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Abstract. A family of novel texture representations called Ffirst, the
Fast Features Invariant to Rotation and Scale of Texture, is introduced.
New rotation invariants are proposed, extending the LBP-HF features,
improving the recognition accuracy. Using the full set of LBP features, as
opposed to uniform only, leads to further improvement. Linear Support
Vector Machines with an approximate χ2-kernel map are used for fast
and precise classification.

Experimental results show that Ffirst exceeds the best reported results
in texture classification on three difficult texture datasets KTH-TIPS2a,
KTH-TIPS2b and ALOT, achieving 88 %, 76 % and 96 % accuracy
respectively. The recognition rates are above 99 % on standard texture
datasets KTH-TIPS, Brodatz32, UIUCTex, UMD, CUReT.
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1 Introduction

Texture description and recognition techniques have been the subject to many
studies for their wide range of applications. The early work focused on the prob-
lem of terrain analysis [12,36] and material inspection [37]. Later applications of
texture analysis include face recognition [1], facial expressions [30,42] and object
recognition [39]. The relation between scene identification and texture recogni-
tion is discussed by Renninger and Malik [28]. Texture analysis is a standard
problem with several surveys available, e.g. [6,19,24,40]. Many texture descrip-
tion methods are based on the Local Binary Patterns [10,11,17,20–23,41], which
is a computationally simple and powerful approach.

We introduce a family of novel texture representations called Ffirst - the
Fast Features Invariant to Rotation and Scale of Texture. It is based on LBP-
HF-S-M, the rotation invariant features obtained from sign- and magnitude-LBP
histograms using Fourier transform proposed by Zhao et al. [41]. We enrich the
LBP-HF-S-M representation by proposing additional rotational invariants and
by the use of non-uniform patterns.
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The scale invariance of Ffirst is obtained by the technique recently applied
in the context of bark recognition [32].

We show that the novelties improve performance in texture recognition exper-
iments with a feature-mapped linear SVM classifier approximating the χ2 kernel.

The rest of this paper is organized as follows: The state-of-the-art approaches
to texture recognition are briefly reviewed in Section 2. The new family of texture
representations called Ffirst is introduced and described in Section 3. Section 4
is dedicated to the proposed extensions of LBP-HF and Ffirst. Section 5 presents
our experiments on standard texture datasets. Section 6 concludes the paper.

2 State of the Art

Several recent approaches to texture recognition report fine results on the stan-
dard datasets, often using complex description methods. Sifre and Mallat [31]
used a cascade of invariants computed using scattering transforms to construct
an affine invariant texture representation. A sparse representation based Earth
Mover’s Distance (SR-EMD) presented by Li et al. [15] achieves good results
in both image retrieval and texture recognition. Quan et al. [27] propose a tex-
ture feature constructed by concatenating the lacunarity-related parameters esti-
mated from the multi-scale local binary patterns. Local Higher-Order Statistics
(LHS) proposed by Sharma et al. [30] describe higher-order differential statis-
tics of local non-binarized pixel patterns. The method by Cimpoi et al. [7] uses
Improved Fisher Vectors (IFV) for texture description. This work also shows fur-
ther improvement when combined with describable texture attributes learned on
the Describable Textures Dataset (DTD).

3 The Ffirst Method

In order to describe texture independently of the pattern size and orientation in
the image, a description invariant to rotation and scale is needed. For practical
applications we also demand computational efficiency.

In this section we introduce a new texture description called Ffirst (Fast
Features Invariant to Rotation and Scale of Texture), which combines several
state-of-the-art approaches to satisfy the given requirements. This method builds
on and improves a texture descriptor for bark recognition introduced in [32].

3.1 Completed Local Binary Pattern and Histogram Fourier

Features

The Ffirst description is based on the Local Binary Patterns (LBP) [20,22].
The common LBP operator (further denoted as sign-LBP) computes the signs
of differences between pixels in the 3 × 3 neighbourhood and the center pixel.
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LBP have been generalized [21] to arbitrary number of neighbours P on a circle of
radius R, using an image function f(x, y) and neighbourhood point coordinates
(xp, yp):

LBPP,R(x, y) =

P−1
∑

p=0

s(f(x, y) − f(xp, yp))2
p, s(z) =

{

1 : z ≤ 0
0 : else

. (1)

To achieve rotation invariance1, Ffirst uses the so called LBP Histogram
Fourier Features (LBP-HF) introduced by Ahonen et al. [2], which describe the
histogram of uniform patterns using coefficients of the discrete Fourier trans-
form. Uniform LBP are patterns with at most 2 spatial transitions (bitwise 0-1
changes). Unlike the simple rotation invariants using LBPri[21,25], which assign
all uniform patterns with the same number of 1s into one bin,

LBPri
P,R = min {ROR (LBPP,R, i) | i = 0, 1, .., P − 1} , (2)

the LBP-HF features preserve the information about relative rotation of the
patterns.

