods do not
use the classi�er's characteristics to build the classi�er. There is no guarantee
that the best set of attributes will be selected for a given learning algorithm. For
example, in the case of the Boolean XOR, a �ltering method could select the
right attributes, but the decision tree used later on to learn the concept, short-
sightedness, fails to see the correct model [19]. This apparent �aw can become an
advantage. As it does not depend on any learning algorithm, the �ltering aims at
outlining the right representation space. Then, a suitable learning algorithm can
be found for the de�nitive set of attributes. Using a multilayer perceptron in the
example above, the solution is trivial. The second appealing feature of �ltering
algorithms is their computational speed. In data mining situations [7], the huge
size of the database is such that direct processing of all the data is hardly ever
possible. The data base must be reduced in length (by sampling cases) and in
width (by selecting variables) to make computations possible and a�ordable [4].
Of course, this requires a fast selection algorithm.
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Fig. 1. Constrained Decision Tree with two level on AUTOS dataset

The best representation space is determined by a stepwise selection of the
predictors that exhibit the strongest correlation with the class attribute. Hence,
exploring the solution space ought to be greedy. In this sense, FGMIFS [14] is
similar to our algorithm. FGMIFS constructs a decision tree under the constraint
that, for each level, the leaves be split using the same attribute (Figure 1). Here,
the measure for the attribute selection is akin to information gain [26]. Typically,
it is the description of a stepwise regression using discrete explicative variables.
G3 implicitly does the same, but di�ers from FGMIFS on two essential points:
(1) at each node, the partial correlations are derived from previously computed
parameters and do not require an additional pass over the databases; (2) the
tree not being explicitly constructed, it is not penalized by data fragmentation.
Indeed, with FGMIFS, for a large tree (assume 10 Boolean attributes, hence
210 leaves), the number of individuals on each leave is too small for reliable
estimation of probabilities.

In our opinion, MIFS [2] is closer to G3 than FGMIFS: the additional in-
formation about the class attribute Y brought by an additional X, given the
already selected attributes, is computed. Here, the main di�erence with G3 is
that the author uses mutual information, and while partial association is derived
from marginal, it is de�ned empirically. Let S be the set of the already selected
attributes, the additional information about Y brought by X is given by:

I(Y,X/S) = I(Y,X) − β ×
∑

Z∈S

I(X,Z)

card(S)

This is in fact a valid procedure whatever the number of categories. But the
success of the procedure relies heavily on the choice of β. In practice, many tests
are required before a suitable β is found, and the expected gain in time is lost.

Lastly, work in [23] is older, yet close to ours. The main idea is to derive the
partial coe�cients from the marginals. While we seek coe�cients satisfying some
properties, namely the iterative derivation of the partial coe�cients, coe�cients
in [23] are de�ned after the linking equation. Such coe�cients need not be null
under conditional independence, and may lie outside the domain of the marginal
coe�cient (Tschuprow's is bounded by 0 and 1; the partial Tschuprow, as de�ned
by its author, may be negative) which makes interpretation di�cult.
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6 Conclusion and Future Work

In this paper, a fast multi-valued attribute selection method based on the recur-
rent computation of partial correlations is developed. It is quite fast as a single
pass through the data is necessary, and can thus be used as a starting point far
an induction process.

Tests on real and arti�cial data showed that this approach is pragmatic, and
have identi�ed situations where it is quite advantageous. Where the method
appears to fail, namely in disjunction problems or with data showing large in-
teraction, the greediness of the method seems at fault. Similarities with decision
trees could open new venues: borrowing sophisticated algorithms such as looka-
head search, post pruning, or synthetic attributes [26].
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