Denoting a uniform pattern Un,r
p , where n is the “orbit” number correspond-

ing to the number of “1” bits and r denotes the rotation of the pattern, the DFT
for given n is expressed as:

H(n, u) =

P−1
∑

r=0

hI(U
n,r
p )e−i2πur/P , (3)

where the histogram value hI(U
n,r
p ) denotes the number of occurrences of a given

uniform pattern in the image.
The LBP-HF features are equal to the absolute value of the DFT magnitudes

(which are not influenced by the phase shift caused by rotation):

LBP-HF(n, u) = |H(n, u)| =

√

H(n, u)H(n, u). (4)

Since hI are real, H(n, u) = H(n, P − u) for u = (1, .., P − 1), and therefore
only

⌊

P
2

⌋

+ 1 of the DFT magnitudes are used for each set of uniform patterns
with n “1” bits for 0 < n < P . Three other bins are added to the resulting
representation, namely two for the ”1-uniform” patterns (with all bins of the
same value) and one for all non-uniform patterns.

The LBP histogram Fourier features can be generalized to any set of uniform
patterns. In Ffirst, the LBP-HF-S-M description introduced by Zhao et al. [41] is
used, where the histogram Fourier features of both sign- and magnitude-LBP are
calculated to build the descriptor. The combination of both sign- and magnitude-
LBP called Completed Local Binary Patterns (CLBP) was introduced by Guo
and Zhang [10]. The magnitude-LBP checks if the magnitude of the difference of

1 LBP-HF (as well as LBPri) are rotation invariant only in the sense of a circular
bit-wise shift, e.g. rotation by multiples 22.5◦ for LBP16,R.
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the neighbouring pixel (xp, yp) against the central pixel (x, y) exceeds a thresh-
old tp:

LBP-MP,R(x, y) =
P−1
∑

p=0

s(|f(x, y) − f(xp, yp)| − tp)2
p. (5)

We adopted the common practice of choosing the threshold value (for neigh-
bours at p-th bit) as the mean value of all m absolute differences in the whole
image:

tp =

m
∑

i=1

|f(xi, yi) − f(xip, yip)|
m

. (6)

The LBP-HF-S-M histogram is created by concatenating histograms of LBP-
HF-S and LBP-HF-M (computed from uniform sign-LBP and magnitude-LBP).

3.2 Multi-scale Description and Scale Invariance

A scale space is built by computing LBP-HF-S-M from circular neighbourhoods
with exponentially growing radius R. Gaussian filtering is used2 to overcome
noise.

Unlike the MS-LBP approach of Mäenpää and Pietikäinen [17], where the
radii of the LBP operators are chosen so that the effective areas of different
scales touch each other, Ffirst uses a finer scaling with a

√
2 step between scales

radii Ri, i.e. Ri = Ri−1

√
2.

This radius change is equivalent to decreasing the image area to one half.
The finer sampling uses more evenly spaced information compared to [17], as
illustrated in Figures 1a, 1b. The first LBP radius used is R1 = 1, as the LBP
with low radii capture important high frequency texture characteristics.

Similarly to [17], the filters are designed so that most of their mass lies within
an effective area of radius ri. We select the effective area diameter, such that the
effective areas at the same scale touch each other: ri = Ri sin π

P .
LBP-HF-S-M histograms from c adjacent scales are concatenated into a sin-

gle descriptor. Invariance to scale changes is increased by creating nconc multi-
scale descriptors for one image. See Algorithm 1 for the overview of the texture
description method.

3.3 Support Vector Machine and Feature Maps

In most applications, a Support Vector Machine (SVM) classifier with a suitable
non-linear kernel provides higher recognition accuracy at the price of signifi-
cantly higher time complexity and higher storage demands (dependent on the
number of support vectors). An approach for efficient use of additive kernels
via explicit feature maps is described by Vedaldi and Zisserman [35] and can be

2 The Gaussian filtering is used for a scale i only if σi > 0.6, as filtering with lower σi

leads to significant loss of information.
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(a) Scale space of Mäenpää
and Pietikäinen [17]

(b) Scale space from [32] used
in Ffirst

Fig. 1. The effective areas of filtered pixel samples in a multi-resolution LBP8,R oper-
ator

Algorithm 1. The Ffirst description method overview
R1 := 1
for all scales i = 1...(nconc + c − 1) do

σi := Ri sin π

P
/1.96

if σi > 0.6 then

apply Gaussian filter (with std. dev. σi) on the original image
end if

extract LBPP,Ri
-S and LBPP,Ri

-M and build the LBP-HF-S-M descriptor
for j = 1...nconc do

if i ≥ j and i < j + c then

attach the LBP-HF-S-M to the j-th multi-scale descriptor
end if

end for

Ri+1 := Ri

√
2

end for

combined with a linear SVM classifier. Using linear SVMs on feature-mapped
data improves the recognition accuracy, while preserving linear SVM advantages
like fast evaluation and low storage (independent on the number of support vec-
tors), which are both very practical in real time applications. In Ffirst we use
the explicit feature map approximation of the χ2 kernel.

The “One versus All“ classification scheme is used for multi-class classifica-
tion, implementing the Platt’s probabilistic output [16,26] to ensure SVM results
comparability among classes. The maximal posterior probability estimate over
all scales is used to determine the resulting class.

In our experiments we use a Stochastic Dual Coordinate Ascent [29] linear
SVM solver implemented in the VLFeat library [34].
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4 Adding Rotational Invariants

The LBP-HF features used in the proposed Ffirst description are built from
the DFT magnitudes of differently rotated uniform patterns, as described in
Section 3.1. We propose 3 more variants for the description, which will appear
in our experiments in Section 5.

The variant denoted as Ffirst+ creates additional rotational invariants, LBP-
HF+ features, computed from the first harmonics for each orbit:

LBP-HF+(n) =

√

H(n, 1)H(n + 1, 1) (7)

Fig. 2. Ordering the full set of Local Binary Patterns for the Histogram Fourier features

Another variant, Ffirst∀, uses all LBP instead of only the subset of uniform
patterns. Note that in this case, some orbits have a lower number of patterns, as
some non-uniform patterns have less possible rotations, as illustrated in Figure 2.

The last variant, denoted as Ffirst∀+, uses the full set of patterns for LBP-HF
features, adding also the additional LBP-HF+ features
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5 Experiments

5.1 Datasets

The proposed Ffirst method for texture classification was tested using the stan-
dard evaluation protocols on the following texture datasets:

The KTH-TIPS texture database [9,13] contains images of 10 materials.
There are 81 images (200x200 px) of each material with different combination
of pose, illumination and scale.

The standard evaluation protocol on the KTH-TIPS dataset uses 40 training
images per material.

(a) Cotton (b) Wool

(c) White bread (d) Aluminium foil

Fig. 3. Examples of 4 texture classes from the KTH-TIPS2 database

The KTH-TIPS2 database was published [5,18] shortly after KTH-TIPS.
It builds on the KTH-TIPS database, but provides multiple sets of images -
denoted as “samples“ - per material class (examples in Figure 3).

There are 4 “samples” for each of the 11 materials in the KTH-TIPS2
database, containing 108 images per “sample” (again with different combination
of pose, illumination and scale). However, in the first version of this dataset, for
4 of those 44 “samples” only 72 images were used. This first version is usually
denoted as KTH-TIPSa, and the standard evaluation method uses 3 “samples”
from each class for training and 1 for testing. The “complete” version of this
database, KTH-TIPSb, is usually trained only on 1 “samples” per class and
tested on the remaining 3 “samples”.



54 M. Sulc and J. Matas

The Brodatz32 dataset [33] was published in 1998 and it contains low resolu-
tion (64x64 px) grey-scale images of 32 textures from the photographs published
by Phil Brodatz [3] in 1966, with artificially added rotation (90◦) and scale
change (a 64x64 px scaled block obtained from 45x45 pixels in the middle).
There are 64 images for each texture class in total.

The standard protocol for this dataset simply divides the data into two halves
(i.e. 32 images per class in the training set and 32 in the test set).

Even though the original images are copyrighted and the legality of their
usage in academic publications is unclear3, Brodatz textures are one of the most
popular and broadly used sets in texture analysis.

The UIUCTex database, sometimes referred to as the Ponce Group Texture
Database, was published by Lazebnik et al. [14] in 2005 and features 25 different
texture classes, 40 samples each. All images are in VGA resolution (640x480 px)
and in grey-scale.

The surfaces included in the database are of various nature (wood, mar-
ble, gravel, fur, carpet, brick, ..) and were acquired with significant viewpoint,
scale and illumination changes and additional sources of variability, including,
but not limited to, non-rigid material deformations (fur, fabric, and water) and
viewpoint-dependent appearance variations (glass). Examples of images from
different classes are in Figure 4.

(a) Brick 1 (b) Brick 2

(c) Plaid (d) Bark 3

Fig. 4. Examples of 4 texture classes from the UIUCTex database

The results on this dataset are usually evaluated using 20 or 10 training
images per class. In our experiments, the former case with a larger training set
is performed.

3 http://graphics.stanford.edu/projects/texture/faq/brodatz.html

http://graphics.stanford.edu/projects/texture/faq/brodatz.html
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(a) (b)

(c) (d)

Fig. 5. Examples of 4 texture classes from the UMD database

The UMD dataset [38] consists of 1000 uncalibrated, unregistered grey-scale
images of size 1280x960 px, 40 images for each of 25 different textures. The
UMD database contains non-traditional textures like images of fruits, shelves of
bottles and buckets, various plants, or floor textures.

The standard evaluation protocol for UMD is dividing the data into two
halves (i.e. 20 images per class in the training set and 20 in the test set).

(a) Felt (b) Polyester

(c) Lettuce Leaf (d) Corn Husk

Fig. 6. Examples of 4 texture classes from the CUReT database
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The CUReT image database [8] contains textures from 61 classes, each
observed with 205 different combinations of viewing and illumination directions.
In the commonly used version, denoted as the cropped CUReT database4, only
92 images are chosen, for which a sufficiently large region of texture is visi-
ble across all materials. A central 200x200 px region is cropped from each of
these images, discarding the remaining background. There are thus 61x92=5612
images in the cropped database.

Though CUReT also contains a BRDF (bidirectional reflectance distribution
function) database, for purposes of standard texture recognition methods, only
the image database is used. We use 46 training images per class, which is a
standard evaluation protocol for the CUReT database.

(a) (b)

(c) (d)

Fig. 7. Examples of 4 texture classes from the ALOT database

The Amsterdam Library of Textures [4], denoted as ALOT, contains 250
texture classes. Each class contains 100 images obtained with different combina-
tions of viewing and illumination directions and illumination color.

To compare our results on the ALOT dataset to the state-of-the-art [27] we
use 20 training images and 80 test images per class.

5.2 Parameter setting

In all following experiments, we use the same setting of our method: nconc = 3
multi-scale descriptors per image are used, each of them consisting of c = 6 scales
described using LBP-HF-S-M. A higher number of concatenated scales offers only
minimal improvement in accuracy, while increasing the processing time. The
final histogram is kernelized using the approximate χ2 feature map, although
using the intersection kernel would provide similar results. In the application,

4 http://www.robots.ox.ac.uk/∼vgg/research/texclass/setup.html

http://www.robots.ox.ac.uk/~vgg/research/texclass/setup.html
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the data are only trained once and the training precision is more important than
the training time. Thus we demand high accuracy, setting SVM parameters to:
regularization parameter λ = 10−7, tolerance for the stopping criterion ǫ =
10−7, maximum number of iterations: 108. We use the unified setting in order
to show the generality of the Ffirst description, although setting the parameters
individually for a given dataset might further increase the accuracy.

Fig. 8. Dependence of the KTH-TIPS2b recognition rate on the number of multiscale
descriptors in Ffirst, denoted c

Figures 8 and 9 illustrate the effect of different parameter settings on the
recognition accuracy for the KTH-TIPS2b texture database.

To reduce the effect of random training and test data choice, the presented
results are averaged from 10 experiments.

5.3 Classification Results

The experimental results in texture classification are compared to the state-of-
the-art in Tables 1, 2, containing the results on the KTH-TIPS datasets and on
other standart texture datasets respectively.
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Fig. 9. Feature mapping and concatenating features from multiple scales in Ffirst,
KTH-TIPS2b

Table 1. Evaluation of Ffirst on other standard datasets, compared to the state-of-
the-art methods

Brodatz32 UIUCTex UMD CUReT ALOT

Num. of classes 32 25 25 61 250

Ffirst 99.2±0.3 98.6±0.6 99.3±0.3 98.5±0.2 92.9±0.3

Ffirst+ 99.3±0.3 98.7±0.7 99.3±0.3 98.6±0.3 93.4±0.3

Ffirst∀ 99.6±0.2 99.0±0.5 99.3±0.3 99.1±0.2 95.0±0.3

Ffirst∀+ 99.7±0.2 99.3±0.4 99.3±0.3 99.2±0.2 95.9±0.5

IFVSIFT [7] – 97.0±0.9 99.2±0.4 99.6±0.3 –

IFVSIFT [7] + DeCAF 5 – 99.0±0.5 99.5±0.3 99.8±0.2 –

Scattering [31] – 99.4±0.4 99.7±0.3 – –

LHS [30] 99.5±0.2 – – – –

SR-EMD-M [15] – – 99.9 99.5 –

PLS [27] – 96.6 98.99 – 93.4

MS-LBP-HF-KlSVM [32] 96.2±0.6 96.4±0.6 – – –

5 Results from http://www.robots.ox.ac.uk/∼vgg/data/dtd/

http://www.robots.ox.ac.uk/~vgg/data/dtd/
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Table 2. Evaluation of Ffirst on the KTH-TIPS datasets, compared to the state-of-
the-art methods

KTH-TIPS2a KTH-TIPS2b KTH-TIPS

Num. of classes 11 11 10

Ffirst 86.2±5.5 72.1±5.1 98.9±0.7

Ffirst+ 86.4±5.0 72.7±5.2 98.9±0.8

Ffirst∀ 88.0±6.5 75.8±4.1 99.1±0.5

Ffirst∀+ 88.2±6.7 76.0±4.1 99.1±0.5

IFVSIFT [7] 82.5±5.2 69.3±1.0 99.7±0.1

IFVSIFT [7] + DeCAF 6 84.4±1.8 76.0±2.9 99.8±0.2

IFVSIFT[7] + DeCAF

+DTDRBF
6 7

– 77.4±2.2 –

Scattering [31] – – 99.4±0.4

LHS [30] 73.0±4.7 – –

SR-EMD-M [15] – – 99.8

PLS [27] – – 98.4

6 Results from http://www.robots.ox.ac.uk/∼vgg/data/dtd/
7 The method requires an additional training set (the DTD dataset)

5.4 Suitability for Real-Time Applications

Table 3 shows a comparison of our image processing times to the state-of-the-
art texture recognition method by Cimpoi et al. [7] based on IVFSIFT. Both the
implementation of Ffirst and IVFSIFT

8 used MATLAB scripts with a C code in
the VLFeat [34] framework (after adding a new CLBP implementation for our
method). The processing times were measured on a standard laptop (1.3 GHz
Intel Core i5, 4 GB 1600 MHz DDR3) without parallelization.

The average description time for a low resolution (200x200px) image for
Ffirst is at most 0.05 s, while for higher resolutions the processing time will
grow proportionally to the image resolution, as the number of local operations
will increase with the number of pixels.

6 Conclusions

We proposed a family of novel texture representations called Ffirst, the Fast Fea-
tures Invariant to Rotation and Scale of Texture, using several state-of-the-art
approaches. The first variant, Ffirst+, uses newly proposed rotational invariants,
another, denoted as Ffirst∀, allows to build the features from the full set of LBP,
including non-uniform patterns.

8 Using the code kindly provided by the authors of [7]

http://www.robots.ox.ac.uk/~vgg/data/dtd/


60 M. Sulc and J. Matas

Table 3. Average image description time for one image, compared to IFVSIFT

KTH-TIPS2b KTH-TIPS CUReT

Image resolution 200x200 px 200x200 px 200x200 px

Ffirst 0.029 s / im. 0.028 s / im. 0.029 s / im.

Ffirst+ 0.032 s / im. 0.032 s / im. 0.032 s / im.

Ffirst∀ 0.035 s / im. 0.035 s / im. 0.036 s / im.

Ffirst∀+ 0.048 s / im. 0.049 s / im. 0.049 s / im.

IFVSIFT [7] 0.089 s / im. 0.088 s / im. 0.090 s / im.

The Ffirst∀+ method, using both proposed improvements, achieves the best
results, exceeding the best reported results in texture classification on three
difficult texture datasets, KTH-TIPS2a, KTH-TIPS2b and ALOT, achieving
88%, 76% and 96% accuracy respectively. The recognition rates were above 99%
on standard texture datasets KTH-TIPS, Brodatz32, UIUCTex, UMD, CUReT.

The Ffirst description and the evaluation based on linear Support Vector
Machines are fast, making the proposed method suitable for real time applica-
tions.

Acknowledgments. Jiri Matas was supported by Czech Science Foundation
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